
CHR Summer School – July 2013

Abduction and language
processing with CHR

Henning Christiansen, professor of Computer Science at Roskilde University, Denmark
© Henning Christiansen 2013; all rights reserved

My background

✤ PhD in Computer Science: syntax and semantics of programming languages, 1988

✤ Later interest in logic programming, as specification+implementation language and an object of study in
itself

✤ Leading to NLP (natural language processing) and automated reasoning, in particular with Constraint
Handling Rules

✤ with applications in teaching, from hardcore CS students to linguists

✤ Recent interests include also

✤ probabilistic-logic models for bioinformatics

✤ formal linguistics, in particular language evolution

✤ interactive installations

✤ Various: Organizer of several conferences and workshops, coordinator for international student exchanges
(Erasmus etc.), a past as Head of CS Section and Study Director

2© Henning Christiansen 2013; all rights reserved

Our principles

✤ Constraint store as a knowledge base

✤ CHR rules as “business logic” or “integrity constraints” ≈ rules for
world knowledge

✤ Prolog or additional CHR rules as “driver algorithm”

A motivating example . . .

3© Henning Christiansen 2013; all rights reserved

A motivation example (1:3)

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Consider the following Prolog program:

What is it supposed to mean?
Let’s try it:
| ?- happy(henning).
! Existence error in user:rich/1
! procedure user:rich/1 does not exist
! goal: user:rich(henning)

Another way of saying no :(
The problem: Prolog’s closed world assumption

4© Henning Christiansen 2013; all rights reserved

A motivation example (2:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Let’s try with a little help from CHR:

Intuition: Make certain predicates “open world”.

| ?- happy(henning).
rich(henning) ? ;
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Looks more like it, but still not perfect . . .
5© Henning Christiansen 2013; all rights reserved

A motivation example (3:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

professor(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Adding a bit of “universal knowledge” in terms of a CHR rule:

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Thus:
• CHR constraints represent concrete facts about a given world.
• CHR rules represent universal knowledge valid in any world.

6© Henning Christiansen 2013; all rights reserved

Historical background

✤ 1998: I found out that CHR existed and used it to implement a powerful automatic reasoning system
[Christiansen, 1998]

✤ 1999: Visiting LMU, Munich, 1999, cooperating with Slim Abdennadher on CHRV for abduction
[Abdennadher, Christiansen, 2000]

✤ Around 2000: developing CHR Grammars [Christiansen, TPLP 2005]

✤ 2002: Visiting Verónica Dahl in Canada; replacing CHRV by Prolog+CHR for abductive reasoning ≈
Hyprolog, [Christiansen, Dahl, ICLP 2005]

✤ 2002 and onwards: different applications

✤ Since 2005 or before: applied the principle in teaching AI

✤ 2006-2011: Probabilistic abduction [Christiansen, 2008; Christiansen, Saleh, 2011]

✤ 2012: CHR adapted to knowlede bases to be used in intelligent, interactive installations.

See these and other references in the reference list.

7© Henning Christiansen 2013; all rights reserved

Overview of this course

✤ Abductive Reasoning with CHR

✤ Definition, implementation in CHR, applications, esp. for diagnosis

✤ Language Analysis 1: With DCGs (= Prolog) plus CHR

✤ Language Analysis 2: CHR Grammars

✤ If time: iiCHR: an adaptation of CHR with persistent constraint
stores shared by different agents

✤ Intended for autonomous systems and-or interactive installations

8© Henning Christiansen 2013; all rights reserved

A few remarks before we start

✤ All example programs available on the website (TBA)

✤ Tested in SICStus 4 and SWI

✤ No theorems (find them in the references), just programming :)

✤ No time for exercises during the course :(

✤ Please feel free to ask questions, to disagree even.

9© Henning Christiansen 2013; all rights reserved

Part I

Abductive reasoning
with CHR

10© Henning Christiansen 2013; all rights reserved

Abduction????

A term due to C.S.Pierce (1839-1914); the trilogy:

✤ Deduction

✤ Reason “forward” in a sound way from what we know already; finding its logic
consequences; i.e., nothing really new

✤ Induction

✤ Creating rules from example, so we can use these rules in new situations

✤ Abduction

✤ Figure out which currently unknown facts that can explain an observation; unsound
from logical point of view ;-)

11© Henning Christiansen 2013; all rights reserved

Abduction with CHR

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.
prof(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

You’ve seen it already!

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

In logic programming terms:

Figure out which facts should be added to the program to make a the
given goal succeed

12© Henning Christiansen 2013; all rights reserved

Traditional definition of Abductive
Logic Programming (ALP)
✤ An abductive logic program consist of

✤ A number of predicates, some of which are called abducibles, Abd

✤ A usual logic program, P, in which abducibles do not occur in the head of rules

✤ A set of integrity constraints, IC, which are formulas that must always be true

✤ An abductive answer to a query Q is a set of abducible atoms Ans such
that

✤ P U Ans |= Q and P U Ans is consistent

✤ (It is also possible to include an answer substitution, but we ignore that)

13© Henning Christiansen 2013; all rights reserved

Translating ALP into Prolog+CHR

Abducible predicates CHR constraints

Integrity constraints CHR rules

Let us inspect our sample program:
:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

14© Henning Christiansen 2013; all rights reserved

Translating ALP into Prolog+CHR

Abducible predicates CHR constraints

Integrity constraints CHR rules

Let us inspect our sample program:
:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

14© Henning Christiansen 2013; all rights reserved

Compare with “traditional” ALP

✤ Usually defined by difficult algorithms and implemented with
complicated meta-interpreters; see references to work by Kowalski,
Kakas & al, Decker, ...

✤ Our approach employs existing technology

✤ in the most efficient way
✤ with no meta-level overhead
✤ and we can use all of Prolog and CHR (libraries, all sorts of dirty tricks)

✤ To my knowledge, far the most efficient implementation of ALP

✤ The cost? Only very limited use of negation (you can read about that)
15© Henning Christiansen 2013; all rights reserved

Applications of abduction

✤ Language interpretation

✤ Diagnosis

✤ Planning

✤ View update in databases

16© Henning Christiansen 2013; all rights reserved

Diagnosis in Prolog+CHR

✤ Consider a complex system

✤ we can only see it from the outside, i.e., observe symptoms
✤ we have a model about how the system works inside
✤ we have an idea of possible diagnoses, that can explain the symptoms

✤ Examples: a patient, a computer system, a car, . . .

✤ The problem: Given observed symptoms, suggest diagnoses

✤Our example: Fault finding in logical circuits

17© Henning Christiansen 2013; all rights reserved

A model of logical circuits in Prolog

B

A

Carry

Sum

B

A Sum

Carry in

Carry out

halfadder(A, B, Carry, Sum):-
 and(A, B, Carry),
 xor(A, B, Sum).

fulladder(Carryin, A, B,
 Carryout, Sum):-
 xor(A, B, X),
 and(A, B, Y),
 and(X, Carryin, Z),
 xor(Carryin, X, Sum),
 or(Y, Z, Carryout).

not(0, 1).
not(1, 0).

and(0, 0, 0).
and(0, 1, 0).
and(1, 0, 0).
and(1, 1, 1).

xor(0, 0, 0).
xor(0, 1, 1).
xor(1, 0, 1).
xor(1, 1, 0).

or(0, 0, 0).
or(0, 1, 1).
or(1, 0, 1).
or(1, 1, 1).

18© Henning Christiansen 2013; all rights reserved

Adapt for diagnosis with CHR

Each logical gate is given an identifier, so we can distinguish:
fulladder(Carryin, A, B,
 Carryout, Sum):-
 xor(A, B, X, g1),
 and(A, B, Y, g2),
 and(X, Carryin, Z, g3),
 xor(Carryin, X, Sum, g4),
 or(Y, Z, Carryout, g5).

A gate may be perfect or defect (ok or ko) for specific inputs
and(A,B,X,Id):-
 and(A,B,X),
 state(Id,A+B,ok).

and(A,B,X,Id):-
 and(A,B,Z), disturb(Z,X),
 state(Id,A+B,ko).

or(A,B,X,Id):- . . .

disturb(0,1).
disturb(1,0).

:- chr_constraint state/3.

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

20© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

21

%% No CHR rules needed

| ?- fulladder(1,1,1,0,0)
state(g5,1+0,ko),
state(g4,1+0,ko),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ok),
state(g4,1+1,ok),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

21

%% No CHR rules needed

Let’s try it:
| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1),
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

....

A total of 262144 solutions

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

22

state(Id,Input,S1) \ state(Id,Input,S2) <=> S1=S2.

| ?- fulladder(1,1,1,1,1).
state(g5,1+0,ok),
state(g4,1+0,ok),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ko),
state(g4,1+1,ko),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

22

state(Id,Input,S1) \ state(Id,Input,S2) <=> S1=S2.

| ?- fulladder(1,1,1,1,1).
state(g5,1+0,ok),
state(g4,1+0,ok),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ko),
state(g4,1+1,ko),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:
| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1),
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

....

A total of 72 solutions

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-
produced-in-correct-
way

23

state(Id,A,S1) \ state(Id,A,S2) <=> S1=S2.

Let’s try it:
| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1), !,
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

state(g1,0+0,ko),
state(g3,0+1,ko),
state(g4,1+0,ko),
state(g4,1+1,ko),
state(g5,1+1,ko), (rest is ok) ?

Only 1 solution!!

© Henning Christiansen 2013; all rights reserved

Diagnosis may be based on
different assumptions: Summary
✤ Formulated in CHR with constraints for ok/not-ok for components

✤ Three alternative assumptions

1. periodic faults

2. consistent faults

3. consistent faults with correct-behaviour-produced-in-correct way

✤ In practice, try 3, if it does not work, try 2 – and if that gives too many
solutions, try to obtain more observations (i.e., test the device...)

✤ Problem for practical applications, say medical diagnosis, is the lack
of priority between different diagnoses

24© Henning Christiansen 2013; all rights reserved

Planning as Abduction

✤ Problem: Given a number of tasks + restrictions on the order in which
they can be done.

✤ Solution: An assignment of a time point to each task so the
restrictions are obeyed.

✤ In our terms

✤ Abducibles (CHR constraints): Assignment of a time point to a task

✤ Integrity constraints (CHR rules): The restrictions

✤ The goal (≈ desired observation): “The work has been done.”

25© Henning Christiansen 2013; all rights reserved

Planning as Abduction, example

26
soil
f0
f1

c1 c2

gable

Architect’s drawing: CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
 supports(P0,P1), Time0 > Time1
 | fail.

mount(P,Time0), mount(P,Time1) ==>
 Time0 \= Time1
 | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog: next slide

© Henning Christiansen 2013; all rights reserved

27

CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
 supports(P0,P1), Time0 > Time1
 | fail.

mount(P,Time0), mount(P,Time1) ==>
 Time0 \= Time1
 | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog:
built:- mount(soil,0), build(1).

build(6):- !.

build(Time):-
 part(P),
 mount(P,Time),
 Time1 is Time+1,
 build(Time1).

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

Wanna see an animation
of the first solution?

© Henning Christiansen 2013; all rights reserved

28

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

soil
f0
f1

c1 c2

gable

© Henning Christiansen 2013; all rights reserved

More on planning

✤ With the same technique, we can extend with

✤ Duration, e.g., it takes 8 hours to mount a column
✤ Resources, e.g., to mount a column, we need 1 crane and 12 workers
✤ Restrictions+= At any time, the resources in use must not exceed the

maximum available (say, 2 cranes and 30 workers)

✤ Your exercise (voluntary!): Extend the example and implement the
scheme above

✤ Your next exercise (difficult & voluntary): Extend your program so it tries
to find a solution that minimizes the no. of unoccupied workers — or,
alternatively, the solution that finishes the building as early as possible.

29© Henning Christiansen 2013; all rights reserved

End of Part I

Abductive reasoning
with CHR

30© Henning Christiansen 2013; all rights reserved

Part II

Language analysis
with Prolog and CHR

31© Henning Christiansen 2013; all rights reserved

Overall principles

✤ My favourite metaphor: “Interpretation as abduction”

✤ Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, Paul A. Martin: Interpretation as
Abduction. Artif. Intell. 63(1-2): 69-142 (1993)

✤ Also Charniac, McDermott (1985), Gabbay & al (1997), Christiansen (1993)

✤ We use Prolog’s Definite Clause Grammars (DCGs) extended with
CHR

✤ Resulting method:
✤ Integrates semantic and pragmatic analysis (in contrast to tradition methods)
✤ A great experimental tool for students and researcher in linguistics; easy to approach

and “advanced” analyses can be specified in very short time.
32© Henning Christiansen 2013; all rights reserved

A short historical note

✤ Basic idea comes from CHR Grammars (Christiansen, 2001-2005), that
we will look at later in the course

✤ Idea of using DCGs emerged through joint work with Verónica Dahl,
2002 and onwards....

✤ Lead to the Hyprolog system (Christiansen, Dahl, ICLP, 2005)
✤ adds a thing layer of syntactic sugar upon Prolog+CHR that supports abduction
✤ and so-called assumptions, which another kind of tool (related to abduction,

though), coming from Verónica Dahl’s earlier work.

✤ Here we show things expressed directly in Prolog(DCG)+CHR

33© Henning Christiansen 2013; all rights reserved

Overview

✤ Recall Definite Clause Grammars

✤ Adding semantics/pragmatics: Using CHR as knowledge base as we
have seen already

✤ Examples

34© Henning Christiansen 2013; all rights reserved

Definite Clause Grammars

✤ Syntactic sugar on top of
Prolog

✤ System adds difference
lists “behind the curtain”

✤ In Prolog from its very
beginning

✤ Very popular for teaching,
prototyping, and some
realistic applications

✤ Easy to add features and
“constraints”

35© Henning Christiansen 2013; all rights reserved

Definite Clause Grammars

✤ Syntactic sugar on top of
Prolog

✤ System adds difference
lists “behind the curtain”

✤ In Prolog from its very
beginning

✤ Very popular for teaching,
prototyping, and some
realistic applications

✤ Easy to add features and
“constraints”

35

s --> np(N), v(N), np(_).

s --> np(N), is(N), [at], np(_).

np(N) --> n(N).

v(sing)--> [sees].
v(plur)--> [see].
is(sing)--> [is].
is(plus)--> [are].

n(sing) --> [peter].
n(sing) --> [mary].
n(sing) --> [jane].
n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
n(sing) --> [vacation].

n(plur) --> n(sing), [and], n(_).

© Henning Christiansen 2013; all rights reserved

Definite Clause Grammars

✤ Syntactic sugar on top of
Prolog

✤ System adds difference
lists “behind the curtain”

✤ In Prolog from its very
beginning

✤ Very popular for teaching,
prototyping, and some
realistic applications

✤ Easy to add features and
“constraints”

35

s --> np(N), v(N), np(_).

s --> np(N), is(N), [at], np(_).

np(N) --> n(N).

v(sing)--> [sees].
v(plur)--> [see].
is(sing)--> [is].
is(plus)--> [are].

n(sing) --> [peter].
n(sing) --> [mary].
n(sing) --> [jane].
n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
n(sing) --> [vacation].

n(plur) --> n(sing), [and], n(_).

s(S0,S3):- np(S0,S1,N), v(S1,S2,N), v(S2,S3).
....
v([sees|S0],S0,sing).

© Henning Christiansen 2013; all rights reserved

Adding semantics/pragmatics

✤ Traditionally:

✤ “Semantics” = context-independent (lambda) terms
✤ “Pragmatics” = relating “Semantics” to context, e.g., mapping variables to

(identifiers of) “real worlds”

✤ The present approach blurs this distinction, which suits much better
my intuition about how humans process language

✤ You may see this in the examples

36© Henning Christiansen 2013; all rights reserved

A DGC with CHR for sem/pragm

37

:- chr_constraint at/2, see/2.

story --> [] ; s, ['.'], story.

s --> np(X), [sees], np(Y),
 {see(X,Y)}.

s --> np(X), [is,at], np(E),
 {at(E,X)}.

s --> np(X), [is,on,vacation],
 {at(vacation,X)}.

np(peter) --> [peter].
np(mary) --> [mary].
np(jane) --> [jane].

np(chr_summer_school)
 --> [the,chr,summer,school].

np(hennings_course)
 --> [hennings,course].

np(vacation) --> [vacation].

First version: Only noting facts
:- phrase(story,
 [peter,sees,mary,'.',
 peter,sees,jane,'.',
 peter,is,at,the,
 chr,summer,school,'.',
 mary,is,at,hennings,course, '.',
 jane,is,on,vacation,'.']).

at(vacation,jane),
at(hennings_course,mary),
at(chr_summer_school,peter),
see(peter,jane),
see(peter,mary) ?

© Henning Christiansen 2013; all rights reserved

38

:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(berlin,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_course,X) ==> at(chr_summer_school,X).

at(vacation,X) ==> in(Loc,X), diff(Loc,berlin).

see(X,Y) ==> true |
 (in(L,X), in(L,Y)
 ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| ?- phrase(story, [mary,is,at,hennings,course,'.']).

at(chr_summer_school,mary),
at(hennings_course,mary),
in(berlin,mary) ?

© Henning Christiansen 2013; all rights reserved

38

:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(berlin,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_course,X) ==> at(chr_summer_school,X).

at(vacation,X) ==> in(Loc,X), diff(Loc,berlin).

see(X,Y) ==> true |
 (in(L,X), in(L,Y)
 ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| :- phrase(story,
 [peter,sees,mary,'.',
 peter,sees,jane,'.',
 peter,is,at,the,
 chr,summer,school,'.',
 mary,is,at,hennings,course, '.',
 jane,is,on,vacation,'.']).

at(vacation,jane),

at(chr_summer_school,mary),

at(hennings_course,mary),

at(chr_summer_school,peter),

in(_A,jane),

in(berlin,mary),

in(berlin,peter),

see(peter,jane),

see(peter,mary),

skypes(peter,jane),

diff(berlin,_A) ?

© Henning Christiansen 2013; all rights reserved

A realistic example: Extracting
UML diagrams from Use Cases
✤ Based on 4 week project work with two students [Christiansen, Have,

Tveitane, 2007 a+b]

✤ Only a brief sketch; here using the full power of CHR without caring
about formal details ;-)

✤ Use cases?? In the OOA/OOP tradition, small stories about the world
which the system to be developed will fit it.

✤ According to OOA principles, UML diagrams describing classes and
their property, etc., are produced manually from use cases...

✤ But why not do it automatically, when we have a tool such as Prolog
+CHR which is perfectly suited for semantic/pragmatic analysis

39© Henning Christiansen 2013; all rights reserved

Example of input and output

From uses cases:

✤ The professor teaches. A
student reads, writes
projects and takes exams.
Henning is a professor. He
has an office. The
university has five study
lines. Students and
professors are persons.

... extract info and produce

40© Henning Christiansen 2013; all rights reserved

Summary: Language analysis with
DGC+CHR
✤ Natural and straightforward integration of semantic/pragmatic

analysis with parsing

✤ 106 times easier for this purpose than any other, known tools

✤ DCGs (i.e., Prolog) provide parsing plus auxiliary predicates

✤ CHR constraint store as knowledge base; CHR rules for world
knowledge

41© Henning Christiansen 2013; all rights reserved

End of part II

Language analysis
with Prolog and CHR

42© Henning Christiansen 2013; all rights reserved

Part III

CHR Grammars

43© Henning Christiansen 2013; all rights reserved

CHR Grammars, background

✤ Around 2000, I noticed that it was easy to write bottom-op parsers with CHR

✤ Experiments showed that there was much more power in this principles than
expected:
✤ very flexible context-dependent rules, gaps, parallel matching, ...
✤ interesting treatment of ambiguity
✤ having parsing to depend on “semantics”, and a lot of other stuff

✤ 2002: CHR Grammar system released; SICStus 3 only

✤ Main publication 2005 [JLP]

✤ 2010 or -11: New versions for SICStus 4 and SWI

✤ Applications: The full power of CHR Grammars still needs to be discovered
44© Henning Christiansen 2013; all rights reserved

CHR Grammars, overview

✤ Bottom-up parsing with CHR, our principle

✤ A grammar notation and its translation into CHR

✤ What we can do in CHR Grammars, derived from the translation into
CHR
✤ We have squeezed as much power as possible out of CHR without caring whether it

is useful (our preferred design methodology ;-)

45© Henning Christiansen 2013; all rights reserved

Bottom-up parsing with CHR

46

Encode the string as a set of constraints with word boundaries
“Peter likes Mary”

token(0,1,peter),token(1,2,likes),token(2,3,mary).

:- chr_constraint np/2, verb/2,
 sentence/2, token/3.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary) ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

np(N0,N1), verb(N1,N2), np(N2,N3)
 ==> sentence(N0,N3).

A bottom-parser that checks word/phrase boundaries

?-
np(0,1),
verb(1,2),
np(2,3),
sentence(0,3),
token(0,1,peter),
token(1,2,likes),
token(2,3,mary) ?

© Henning Christiansen 2013; all rights reserved

A grammar notation upon CHR

47

:- chr_constraint np/2, verb/2,
 sentence/2, token/3.
token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary) ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).
np(N0,N1), verb(N1,N2), np(N2,N3)
 ==> sentence(N0,N3).

Why write this?
:- grammar_symbol np/0, verb/0,
 sentence/0.

[peter] ::> np.
[mary] ::> np.
[likes] ::> verb.

np, verb, np ::> sentence.

end_of_CHRG_source.

When we would like to write this:

The CHR compiler
compile-on-load using term_expansion

?- token(0,1,peter),
 token(1,2,likes),
 token(2,3,mary).

?- parse([peter,likes,mary]).

© Henning Christiansen 2013; all rights reserved

Inherent handling of ambiguity

✤ I.e., all possible parses are run “in parallel”
✤ You can limit this by, e.g., simplification rules;

✤ in the example, you would end up with only abc1(0,3).
✤ Thus the semantics very procedural! (good or bad?) 48

[a] ::> a.
[b,c] ::> bc.
[a,b] ::> ab.
[c] ::> c.
a, bc ::> abc1.
ab, c ::> abc2.

token(0,1,a)

a(0,1) ab(0,2) bc(1,3) c(2,3)

abc1(0,3) abc2(0,3)

token(1,2,b) token(2,3,c)

| ? parse([a,b,c])

© Henning Christiansen 2013; all rights reserved

What else can we put in? (1:5)

✤ ::> translates into ==>

✤ <:> translates into <=>

✤ Order dependent syntax for simpagations

a, !b, c <:> ac.

translated into

b(N1,N2) \ a(N0,N1), c(N2,N3) <=> ac(N0,N3).

49

Obs: Mistake in
printed/online

version of slides

© Henning Christiansen 2013; all rights reserved

What else can we put in? (2:5)

Gaps in the head

[blip], 7...10, [blop] ::> blipblop

✤ translated into

token(N0,N1,blip), token(N2,N3,blop) ::>

 N2-N1 >= 7, N2-N1 =< 10

| blipblop(N0,N3).

✤ This may be relevant for biologic applications such as RNA folding

50

Obs: Mistake in
printed/online

version of slides

© Henning Christiansen 2013; all rights reserved

What else can we put in? (3:5)

Left and right context

✤ left-context -\ core-to-be-reduced /- right-context ::>

✤ For example

c1, ..., c2 -\ c3, c4 /- ..., c5 <:> c34.

✤ translated into

c1(_,N1), c2(N2,N3), c3(N3,N4), c4(N4,N5), c5(N6,_)

<=> N1=<N2, N5=<N6 | c34(N3,N5).

51© Henning Christiansen 2013; all rights reserved

What else can we put in? (4:5)

Parallel matching

✤ one-reading-of-the-text $$ another-reading-of-the-text ::>

✤ For example: a $$ b <:> c.

✤ translates into: a(N0,N1), a(N0,N1) <=> c(N0,N1).

✤ And: a, 5...12 $$ b, c <:> d

✤ translates into:
a(N0,N1), b(N0,N11), c(N11,N2)

<=> N1-N2 >= 5, N1-N2 =< 12 | d(N0,N2)

✤ Applications? I forgot why I included it, but it is smart, isn’t it?
52© Henning Christiansen 2013; all rights reserved

What else can we put in? (5:5)

✤ Further equipment for abduction (see paper on CHRG)

✤ All sorts of utilities and options (see online User’s Guide)

✤ Extra-grammatical constraints in the head and body of rules (...)

53© Henning Christiansen 2013; all rights reserved

Example: Simplification and
context for disambiguation

54

e, [+], e /- (['+'];[')'];[eof]) <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:

© Henning Christiansen 2013; all rights reserved

Example: Simplification and
context for disambiguation

54

e, [+], e /- (['+'];[')'];[eof]) <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:

Here we used LR(1) items as right context to disambiguate...
just one special case of what we can do

© Henning Christiansen 2013; all rights reserved

Example: Context used for
tagger-like rules

55

 name(A) /- verb(_) <:> subject(A).

verb(_) -\ name(A) <:> object(A).

name(A), [and], subject(B) <:> subject(A+B).

object(A), [and], name(B) <:> object(A+B).

Classify np’s according to position of the verb

name(martha) verb(likes) [and] name(peter) verb(hates) name(paul)

Martha likes and Peter hates Paul

subject(martha)

/-

subject(peter)

/-

object(paul)

-\

© Henning Christiansen 2013; all rights reserved

A possible extension....

✤ Index tokens by multivel indexes, e.g.:

grammar_symbol([Doc-no, Sec-no, Sent-no, Token-no], ...)

✤ Thus long distance references can be used to control, only within same
doc or everywhere, only in same section, only in same sentence...

m([D,Sec,Sent, N0], [D,Sec,Sent, N1]),

 n([D,Sec,Sent, N1], [D,Sec,Sent, N2])

==>

✤ Used by [van de Camp, Christiansen, 2012/3] for resolving time
expressions in bibliographical texts

56

Obs: Mistake in
printed/online

version of slides

© Henning Christiansen 2013; all rights reserved

Summary of CHRGs

✤ A powerful language specification language

✤ A powerful language processing system

✤ Exemplifies how you can use CHR to implement fairly advanced,
knowledge-based systems

✤ A compile-on-load implementation technique, you can use for other
purposes

✤ The power of CHRGs has not been explored fully; biological
applications are under consideration

57© Henning Christiansen 2013; all rights reserved

End of part III

CHR Grammars

58© Henning Christiansen 2013; all rights reserved

Part IV

iiCHR: CHR with
persistent constraint stores
shared by different agents

59© Henning Christiansen 2013; all rights reserved

Intuition

Interactive installations needs reasoning

CHR is great for reasoning

——————————————————————

CHR is great for interactive installations

© Henning Christiansen 2013; all rights reserved

Intuition

Problems with “Constraint store as knowledge base”:

✤ CHR’s constraint store disappears after each query

✤ Different processes need common knowledge and exchange of knowledge

Interactive installations needs reasoning

CHR is great for reasoning

——————————————————————

CHR is great for interactive installations

© Henning Christiansen 2013; all rights reserved

iiCHR: An adaptation of CHR

Design criteria

✤ Programming iiCHR should be as close programming CHR as possible

✤ As little attention to low level details, synchronization and communication

✤ Interface with other programming languages and systems must be straightforward

Basic principles

✤ An illusion of a common and persistent constraint store using files, continually
read and written by querying mechanisms

✤ Files formatted as text files of Prolog facts (that any programmer easily can access)

© Henning Christiansen 2013; all rights reserved

iiCHR, a first proposal

Constraint declarations define file association and behaviour

:- iiCHR_constraint ConstraintDecl, ... , ConstraintDecl.

ConstraintDecl ::= ConstraintPredicate /Arity * [Option, ...].

Option ::= file(Path)

 | read_only | write_only | append

 | locking | nowait

 | time_stamped |... and a few more
© Henning Christiansen 2013; all rights reserved

Query predicates (cf. JDBC)

executeQuery(Query)

– read all constraints from files to form initial constraint store

– execute the query in the usual way

executeUpdate(Query)

– as above and

– rewrite or append to files

Small variations determined by options of decl. and extra arguments of
query predicates

© Henning Christiansen 2013; all rights reserved

Adaptations for the file
connection
Constraints associated with files are automatically made passive

✤ ensures linear loading time

✤ fits nicely with “design patterns” for updating (later)

✤ can be overridden by #active

✤ (seldom needed; for completeness only)

Constraints associated with files must be ground

✤ exception generated at “dump time” otherwise
© Henning Christiansen 2013; all rights reserved

“Design patterns” for knowledge
base maintenance
:- iiCHR_constraint c/2*[file(cFile)], newC/2, deleteC/2, replaceC/2.

newC(K,V) ... <=>

newC(K,V) <=> c(K,V).
deleteC(K,V) ... <=>

deleteC(K,V), c(K,V) <=> true.

replaceC(K,V) ... <=>

replaceC(K,V), c(K,_) <=> c(K,V).

© Henning Christiansen 2013; all rights reserved

Example:
 An interactive art museum
✤ Keeps track of users’ activity
✤ Paintings tagged by themes
✤ Advice for next painting to see based on most recent themes

painting(leonardo,ladyWithEmine,animal).

painting(leonardo,ladyWithEmine,portrait).

painting(leonardo,ladyWithEmine,renaissance).

Picture from Wikipedia; used in agreement with given licence information© Henning Christiansen 2013; all rights reserved

Example: Files and processes
Receive guests;

clean files at depart.

Add/remove paintings
and tags/themes

Maintains topicalities (+0.3; decay
0.7) and log files

topicalityMeasure(peter,animal,0.10289999999999999).

topicalityMeasure(peter,portrait,0.8319300000000001).

topicalityMeasure(peter,renaissance,0.17492999999999997).

Generates suggestions for
guests to see painting

with theme of highest top

© Henning Christiansen 2013; all rights reserved

Sample code: Intelligent Camera
:- iiCHR constraint
 watchedPainting/3*[file(’log’),time_stamped,append],
 topicalityMeasure/3*[file(’topicalities’)],
 painting/3*[file(collection),read_only],
 newWatchedPainting/3.

© Henning Christiansen 2013; all rights reserved

Sample code: Intelligent Camera

newWatchedPainting(Guest,_,_) \ topicalityMeasure(Guest,Theme,W)
 <=> W1 is W * 0.7, topicalityMeasure(Guest,Theme,W1).

newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme)
 \ topicalityMeasure(Guest,Theme,W)
 <=> W1 is W + 0.3, topicalityMeasure(Guest,Theme,W1).

newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme)
 ==> not_exists topicalityMeasure(Guest,Theme,_)
 | topicalityMeasure(Guest,Theme,0.3).

newWatchedPainting(Guest,Painter,Title)
 <=> watchedPainting(Guest,Painter,Title).

?- executeUpdate(newWatchedPainting(peter,leonardo,monalisa)).

© Henning Christiansen 2013; all rights reserved

Code size

NB: tested only through n terminal windows (n = 4)

Rules Lines
 Front desk 4 4
 Curator 7 10
 Intelligent cam. 4 10
 Advisor 2 4

© Henning Christiansen 2013; all rights reserved

iiCHR: Conclusions (1:2)

✤ Established fact: CHR is a powerful language for reasoning

✤ iiCHR adds facilities for

✤ different programs/processes/agents to share constraint store

✤ persistent constraint stores ≈ survives from query to query

✤ thus bringing rule-based and declarative programming into int. install.

✤ Are easily interfaced with other programming languages and software
components

© Henning Christiansen 2013; all rights reserved

iiCHR: Conclusions (2:2)

✤ Until now tested only on single PC using n open terminal windows

✤ Next step: in an existing 360° screen installation with kinect (or other
sensors)

✤ Do OS and-or Prolog programming suffice to implement, e.g.,
sense-think-act loops?

✤ Or does iiCHR need extensions for that?

✤ Is it robust enough for streaming data from (abstract) sensors?

© Henning Christiansen 2013; all rights reserved

End of part IV

iiCHR

72© Henning Christiansen 2013; all rights reserved

Summary of the course

✤ CHR is for more than numbers, inequalities and stuff like that

✤ CHR is a powerful knowledge representation & manipulation language

✤ I have showed methods for abductive reasoning and language processing,
that are

✤ executed directly by the underlying CHR and Prolog systems

✤ thus efficient for the right kind of problems

✤ I have intended that, after this course and a bit of reading, you can

✤ use the methods as described directly

✤ invent your own ways to work with knowledge and experiment with in Prolog+CHR
73© Henning Christiansen 2013; all rights reserved

© Henning Christiansen 2013; all rights reserved

References
HC. An adaptation of Constraint Handling Rules for interactive and intelligent installations. CHR Workshop 2012.

HC. An exposition of abductive reasoning through logic programming with constraints. SLS 2012, the Scandinavian Logic Symposium, 2012.

M. van de Camp, HC. Resolving relative time expressions in Dutch text with Constraint Handling Rules. CSLP 2012. To appear in LNCS, 2013.

HC, B. Li. Approaching the Chinese word segmentation problem with CHR grammars. CSLP 2011. To appear in a book 2013 or -14.

HC, A.H. Saleh. Modeling dependent events with CHRiSM for probabilistic abduction. CHR 2011.

HC, V. Dahl. Abductive logic grammars. Logic, Language, Information and Computation, 16th International Workshop, WoLLIC 2009.

HC. Executable specifications for hypothesis-based reasoning with Prolog and Constraint Handling Rules. Journal of Applied Logic, 2009

HC. Implementing Probabilistic Abductive Logic Programming with Constraint Handling Rules. Constraint Handling Rules, LNCS 5388, 2008.

HC. Prioritized abduction with CHR. CHR 2008.

HC, C.T. Have, K. Tveitane. From use cases to UML class diagrams using logic grammars and constraints. RANLP 2007.

HC, C.T. Have, K. Tveitane. Reasoning about use cases using logic grammars and constraints. CSLP 2007.

HC, V. Dahl, HYPROLOG: A New Logic Programming Language with Assumptions and Abduction, ICLP 2005.

HC, V. Dahl, Meaning in Context, CONTEXT 2005, LNCS 3554.

HC, CHR Grammars, TPLP 2005.

S. Abdennadher, HC, An Experimental {CLP} Platform for Integrity Constraints and Abduction, FQAS 2000.

HC, Automated Reasoning with a Constraint-Based Metainterpreter, JPL 1998. 75
© Henning Christiansen 2013; all rights reserved

