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My background

✤ PhD in Computer Science: syntax and semantics of programming languages, 1988

✤ Later interest in logic programming, as specification+implementation language and an object of study in 
itself

✤ Leading to NLP (natural language processing) and automated reasoning, in particular with Constraint 
Handling Rules

✤ with applications in teaching, from hardcore CS students to linguists

✤ Recent interests include also

✤ probabilistic-logic models for bioinformatics

✤ formal linguistics, in particular language evolution

✤ interactive installations

✤ Various: Organizer of several conferences and workshops, coordinator for international student exchanges 
(Erasmus etc.), a past as Head of CS Section and Study Director
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Our principles

✤ Constraint store as a knowledge base

✤ CHR rules as “business logic” or “integrity constraints” ≈ rules for 
world knowledge

✤ Prolog or additional CHR rules as “driver algorithm”

A motivating example . . .
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A motivation example (1:3)

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Consider the following Prolog program:

What is it supposed to mean?
Let’s try it:
| ?- happy(henning).
! Existence error in user:rich/1
! procedure user:rich/1 does not exist
! goal:  user:rich(henning)

Another way of saying no :(
The problem: Prolog’s closed world assumption
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A motivation example (2:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Let’s try with a little help from CHR:

Intuition: Make certain predicates “open world”.

| ?- happy(henning).
rich(henning) ? ;
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Looks more like it, but still not perfect . . .
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A motivation example (3:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

professor(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Adding a bit of “universal knowledge” in terms of a CHR rule:

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Thus:
• CHR constraints represent concrete facts about a given world.
• CHR rules represent universal knowledge valid in any world.
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Historical background

✤ 1998: I found out that CHR existed and used it to implement a powerful automatic reasoning system 
[Christiansen, 1998]

✤ 1999: Visiting LMU, Munich, 1999, cooperating with Slim Abdennadher on CHRV for abduction 
[Abdennadher, Christiansen, 2000]

✤ Around 2000: developing CHR Grammars [Christiansen, TPLP 2005]

✤ 2002: Visiting Verónica Dahl in Canada; replacing CHRV by Prolog+CHR for abductive reasoning ≈ 
Hyprolog, [Christiansen, Dahl, ICLP 2005]

✤ 2002 and onwards: different applications

✤ Since 2005 or before: applied the principle in teaching AI

✤ 2006-2011: Probabilistic abduction [Christiansen, 2008; Christiansen, Saleh, 2011]

✤ 2012: CHR adapted to knowlede bases to be used in intelligent, interactive installations.

See these and other references in the reference list.
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Overview of this course

✤ Abductive Reasoning with CHR

✤ Definition, implementation in CHR, applications, esp. for diagnosis

✤ Language Analysis 1: With DCGs (= Prolog) plus CHR

✤ Language Analysis 2: CHR Grammars

✤ If time: iiCHR: an adaptation of CHR with persistent constraint 
stores shared by different agents

✤ Intended for autonomous systems and-or interactive installations
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A few remarks before we start

✤ All example programs available on the website (TBA)

✤ Tested in SICStus 4 and SWI

✤ No theorems (find them in the references), just programming :)

✤ No time for exercises during the course :(

✤ Please feel free to ask questions, to disagree even.
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Part I

Abductive reasoning 
with CHR
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Abduction????

A term due to C.S.Pierce (1839-1914); the trilogy:

✤ Deduction

✤ Reason “forward” in a sound way from what we know already; finding its logic 
consequences; i.e., nothing really new 

✤ Induction

✤ Creating rules from example, so we can use these rules in new situations

✤ Abduction

✤ Figure out which currently unknown facts that can explain an observation; unsound 
from logical point of view ;-)
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Abduction with CHR

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.
prof(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

You’ve seen it already!

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

In logic programming terms:

Figure out which facts should be added to the program to make a the 
given goal succeed
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Traditional definition of Abductive 
Logic Programming (ALP)
✤ An abductive logic program consist of

✤ A number of predicates, some of which are called abducibles, Abd

✤ A usual logic program, P, in which abducibles do not occur in the head of rules

✤ A set of integrity constraints, IC, which are formulas that must always be true

✤ An abductive answer to a query Q is a set of abducible atoms Ans such 
that

✤ P U Ans |=  Q  and   P U Ans   is consistent

✤ (It is also possible to include an answer substitution, but we ignore that)
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Translating ALP into Prolog+CHR

Abducible predicates CHR constraints

Integrity constraints CHR rules

Let us inspect our sample program:
:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).
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Compare with “traditional” ALP

✤ Usually defined by difficult algorithms and implemented with 
complicated meta-interpreters; see references to work by Kowalski, 
Kakas & al, Decker, ...

✤ Our approach employs existing technology

✤ in the most efficient way
✤ with no meta-level overhead
✤ and we can use all of Prolog and CHR (libraries, all sorts of dirty tricks)

✤ To my knowledge, far the most efficient implementation of ALP

✤ The cost? Only very limited use of negation (you can read about that)
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Applications of abduction

✤ Language interpretation

✤ Diagnosis

✤ Planning

✤ View update in databases
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Diagnosis in Prolog+CHR

✤ Consider a complex system

✤ we can only see it from the outside, i.e., observe symptoms
✤ we have a model about how the system works inside
✤ we have an idea of possible diagnoses, that can explain the symptoms

✤ Examples: a patient, a computer system, a car, . . .

✤ The problem: Given observed symptoms, suggest diagnoses

✤Our example: Fault finding in logical circuits
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A model of logical circuits in Prolog

B

A

Carry

Sum

B

A Sum

Carry in

Carry out

halfadder(A, B, Carry, Sum):-
  and(A, B, Carry),
  xor(A, B, Sum).

fulladder(Carryin, A, B, 
            Carryout, Sum):-
  xor(A, B, X),
  and(A, B, Y),
  and(X, Carryin, Z),
  xor(Carryin, X, Sum),
  or(Y, Z, Carryout).

not(0, 1).
not(1, 0).

and(0, 0, 0).
and(0, 1, 0).
and(1, 0, 0).
and(1, 1, 1).

xor(0, 0, 0).
xor(0, 1, 1).
xor(1, 0, 1).
xor(1, 1, 0).

or(0, 0, 0).
or(0, 1, 1).
or(1, 0, 1).
or(1, 1, 1).
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Adapt for diagnosis with CHR

Each logical gate is given an identifier, so we can distinguish:
fulladder(Carryin, A, B, 
            Carryout, Sum):-
  xor(A, B, X, g1),
  and(A, B, Y, g2),
  and(X, Carryin, Z, g3),
  xor(Carryin, X, Sum, g4),
  or(Y, Z, Carryout, g5).

A gate may be perfect or defect (ok or ko) for specific inputs
and(A,B,X,Id):-
   and(A,B,X),
   state(Id,A+B,ok).

and(A,B,X,Id):-
   and(A,B,Z), disturb(Z,X),
   state(Id,A+B,ko).

or(A,B,X,Id):- . . .

disturb(0,1).
disturb(1,0).

:- chr_constraint state/3.
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Diagnosis may be based on 
different assumptions

1. Periodic faults, i.e., 
sometimes a gate 
works and sometimes 
it doesn’t

2. Consistent faults, i.e., 
if something is wrong, 
it is always wrong

3. Consistent faults with 
correct-behavior-
produced-in-correct-
way
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%% No CHR rules needed

| ?- fulladder(1,1,1,0,0)
state(g5,1+0,ko),
state(g4,1+0,ko),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ok),
state(g4,1+1,ok),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko)  ? ;

A total of 8 solutions

Let’s try it:
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%% No CHR rules needed

Let’s try it:
| ?- fulladder(0,1,1,1,0),
     fulladder(0,1,0,0,1),
     fulladder(0,0,1,0,1),
     fulladder(1,0,1,1,1),
     fulladder(1,1,1,0,0),
     fulladder(0,0,0,0,1).

....

A total of 262144 solutions
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correct-behavior-
produced-in-correct-
way

22

state(Id,Input,S1) \ state(Id,Input,S2) <=> S1=S2.

| ?- fulladder(1,1,1,1,1).
state(g5,1+0,ok),
state(g4,1+0,ok),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ko),
state(g4,1+1,ko),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:
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state(Id,Input,S1) \ state(Id,Input,S2) <=> S1=S2.

| ?- fulladder(1,1,1,1,1).
state(g5,1+0,ok),
state(g4,1+0,ok),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ko),
state(g4,1+1,ko),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:
| ?- fulladder(0,1,1,1,0),
     fulladder(0,1,0,0,1),
     fulladder(0,0,1,0,1),
     fulladder(1,0,1,1,1),
     fulladder(1,1,1,0,0),
     fulladder(0,0,0,0,1).

....

A total of 72 solutions
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Diagnosis may be based on 
different assumptions

1. Periodic faults, i.e., 
sometimes a gate 
works and sometimes 
it doesn’t

2. Consistent faults, i.e., 
if something is wrong, 
it is always wrong

3. Consistent faults with 
correct-behavior-
produced-in-correct-
way

23

state(Id,A,S1) \ state(Id,A,S2) <=> S1=S2.

Let’s try it:
| ?- fulladder(0,1,1,1,0),
     fulladder(0,1,0,0,1),
     fulladder(0,0,1,0,1), !,
     fulladder(1,0,1,1,1),
     fulladder(1,1,1,0,0),
     fulladder(0,0,0,0,1).

state(g1,0+0,ko),
state(g3,0+1,ko),
state(g4,1+0,ko),
state(g4,1+1,ko),
state(g5,1+1,ko), .... (rest is ok) ?

Only 1 solution!!
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Diagnosis may be based on 
different assumptions: Summary
✤ Formulated in CHR with constraints for ok/not-ok for components

✤ Three alternative assumptions

1. periodic faults

2. consistent faults

3. consistent faults with correct-behaviour-produced-in-correct way

✤ In practice, try 3, if it does not work, try 2 – and if that gives too many 
solutions, try to obtain more observations (i.e., test the device...)

✤ Problem for practical applications, say medical diagnosis, is the lack 
of priority between different diagnoses
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Planning as Abduction

✤ Problem: Given a number of tasks + restrictions on the order in which 
they can be done.

✤ Solution: An assignment of a time point to each task so the 
restrictions are obeyed.

✤ In our terms

✤ Abducibles (CHR constraints): Assignment of a time point to a task

✤ Integrity constraints (CHR rules): The restrictions

✤ The goal (≈ desired observation): “The work has been done.”
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Planning as Abduction, example

26
soil
f0
f1

c1 c2

gable

Architect’s drawing: CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
  supports(P0,P1), Time0 > Time1
  | fail.

mount(P,Time0), mount(P,Time1) ==>
  Time0 \= Time1
  | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog: next slide

© Henning Christiansen 2013; all rights reserved



27

CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
  supports(P0,P1), Time0 > Time1
  | fail.

mount(P,Time0), mount(P,Time1) ==>
  Time0 \= Time1
  | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog:
built:-  mount(soil,0), build(1).

build(6):- !.

build(Time):-
   part(P),
   mount(P,Time),
   Time1 is Time+1,
   build(Time1).

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

Wanna see an animation 
of the first solution?
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| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

soil
f0
f1

c1 c2

gable
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More on planning

✤ With the same technique, we can extend with

✤ Duration, e.g., it takes 8 hours to mount a column
✤ Resources, e.g., to mount a column, we need 1 crane and 12 workers
✤ Restrictions+= At any time, the resources in use must not exceed the 

maximum available (say, 2 cranes and 30 workers)

✤ Your exercise (voluntary!): Extend the example and implement the 
scheme above

✤ Your next exercise (difficult & voluntary): Extend your program so it tries 
to find a solution that minimizes the no. of unoccupied workers — or, 
alternatively, the solution that finishes the building as early as possible.
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End of Part I

Abductive reasoning 
with CHR
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Part II

Language analysis 
with Prolog and CHR
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Overall principles

✤ My favourite metaphor: “Interpretation as abduction” 

✤ Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, Paul A. Martin: Interpretation as 
Abduction. Artif. Intell. 63(1-2): 69-142 (1993)

✤ Also Charniac, McDermott (1985), Gabbay & al (1997), Christiansen (1993)

✤ We use Prolog’s Definite Clause Grammars (DCGs) extended with 
CHR

✤ Resulting method:
✤ Integrates semantic and pragmatic analysis (in contrast to tradition methods)
✤ A great experimental tool for students and researcher in linguistics; easy to approach 

and “advanced” analyses can be specified in very short time.
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A short historical note

✤ Basic idea comes from CHR Grammars (Christiansen, 2001-2005), that 
we will look at later in the course

✤ Idea of using DCGs emerged through joint work with Verónica Dahl, 
2002 and onwards....

✤ Lead to the Hyprolog system (Christiansen, Dahl, ICLP, 2005)
✤ adds a thing layer of syntactic sugar upon Prolog+CHR that supports abduction
✤ and so-called assumptions, which another kind of tool (related to abduction, 

though), coming from Verónica Dahl’s earlier work.

✤ Here we show things expressed directly in Prolog(DCG)+CHR
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Overview

✤ Recall Definite Clause Grammars

✤ Adding semantics/pragmatics: Using CHR as knowledge base as we 
have seen already

✤ Examples
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Definite Clause Grammars

✤ Syntactic sugar on top of 
Prolog

✤ System adds difference 
lists “behind the curtain”

✤ In Prolog from its very 
beginning

✤ Very popular for teaching, 
prototyping, and some 
realistic applications

✤ Easy to add features and 
“constraints”
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s --> np(N), v(N), np(_).

s --> np(N), is(N), [at], np(_).

np(N) --> n(N).

v(sing)--> [sees].
v(plur)--> [see].
is(sing)--> [is].
is(plus)--> [are].

n(sing) --> [peter].
n(sing) --> [mary].
n(sing) --> [jane].
n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
n(sing) --> [vacation].

n(plur) --> n(sing), [and], n(_).
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Definite Clause Grammars

✤ Syntactic sugar on top of 
Prolog

✤ System adds difference 
lists “behind the curtain”

✤ In Prolog from its very 
beginning

✤ Very popular for teaching, 
prototyping, and some 
realistic applications

✤ Easy to add features and 
“constraints”

35

s --> np(N), v(N), np(_).

s --> np(N), is(N), [at], np(_).

np(N) --> n(N).

v(sing)--> [sees].
v(plur)--> [see].
is(sing)--> [is].
is(plus)--> [are].

n(sing) --> [peter].
n(sing) --> [mary].
n(sing) --> [jane].
n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
n(sing) --> [vacation].

n(plur) --> n(sing), [and], n(_).

s(S0,S3):- np(S0,S1,N), v(S1,S2,N), v(S2,S3).
....
v([sees|S0],S0,sing). 

© Henning Christiansen 2013; all rights reserved



Adding semantics/pragmatics

✤ Traditionally:

✤ “Semantics” = context-independent (lambda) terms
✤ “Pragmatics” = relating “Semantics” to context, e.g., mapping variables to 

(identifiers of ) “real worlds”

✤ The present approach blurs this distinction, which suits much better 
my intuition about how humans process language

✤ You may see this in the examples
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A DGC with CHR for sem/pragm

37

:- chr_constraint at/2, see/2.

story --> [] ; s, ['.'], story.

s --> np(X), [sees], np(Y),
      {see(X,Y)}.

s --> np(X), [is,at], np(E), 
      {at(E,X)}.

s --> np(X), [is,on,vacation],
      {at(vacation,X)}.

np(peter)    --> [peter].
np(mary)     --> [mary].
np(jane)     --> [jane].

np(chr_summer_school)
       --> [the,chr,summer,school].

np(hennings_course)
       --> [hennings,course].

np(vacation) --> [vacation].

First version: Only noting facts
:- phrase(story,
      [peter,sees,mary,'.',
       peter,sees,jane,'.',
       peter,is,at,the,
             chr,summer,school,'.',
       mary,is,at,hennings,course, '.',
       jane,is,on,vacation,'.']).

at(vacation,jane),
at(hennings_course,mary),
at(chr_summer_school,peter),
see(peter,jane),
see(peter,mary) ?
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:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(berlin,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_course,X)   ==> at(chr_summer_school,X).

at(vacation,X)          ==> in(Loc,X), diff(Loc,berlin).

see(X,Y) ==> true |
    (in(L,X), in(L,Y) 
     ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> ... . % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| ?- phrase(story, [mary,is,at,hennings,course,'.']).

at(chr_summer_school,mary),
at(hennings_course,mary),
in(berlin,mary) ?
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:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(berlin,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_course,X)   ==> at(chr_summer_school,X).

at(vacation,X)          ==> in(Loc,X), diff(Loc,berlin).

see(X,Y) ==> true |
    (in(L,X), in(L,Y) 
     ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> ... . % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| :- phrase(story,
      [peter,sees,mary,'.',
       peter,sees,jane,'.',
       peter,is,at,the,
             chr,summer,school,'.',
       mary,is,at,hennings,course, '.',
       jane,is,on,vacation,'.']).

at(vacation,jane),

at(chr_summer_school,mary),

at(hennings_course,mary),

at(chr_summer_school,peter),

in(_A,jane),

in(berlin,mary),

in(berlin,peter),

see(peter,jane),

see(peter,mary),

skypes(peter,jane),

diff(berlin,_A) ?
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A realistic example: Extracting 
UML diagrams from Use Cases
✤ Based on 4 week project work with two students [Christiansen, Have, 

Tveitane, 2007 a+b] 

✤ Only a brief sketch; here using the full power of CHR without caring 
about formal details ;-)

✤ Use cases?? In the OOA/OOP tradition, small stories about the world 
which the system to be developed will fit it.

✤ According to OOA principles, UML diagrams describing classes and 
their property, etc., are produced manually from use cases...

✤ But why not do it automatically, when we have a tool such as Prolog
+CHR which is perfectly suited for semantic/pragmatic analysis
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Example of input and output

From uses cases:

✤ The professor teaches. A 
student reads, writes 
projects and takes exams. 
Henning is a professor. He 
has an office. The 
university has five study 
lines. Students and 
professors are persons.

... extract info and produce
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Summary: Language analysis with 
DGC+CHR
✤ Natural and straightforward integration of semantic/pragmatic 

analysis with parsing

✤ 106 times easier for this purpose than any other, known tools

✤ DCGs (i.e., Prolog) provide parsing plus auxiliary predicates

✤ CHR constraint store as knowledge base; CHR rules for world 
knowledge
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End of part II

Language analysis 
with Prolog and CHR
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Part III

CHR Grammars
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CHR Grammars, background

✤ Around 2000, I noticed that it was easy to write bottom-op parsers with CHR

✤ Experiments showed that there was much more power in this principles than 
expected:
✤ very flexible context-dependent rules, gaps, parallel matching, ...
✤ interesting treatment of ambiguity
✤ having parsing to depend on “semantics”, and a lot of other stuff

✤ 2002: CHR Grammar system released; SICStus 3 only

✤ Main publication 2005 [JLP]

✤ 2010 or -11: New versions for SICStus 4 and SWI

✤ Applications: The full power of CHR Grammars still needs to be discovered
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CHR Grammars, overview

✤ Bottom-up parsing with CHR, our principle

✤ A grammar notation and its translation into CHR

✤ What we can do in CHR Grammars, derived from the translation into 
CHR
✤ We have squeezed as much power as possible out of CHR without caring whether it 

is useful (our preferred design methodology ;-)
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Bottom-up parsing with CHR

46

Encode the string as a set of constraints with word boundaries
“Peter likes Mary”

token(0,1,peter),token(1,2,likes),token(2,3,mary).

:- chr_constraint np/2, verb/2,
   sentence/2, token/3.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary)  ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

np(N0,N1), verb(N1,N2), np(N2,N3)
               ==> sentence(N0,N3).

A bottom-parser that checks word/phrase boundaries

?-  ... .
np(0,1),
verb(1,2),
np(2,3),
sentence(0,3),
token(0,1,peter),
token(1,2,likes),
token(2,3,mary) ? 
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A grammar notation upon CHR

47

:- chr_constraint np/2, verb/2,
   sentence/2, token/3.
token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary)  ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).
np(N0,N1), verb(N1,N2), np(N2,N3)
               ==> sentence(N0,N3).

Why write this? 
:- grammar_symbol np/0, verb/0, 
                  sentence/0.

[peter] ::> np.
[mary] ::> np.
[likes] ::> verb.

np, verb, np ::> sentence.

end_of_CHRG_source.

When we would like to write this:

The CHR compiler
compile-on-load using term_expansion 

?- token(0,1,peter),
   token(1,2,likes),
   token(2,3,mary).

?- parse([peter,likes,mary]).
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Inherent handling of ambiguity

✤ I.e., all possible parses are run “in parallel”
✤ You can limit this by, e.g., simplification rules;

✤ in the example, you would end up with only abc1(0,3).
✤ Thus the semantics very procedural! (good or bad?) 48

[a]   ::> a.
[b,c] ::> bc.
[a,b] ::> ab.
[c]   ::> c.
a, bc ::> abc1.
ab, c ::> abc2.

token(0,1,a)

a(0,1) ab(0,2) bc(1,3) c(2,3)

abc1(0,3) abc2(0,3)

token(1,2,b) token(2,3,c)

| ? parse([a,b,c])
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What else can we put in? (1:5)

✤ ::>  translates into  ==>

✤ <:>  translates into  <=>

✤ Order dependent syntax for simpagations

a, !b, c <:> ac.

translated into

b(N1,N2) \ a(N0,N1), c(N2,N3) <=> ac(N0,N3).

49

Obs: Mistake in
printed/online

version of slides
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What else can we put in? (2:5)

Gaps in the head

[blip], 7...10, [blop] ::> blipblop

✤ translated into

token(N0,N1,blip), token(N2,N3,blop) ::>

   N2-N1 >= 7, N2-N1 =< 10

| blipblop(N0,N3).

✤ This may be relevant for biologic applications such as RNA folding

50

Obs: Mistake in
printed/online

version of slides
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What else can we put in? (3:5)

Left and right context

✤ left-context   -\ core-to-be-reduced   /-   right-context ::> ....

✤ For example

c1, ..., c2 -\ c3, c4 /- ..., c5 <:> c34.

✤ translated into

c1(_,N1), c2(N2,N3), c3(N3,N4), c4(N4,N5), c5(N6,_) 

<=> N1=<N2, N5=<N6 | c34(N3,N5).
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What else can we put in? (4:5)

Parallel matching

✤ one-reading-of-the-text $$ another-reading-of-the-text ::> ....

✤ For example:    a $$ b <:> c.

✤ translates into:    a(N0,N1), a(N0,N1) <=> c(N0,N1).

✤ And:   a, 5...12 $$ b, c <:>  d

✤ translates into:
a(N0,N1), b(N0,N11), c(N11,N2)

<=> N1-N2 >= 5, N1-N2 =< 12 | d(N0,N2)

✤ Applications? I forgot why I included it, but it is smart, isn’t it?
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What else can we put in? (5:5)

✤ Further equipment for abduction (see paper on CHRG)

✤ All sorts of utilities and options (see online User’s Guide)

✤ Extra-grammatical constraints in the head and body of rules (...)
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Example: Simplification and 
context for disambiguation

54

e, [+], e /- (['+'];[')'];[eof])   <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:
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Example: Simplification and 
context for disambiguation

54

e, [+], e /- (['+'];[')'];[eof])   <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:

Here we used LR(1) items as right context to disambiguate...
just one special case of what we can do
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Example: Context used for
tagger-like rules

55

           name(A) /- verb(_) <:>   subject(A).

verb(_) -\ name(A)            <:>    object(A).

name(A),   [and], subject(B)  <:> subject(A+B).

object(A), [and], name(B)     <:>  object(A+B).

Classify np’s according to position of the verb

name(martha)  verb(likes)  [and]  name(peter)  verb(hates)  name(paul)

Martha likes and Peter hates Paul

subject(martha)

/-

subject(peter)

/-

object(paul)

-\
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A possible extension....

✤ Index tokens by multivel indexes, e.g.:

grammar_symbol([Doc-no, Sec-no, Sent-no, Token-no], ...)

✤ Thus long distance references can be used to control, only within same 
doc or everywhere, only in same section, only in same sentence...

m([D,Sec,Sent, N0], [D,Sec,Sent, N1]),

   n([D,Sec,Sent, N1], [D,Sec,Sent, N2])

==> ....

✤ Used by [van de Camp, Christiansen, 2012/3] for resolving time 
expressions in bibliographical texts

56
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version of slides
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Summary of CHRGs

✤ A powerful language specification language

✤ A powerful language processing system

✤ Exemplifies how you can use CHR to implement fairly advanced, 
knowledge-based systems

✤ A compile-on-load implementation technique, you can use for other 
purposes

✤ The power of CHRGs has not been explored fully; biological 
applications are under consideration
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End of part III

CHR Grammars
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Part IV

iiCHR: CHR with 
persistent constraint stores 
shared by different agents
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Intuition

Interactive installations needs reasoning

CHR is great for reasoning

——————————————————————

CHR is great for interactive installations
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Intuition

Problems with “Constraint store as knowledge base”:

✤ CHR’s constraint store disappears after each query

✤ Different processes need common knowledge and exchange of knowledge

Interactive installations needs reasoning

CHR is great for reasoning

——————————————————————

CHR is great for interactive installations
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iiCHR: An adaptation of CHR

Design criteria

✤ Programming iiCHR should be as close programming CHR as possible

✤ As little attention to low level details, synchronization and communication

✤ Interface with other programming languages and systems must be straightforward

Basic principles

✤ An illusion of a common and persistent constraint store using files, continually 
read and written by querying mechanisms

✤ Files formatted as text files of Prolog facts (that any programmer easily can access)
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iiCHR, a first proposal

Constraint declarations define file association and behaviour

:- iiCHR_constraint ConstraintDecl, ... , ConstraintDecl.

ConstraintDecl ::=  ConstraintPredicate /Arity * [Option, ...].

Option ::=     file(Path)

             |   read_only  |  write_only  |  append

             |   locking  |  nowait

             |   time_stamped  |... and a few more
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Query predicates (cf. JDBC)

executeQuery( Query )

– read all constraints from files to form initial constraint store

– execute the query in the usual way

executeUpdate( Query )

– as above and

– rewrite or append to files

Small variations determined by options of decl. and extra arguments of 
query predicates
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Adaptations for the file 
connection
Constraints associated with files are automatically made passive

✤ ensures linear loading time

✤ fits nicely with “design patterns” for updating (later)

✤ can be overridden by #active

✤ (seldom needed; for completeness only) 

Constraints associated with files must be ground

✤ exception generated at “dump time” otherwise
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“Design patterns” for knowledge 
base maintenance
:- iiCHR_constraint c/2*[file(cFile)], newC/2, deleteC/2, replaceC/2.

newC(K,V) ... <=> ... .

newC(K,V) <=> c(K,V).
deleteC(K,V) ... <=> ... .

deleteC(K,V), c(K,V) <=> true.

replaceC(K,V) ... <=> ... .

replaceC(K,V), c(K,_) <=> c(K,V).
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Example:
   An interactive art museum
✤ Keeps track of users’ activity
✤ Paintings tagged by themes
✤ Advice for next painting to see based on most recent themes

painting(leonardo,ladyWithEmine,animal).

painting(leonardo,ladyWithEmine,portrait).

painting(leonardo,ladyWithEmine,renaissance).

Picture from Wikipedia; used in agreement with given licence information© Henning Christiansen 2013; all rights reserved



Example: Files and processes
Receive guests;

clean files at depart. 

Add/remove paintings 
and tags/themes

Maintains topicalities (+0.3; decay 
0.7) and log files

topicalityMeasure(peter,animal,0.10289999999999999).

topicalityMeasure(peter,portrait,0.8319300000000001).

topicalityMeasure(peter,renaissance,0.17492999999999997).

Generates suggestions for 
guests to see painting 

with theme of highest top 
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Sample code: Intelligent Camera
:- iiCHR constraint
       watchedPainting/3*[file(’log’),time_stamped,append],
       topicalityMeasure/3*[file(’topicalities’)],
       painting/3*[file(collection),read_only],
       newWatchedPainting/3.
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Sample code: Intelligent Camera

newWatchedPainting(Guest,_,_) \ topicalityMeasure(Guest,Theme,W)
         <=> W1 is W * 0.7, topicalityMeasure(Guest,Theme,W1).

newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme)
            \ topicalityMeasure(Guest,Theme,W)
      <=> W1 is W + 0.3, topicalityMeasure(Guest,Theme,W1).

newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme) 
       ==> not_exists topicalityMeasure(Guest,Theme,_)
        | topicalityMeasure(Guest,Theme,0.3).

newWatchedPainting(Guest,Painter,Title)
        <=> watchedPainting(Guest,Painter,Title).

?- executeUpdate(newWatchedPainting(peter,leonardo,monalisa)).
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Code size

NB: tested only through n terminal windows (n = 4)

Rules Lines
  Front desk 4 4
  Curator 7 10
  Intelligent cam. 4 10
  Advisor 2 4
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iiCHR: Conclusions (1:2)

✤ Established fact: CHR is a powerful language for reasoning

✤ iiCHR adds facilities for

✤ different programs/processes/agents to share constraint store

✤ persistent constraint stores ≈ survives from query to query

✤ thus bringing rule-based and declarative programming into int. install.

✤ Are easily interfaced with other programming languages and software 
components
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iiCHR: Conclusions (2:2)

✤ Until now tested only on single PC using n open terminal windows

✤ Next step: in an existing 360° screen installation with kinect (or other 
sensors)

✤ Do OS and-or Prolog programming suffice to implement, e.g., 
sense-think-act loops?

✤ Or does iiCHR need extensions for that?

✤ Is it robust enough for streaming data from (abstract) sensors?
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End of part IV

iiCHR
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Summary of the course

✤ CHR is for more than numbers, inequalities and stuff like that

✤ CHR is a powerful knowledge representation & manipulation language

✤ I have showed methods for abductive reasoning and language processing, 
that are

✤ executed directly by the underlying CHR and Prolog systems

✤ thus efficient for the right kind of problems

✤ I have intended that, after this course and a bit of reading, you can

✤ use the methods as described directly

✤ invent your own ways to work with knowledge and experiment with in Prolog+CHR
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