Constraint Solving and
Language Processing

International Workshop, CSLP 2004
Roskilde University, 1-3 September 2004

Proceedings

Edited by

Henning Christiansen
Peter Rossen Skadhauge
Jorgen Villadsen

Preface

The purpose of the workshop is to provide an overview of activities in the field of
Constraint Solving with special emphasis on Natural Language Processing and
to provide a forum for researchers to meet and exchange ideas.

Constraint Solving (CS), in particular Constraint Logic Programming (CLP),
is a promising platform, perhaps the most promising present platform, for bring-
ing forward the state of the art in language processing. The data subjected to
processing via constraint solving may include written and spoken language, for-
mal and semiformal language, and even general input data to multimodal and
pervasive systems.

CLP and CS have been applied in projects for shallow and deep analysis and
generation of language, and to different sorts of languages. The view of grammar
expressed as a set of conditions simultaneously constraining and thus defining
the set of possible utterances has influenced formal linguistic theory for more
than a decade. CLP and CS provide flexibility of expression and potential for
interleaving the different phases of language processing, including handling of
pragmatic and semantic information, e.g. ontologies.

This volume contains papers accepted for the workshop based on an open call,
contributions from the invited speakers, and abstract of a tuturial. We are very
honoured that a selection of highly distinguished researchers in the field has
accepted our invitation to talk at the workshop: Philippe Blache, Veronica Dahl,
Denys Duchier, and Gerald Penn.

Following the workshop, an edited volume of selected and revised contribu-
tions will be produced for wider publication, possibly with other invited contri-
butions in order to cover the field.

We want to thank the program committee, which is listed below, the in-
vited speakers, and all researchers who submitted papers to the workshop. The
workshop is supported by the CONTROL project, CONstraint based Tools for
RObust Language processing, funded by the Danish Natural Science Research
Council; CMOL, Center for Computational Modelling of Language at Copen-
hagen Business School; and Computer Science Section at Roskilde University,
that also hosts the workshop.

The editors
Roskilde, August 2004

Organizers

Henning Christiansen, Roskilde University (chair)
Peter Skadhauge, Copenhagen Business School
Jorgen Villadsen, Roskilde University

Program committee

Troels Andreasen, Roskilde, Denmark

Philippe Blache, Aix-en-Provence, France

Henning Christiansen, Roskilde, Denmark (Chair)
Veronica Dahl, Simon Fraser University, Canada

Denys Duchier, LORIA, France

John Gallagher, Roskilde, Denmark

Claire Gardent, LORIA, France

Daniel Hardt, Copenhagen Business School, Denmark
Peter Juel Henrichsen, Copenhagen Business School, Denmark
Jorgen Fischer Nilsson, Technical University of Denmark
Kiril Simov, Bulgarian Academy of Science

Peter Skadhauge, Copenhagen Business School, Denmark
Jorgen Villadsen, Roskilde, Denmark

Contents

Invited Talks

Syntactic Structures as Constraint Graphs

Philippe Blache 1
An Abductive Treatment of Long Distance Dependencies in CHR

Veronica Dahl e e 4
Invited Talk (no title provided at time of printing)

Denys DUuchier. 16
The Other Syntax

Gerald Pemmt 17

Contributed Papers

Gradience, Constructions and Constraint Systems
Philippe Blache and Jean-Philippe Prost.......... ...t 18

Problems of Inducing Large Coverage Constraint-Based
Dependency Grammar for Czech

ONATe] BOJAT .« oo e 29
Metagrammar Redux
Benoit Crabbé and Denys Duchier oot .. 43

Multi-dimensional Graph Configuration for
Natural Language Processing
Ralph Debusmann, Denys Duchier, and Marco Kuhlmann 59

An Intuitive Tool for Constraint Based Grammars
Mathieu Estratat and Laurent Henocqueccoviiiiiiiiiiie... 74

A Broad-Coverage Parser for German Based on
Defeasible Constraints
Kilian A. Foth, Michael Daum, and Wolfgang Menzel 88

The Role of Animacy Information in Human Sentence Processing
Captured in Four Conflicting Constraints
Monique Lamers and Helen de Hoop o i, 102

An Exploratory Application of Constraint Optimization in
Mozart to Probabilistic Natural Language Processing
Irene Langkilde-Gearyo, 114

A Constraint-Based Model for Preposition Choice in
Natural Language Generation
Véronique Moriceau and Patrick Saint-Dizier 124

Rapid Software Prototyping of an Arabic Morphological
Analyzer in CLP
Hamza Zidoum 139

Tutorials

A Tutorial on CHR Grammar
Henning CRriStiamSent e e e 148

Contributed Short Presentation/Poster

Representing Act-Topic-based Dialogue Phenomena
Hans Dybkjer and Laila Dybkjaer 154

Multi-dimensional Type Theory: Rules, Categories,
and Combinators for Syntax and Semantics
Jorgen Villadsen 160

Syntactic Structures as Constraint Graphs

Philippe Blache

LPL-CNRS, Université de Provence
29 Avenue Robert Schuman
13621 Aix-en-Provence, France
pb@lpl.univ-aix.fr

The representation of syntactic information usually makes use of tree-like
structures. This is very useful, both for theoretical and computational reasons.
However, if such structures are adequate for the representation of simple lan-
guages (typically the formal ones), they are not expressive enough for natural
language and several difficulties in the processing of NL come from this aspect
for different reasons. First, the idea that a complete and homogeneous syntactic
structure can be associated to any input is false. In many cases, there is simply
no possibility to do this, as illustrated in the example (1) taken from a spoken
language corpus.

(1) monday washing tuesday ironing wednesday rest

This input is a succession of nouns, without relation given at the syntactic
level. It would be very artificial to structure it into a tree. In this example,
information making it possible the interpretation comes from the lexical level,
eventually prosody, but not from syntax. Similar situations occurs frequently in
spoken languages: phenomena such as hesitations, repairs, phatics, etc., have to
be taken into account and represented, but trees fail to do this (non connectivity,
crossing relations, etc.).

From a theoretical perspective, the conception of linguistic information in
terms of hierarchized structures has deep consequences, especially concerning re-
lations between different domains (phonetics, phonology, syntax, semantics, etc).
In most of the cases, such relations are given in terms of correspondences be-
tween structures. For example, prosody-syntax interaction is explained by means
of relations between syntactic trees and prosodic units. This means that both
structures have to be built separately before being possible to implement such
relations. This is the same problem in the syntax-semantics interface: the se-
mantic structure is usually built started from the syntactic tree, as it is typically
the case in Montague grammars. This option imposes a compositional concep-
tion of this interface in which, again, syntactic structure has to be built before.
Such a conception does not fit with the fact that the interpretation of an utter-
ance consists in bringing together pieces of information coming from different
domains.

An alternative approach consists in making it possible to represent such
spread and partial information by means of structures that are not necessar-
ily homogeneous, stable and strictly hierarchized. Constraints can play in this
perspective an interesting role. Everyone now agrees on the fact that linguistic
information can be represented by means of constraints: all modern linguistic

theories make use at one moment or another of constraints. We propose to de-
velop this idea in representing all linguistic information by means of constraints.
In this way, it becomes possible to exploit constraints not only as filtering pro-
cess making it possible for example to eliminate unwanted structures (as in OT
for example), but as an actual system. A grammar becomes a constraint system
and parsing a satisfaction process. What is interesting in this perspective is that
hierarchized structures are no more needed. At the difference with HPSG, for
example, in which almost all information is stipulated in terms mother/head
connection, relations are expressed directly between different objects (features,
categories, set of categories, etc.) whatever their function or their role in the
structure.

This solution is proposed in the formalism of Property Grammars* (noted her-
after PG) in which all syntactic information is represented by means of different
types of constraints (also called properties): linearity, exclusion, requirement,
uniqueness, dependency and obligation. In our approach, the objects taken into
consideration in the grammar are constructions. A construction, as proposed
in the Construction Grammar theory of Fillmore, can be any kind of syntac-
tic object: a category (e.g. Det, NP), a clause, a specific turn (e.g. interroga-
tive, subject-auxiliary inversion), etc. Each construction is described by a set of
properties that can come from different linguistic domains, implementing then
directly interaction between them, without needing to build separately different
structures. In this approach, a grammar, which is a set of constructions, consists
then in a set of constraints. The basic mechanism consists for each construction
to verify what are the satisfied and violated constraints. We obtain then a precise
description, that we call characterization, for any kind of category, whatever the
form of the input to be parsed.

A complete characterization is built in two stages. The first consists, starting
from the set of categories corresponding to the input that is considered as an
assignment, to go through the entire constraint system, evaluating all constraints
that can be applied to this assignment. More precisely, different assignments
are built corresponding to the possible subsets of categories. A characterization
is associated to each assignment. The process consists then to check whether
such assignments correspond to constructions described in the grammar. This
consists in verifying that the characterization (i.e. the set of violated and satisfied
constraints) is included in the description of the construction (i.e. the set of
constraints describing it). When this condition is verified, then the construction
is activated and the subsystem of constraints corresponding to the construction is
to its turn evaluated. At this second stage, constraints specific to a construction
can be then ev aluated and, when the construction corresponds to a category, it
is instantiated.

The result of this process is a set of characterizations, in other words, a
set of relations between different objects (at different levels). This structure
corresponds to a network of constraints, or a graph, not necessarily connected.
What is interesting is that all constraints are at the same level (even though it

! For a short presentation of this formalism, see [Blache & Prost 04] in this volume.

possible to weight them), which means that it is always possible to characterize
an object or, in other words, all constraints can be evaluated independently
from the others and without any priority order. This is a non-holistic way of
representing information that makes it possible to merge constraints coming
from different domains (which is the main interest of constructions).

An Abductive Treatment of Long Distance
Dependencies in CHR

Veronica Dahl

Logic and Functional Programming Group
Department of Computing Science
Simon Fraser University
Burnaby, B.C., Canada
veronica@cs.sfu.ca

Abstract. We propose Abductive Concept Formation Grammars, a CHR
methodology for treating long distance dependencies by abducing the
missing elements while relating the constituents that must be related.
We discuss our ideas both from a classical analysis point of view, and
from a property-grammar based perspective. We exemplify them through
relative clauses first, and next through the more challenging case of nat-
ural language coordination.

1 Introduction

One of the main challenges in computational linguistics is the relating of con-
stituents that can be arbitrarily far apart within a sentence. For instance, to
understand ”logic, we love”, we must understand that ”logic” functions as the
(dislocated) direct object of "love” (in the canonical, subject-verb-object order,
we would say: we love logic). The dislocated phrase, ”logic”, can be arbitrarily
far away from the point in which the direct object it represents would normally
appear, cf. "logic, he thinks we love”, ”logic, they told me that he thinks we
love”, and so on.

Making sense of sentences with long distance dependencies, in which con-
stituents must be related that may be separated by an arbitrarily long sequences
of intervening words, is one of the most difficult computational linguistic prob-
lems. Not only must the relationship be established despite arbitrary distances
between the relating elements, but this type of construction often involves “guess-
ing” material that is left implicit. For instance, in ”the workshop was interesting
and the talks inspiring”, we must understand the verb of the second conjoint
to be ?were” (i.e., the talks were inspiring), even though it does not appear
explicitly.

The advantages of bottom-up approaches to NL processing aimed at flexibil-
ity have been demonstrated within declarative paradigms for instance for parsing
incorrect input and for detecting and correcting grammatical errors [2,3,6,21].
Most of these approaches use constraint reasoning of some sort, sometimes

blended with abductive criteria. For the specific problem of coordination in nat-
ural language, datalog approaches with constraints placed upon word boundaries
have shown to be particularly adequate [15,26].

In this article we introduce Distant Concept Formation Grammar rules, a
CHR based methodology for treating long distance dependencies by abducing
the missing elements while relating the constituents that must be related. We
provide the necessary background, assuming some knowledge of CHR, but relat-
ing them particularly to language processing. Our approach is discussed both
from a classical analysis point of view, and from a property-grammar based per-
spective. We exemplify our ideas through relative clauses first, and next through
the more challenging case of natural language coordination.

2 Background

2.1 CHR and parsing; CHRG

Parsing problems can be expressed in CHR, [19] by explicitly manipulating in-
put and output strings: A string to be analyzed such as “the house collapsed” is
entered as a sequence of constraints
{token(0,1,the), token(1,2,house), token(2,3,collapsed)} that comprise an
initial constraint store. The integer arguments represent word boundaries, and
a grammar for this intended language can be expressed in CHR as follows.

token(X0,X1,the) ==> det(X0,X1,sing).

token(X0,X1,house) ==> n(X0,X1,sing).

token(X0,X1,collapsed) ==> v(X0,X1,sing).

n(X0,X1,Num), v(X1,X2,Num) ==> s(X0,X1,Num).

CHRGs [10,12] include an automatic insertion and handling of word bound-
aries. Their rules can be combined with rules of CHR and with Prolog, which is
convenient for defining the behaviour of non-grammatical constraints. As well,
CHRGs provide a straightforward implementation of assumptions [16,14] and
have recently been shown to be very well suited for abductive logic program-
ming [9]. They are in particular useful for datalog renditions of language: as
shown in [6], the datalog part requires very little implementation machinery
when using CHRGs: basically, grammar rules in CHRGs can be made to work
either top-down or bottom-up according to the order in which their left and right
hand sides are given.

CHRG includes also notation for gaps and for parallel matching, which we
neither describe nor use in the present work.

CHR/CHRG applications to natural language processing include [1], which
flexibly combines top-down and bottom-up computation in CHR, [6], which uses
CHR to diagnose and correct grammatical errors, and [13], which implements
property grammars using CHRG.

2.2 Extending CHR with Abduction and Assumptions

In [9], a negation-free abductive logic program is defined as one which has no
application of negation, whose abductive predicates are distinguished by prefix
exclamation marks (so, e.g., p and !p refer to different predicates), and whose
integrity constraints are written as CHR propagation rules whose head atoms
are abducibles and whose body atoms are abducibles or built-ins (or possibly
fail).

In this approach, abducibles are viewed as constraints in the sense of CHR,
the logic program is executed by the Prolog system and whenever an abducible
is called it is added automatically by CHR to the constraint store and CHR will
activate integrity constraints whenever relevant. The complete implementation
in SICStus Prolog is provided by including the following lines in the start of a
the program file.!

:— use_module(library(chr)).
:= op(500,fx,!).

handler abduction.
constraints ! /1.

Assumptions [16,14] can also interact with abduction. These are basically
backtrackable assertions which can serve among other things to keep somewhat
globally accessible information (an assertion can be used, or consumed, at any
point during the continuation of the computation). The following version of
append/3 exemplifies. The addition and subtraction signs are used respectively
to indicate assumption and consumption:

append (X,Y,Z) :- +global(Y), app(X,Z).

app([],Y):- -global(Y).
app([XIL], [XI1Z]):- app(L,Z).

Here the assumption global/1 keeps the second argument in store until the
recursive process hits the empty clause, at which point it is consumed to be
incorporated at the end of the resulting list.

2.3 Concept Formation Grammars and our basic parsing
methodology

In [7], we introduced the cognitive model of Concept Formation, which has
been used for oral cancer diagnosis [8] and specialized into grammatical concept
formation, with applications to property grammar parsing [13].

The grammatical counterpart of Concept Formation, namely Concept For-
mation Grammars, or CFGs, are extensions of CHRGs which dynamically han-
dle properties between grammar constituents and their relaxation as statically
defined by the user.

! The prefix exclamation mark is used as a “generic” abducible predicate.

An Example Let’s first exemplify within the traditional framework of rewrite
rules which implicitly define a parse tree. Whereas in CHRG we would write the
following toy grammar 2

[a] ::> determiner(singular).
[boy]l ::> noun(singular).
[boys] ::> noun(plural).
[laughs] ::> verb(singular).

determiner (Number), noun(Number), v(Number) ::> sentence(Number).

to parse correct sentences such as ”a boy laughs”, in CFGs we can replace
its last rule by the following CFG rules, so the system will accept also sentences
which do not agree in number, while pointing out the error as a side effect of
the parse:

determiner (Ndet), noun(Nn), v(Nv) =>
acceptable(prop(agreement,Ndet,Nn,Nv,N),_) |
sentence(N) .

prop(agreement, [Ndet ,Nn,Nv,N],true) : - Ndet=Nn,
Nn=Nv, !, N=Nv.
prop(agreement, [Ndet,Nn,Nv] ,mismatch) .

relax(agreement) .

The binary predicate ”acceptable” is a primitive predicate to the Concept
Formation system, which succeeds if its second argument has been bound to
”true”, or it has been bound to something else but the property has been declared
by the user as relaxable. In the case of our example, the agreement property will
appear in the list of violated properties automatically constructed as a result of
the parse.

3 Treating Long distance dependencies: through
assumptions, through abductive concept formation

Typically, treatments of long distance dependencies involve either enriching the
linguistic representation using explicit rules of grammar (the grammatical ap-
proach) or adding special mechanisms to the parsing algorithms (the metagram-
matical approach). The latter is more concise, in that for instance explicit rules
for coordination are not needed in the grammar itself, but sentence coordination
can be inferred from a metagrammatical component plus the user’s grammar (see

for instance Woods[27], Dahl and McCord[17], Haugeneder[20] and Milward[23]).

2 terminal symbols are noted between brackets as in DCGs

3.1 Through Assumption Grammars

The traditional grammar rule approach can be exemplified by the following (as-
sumption) grammar rules for relativization, where we omit all other arguments
to focus on the information to be carried long distance, namely the variable X:

noun_phrase(X) --> det, noun(X), {+antecedent(X)}, relative, {!}.
noun_phrase(X) --> {-antecedent(X)}.

relative --> relative_pronoun, sentence.

sentence --> noun_phrase(X), verb_phrase(X).

The first rule uses an assumption to store the antecedent for a noun phrase
that will go missing in the relative clause. The second rule picks up a missing
noun phrase’s representation through consuming the antecedent left by an overt
noun phrase. The third rule defines a relative clause as a relative pronoun fol-
lowed by a sentence. Note that any missing noun phrase inside that sentence
can now be reconstructed from the assumption of its antecedent. The same rules
serve therefore for relativizing on a subject (as in "the house that fell”), on an
object (as in "the house that Jack built”), on an indirect object ("the student
that Mary gave a book t0”), etc.

3.2 Through Abductive Concept Formation

We now present our Abductive Concept Formation methodology through the
example of abducing the missing noun phrase in a relative clause. Because in
bottom-up mode we cannot deal with empty rules 3, we must pay the price of
making separate rules for each type of relativization, but the resulting grammar
does not need to use assumptions. All we need to do is to retrieve the end point
of the previous constituent and reconstruct (abduce) the missing noun phrase
at that point, e.g.:

relative_pronoun, verb_phrase(X):(P1,P2) :: >
Inoun_phrase(X) : (P2,P2),
relative.
relative_pronoun, noun_phrase, verb:(P1,P2) :: >
Inoun_phrase(Y): (P2,P2),
relative.

These rules produce a relative clause while abducing its missing noun phrase.
The fact that the abduced phrase is syntactically marked as abduced (as opposed
to the previous example, in which noun phrases look the same whether they have

3 notice that the second rule above is, grammatically speaking, empty, because its
right hand side is not a grammar symbol but a Prolog test

been reconstructed or are explicit) makes it easier to reconstruct further implicit
meanings for more sophisticated examples, as we shall see next. Note that the
start and end points of the abduced noun phrase are the same, as befits a non-
overt noun phrase.

4 A non trivial example: coordination in natural language

In this section we briefly present property based grammars [4,5], next we summa-
rize our parsing methodology for them (see complete details in [13]) and we then
extend it with our abductive concept formation, metagrammatical treatment of
coordination.

4.1 Parsing Property Grammars

Property based Grammars [4,5] define any natural language in terms of a small
number of properties: linear precedence (e.g. within a verb phrase, a transitive
verb must precede the direct object); dependency (e.g., a determiner and a noun
inside a noun phrase must agree in number), constituency (e.g. a verb phrase can
contain a verb, a direct object,...), requirement (e.g. a singular noun in a noun
phrase requires a determiner), exclusion (a superlative and an adjectival phrase
cannot coexist in a noun phrase), obligation (e.g. a verb phrase must contain a
verb), and unicity (e.g. a prepositional phrase contains only one preposition). The
user defines a grammar through these properties instead of defining hierarchical
rewrite rules as in Chomskyan based models. In addition, properties can be
relaxed by the user in a simple modular way. For instance, we could declare
”precedence” as relaxable, with the effect of allowing ill-formed sentences where
precedence is not respected, while pointing out that they are ill-formed.

The result of a parse is, then, not a parse tree per se (although we do provide
one, just for convenience, even in the case of ill-formed input), but a list of
satisfied and a list of unsatisfied properties.

4.2 The basic parser

Our basic methodology relies upon a single rule which successively takes two
categories (one of which is a phrase or a phrase head), checks the properties
between them, and constructs a new category by extending the phrase with
the other category, until no more categories can be inferred. Lists of satisfied
and unsatisfied properties are created by the rule, using property inheritance (a
detailed analysis of which can be seen in the original paper). Its form is described
in Fig. 1.

This rule first tests that one of the two categories is of type XP (a phrase
category) or obligatory (i.e., the head of an XP), and that the other category is
an allowable constituent for that XP. It then successively tests each of the PG
properties among those categories, incrementally building as it goes along the
lists of satisfied and unsatisfied properties. Finally, it infers a new category of

cat(Startl,Endl,Cat,Featuresl,Graphl,Satl,Unsatl),

cat (End1,End2,Cat2,Features2,Graph2,Sat2,Unsat2) ==>
xp-or_obli(Cat2,XP), ok_in(XP,Cat),
precedence (XP,Start1,End1,End2,Cat,Cat2,Sat1,Unsat1,SP,UP),
dependency (XP,Start1,End1,End2,Cat ,Features1,Cat2, Features2,SP,UP,SD,UD),
build_tree(XP,Graphl,Graph2,Graph, ImmDaughters),
unicity(Start,End2,Cat,XP, ImmDaughters,SD,UD,SU,UU),
requirement (Start,End2,Cat,XP, ImmDaughters,SU,UU,SR,UR),
exclusion(Start,End2,Cat,XP, ImmDaughters,SR,UR,Sat,Unsat)
| cat(Startl,End2,XP,Features2,Graph,Sat,Unsat).

Fig. 1. New Category Inference

type XP spanning both these categories, with the finally obtained Sat and Unsat
lists as its characterization.

In practice, we need another rule symmetric to this one, in which the XP
category appears before the category Cat which is to be incorporated into it.

4.3 Extending the parser for abducing implicit elements

Our Abductive Concept Formation methodology imposes two requirements on
the user’s grammar. First, semantics must be defined compositionally. Second,
semantic material must be isolated into one specific argument, so that the rules
for virtual coordination can easily identify and process it. For instance, if we use
the second argument for semantics, a rule such as

name(X) -> np(X~Sem”Sem).
should be coded in CHR and CHRG as
CHR: category(name,X,P0,P1) ==> constituent(np,X"Sem”Sem,P0,P1).

CHRG: category(name,X) ::> constituent(np,X"Sem~Sem).

We assume that there are two (implicit or explicit) coordinating constituents,
C1 and C2, surrounding the conjunction, which must in general be of the same
category 4. As in Dahl’s previous work [15], we adopt the heuristics that closer
scoped coordinations will be attempted before larger scoped ones. Thus in Woods’
well-known example[27], “John drove his car through and demolished a window” ,
"vp conj vp" is tried before "sent conj sent" .

If both C1 and C2 are explicit, we simply postulate another constituent of
the same category covering both, and conjoin their meanings. This is achieved
through the rule:

constituent(C,Seml1,P0,P1),
constituent(conj,_,P1,P2),
constituent(C,Sem2,P2,P3) ==>
constituent(C,Sem,P0,P3),conj(Seml,Sem2,Sem) .
Sem can take either the form and(Sem1,Sem2) or a more complex form.

4 This is a simplifying assumption: coordination can involve different categories as
well, but in this paper we only address same category coordination

10

If either C1 or C2 is implicit, the CHRG engine will derive all possible partial
analyses and stop with no complete sentence having been parsed. We can then
resume the process after dynamically adding the following symmetric rules, in
charge of completing the target in parallel with the source. Once the target has
been completed, the above rule for coordinating complete constituents can take
over.

% The second conjoint is incomplete
constituent(C,Sem1,P0,P1),
constituent(conj,_,P1,P2) ==>
complete(C,Seml,range (PO,P1),Sem2,P3)
| constituent(C,Sem2,P2,P3).
% The first conjoint is incomplete
constituent(conj,_,P1,P2),
constituent(C,Sem2,P2,P3) ==
complete(C,Sem2,range (P2,P3),Sem1,P0).
| constituent(C,Sem1,P0,P1).
complete/5 generates the features of a constituent of category C that is incom-
plete between the given points, using the source (the portion of text indicated
by range/2) as parallel structure. The new constraint is placed in the constraint
store as an abduced constraint, so that the rule for complete conjoint coordi-
nation can apply. This rule must therefore be modified to allow for one of the
constituents to be abduced.

An Example For Philippe likes salsa and Stephane tango, we have the initial
constraint store:
{philippe(0,1),likes(1,2),salsa(2,3),and(3,4),stephane(4,5),tango(5,6)}
to which the following “constraints” (in the sense of the CHR store) are succes-
sively added: [name(0,1),verb(1,2),noun(2,3),conj(3,4) ,name(4,5) ,noun(5,6),
np(0,1),vp(1,3),np(2,3),np(4,5),np(5,6),s(0,3)]
At this point, since the analysis of the entire sentence is not complete, the dynam-
ically added rules will compare the data to the left and right of the conjunction,
noting the parallelisms present and absent:

np(0,1) parallel to np(4,5)

verb(1,2) parallel to ?

np(2,3) parallel to np(5,6)
and postulate(abduce) a verb(5,5), with the same surface form (“likes”) as the
verb in the parallel structure. The addition of this element to the constraint store
triggers the further inferences: {vp(5,6), s(4,6)}. This in turn will trigger the
complete constituent coordination rule, resulting in {s(0,6)}

Top-down Prediction For cases in which the two parallel structures are dif-
ferent, the simple pairing of constituents in the source and target, as above, will
not be enough. For example “John drove a car through and demolished a window”,
for instance, we have the constraint store:

{ john(0,1), drove(1,2), a(2,3), car(3,4),

11

through(4,5), and(5,6), demolished(6,7),

a(7,8), window(8,9), name(0,1), verb(1,2),

det(2,3), noun(3,4), prep(4,5), conj(5,6),

verb(6,7), det(7,8), noun(8,9), np(0,1),

np(7,9), vp(6,9) %}

In such cases we examine the grammar rules in top-down fashion to determine
which ones would warrant the completion of a constituent that appears to one
side of the conjunction but not to the other.

In our example, the candidate sources are: prep(4,5), verb(6,7) and vp(6,9).
Postulating a missing prep at point 6 or a missing verb at point 5 does not
yield success, so we abduce a vp ending in point 5 and use vp rules top-down to
predict any missing constituents. The pp rule is eventually found, which rewrites
pp into a preposition plus a noun phrase, so we can abduce a missing noun
phrase between point 5 and itself, to be filled in by the parallel noun phrase in
the source, namely “a window”(we must avoid requantification, so the window
driven through and the one demolished must be the same window). This new
noun phrase triggers in turn the abduction of a verb phrase between points 1
and 5, which in turn allows us to conjoin the two verb phrases, and complete
the analysis.

Semantics We now turn our attention to grammars which construct meaning
representations for the sentences analysed.

After having determined the parallel elements in source and target, we must
void the source’s meaning (using for instance higher-order unification) from those
elements which are not shared with the target, and only then apply the resulting
property on the representation of the target.

For our example, we must from the meaning representation of “Philippe likes
salsa” reconstruct the more abstract property[\y.Ax.likes(x,y)], which can then
be applied on “tango” and “stephane” to yield likes(stephane,tango).

We bypass this need by keeping copies of the abstract properties as we
go along. While the original properties get instantiated during the analysis
(so that the meaning of “ikes” in the context “Philippe likes salsa” becomes
likes(philippe,salsa)) , their copies do not. It is these uninstantiated copies
that are used as meanings for the reconstructed targets.

Syntactic Considerations Some of the syntactic features carried around by
typical grammars need a special treatment by the coordination rules: the con-
junction of two singular noun phrases (e.g. “the cat and the dog”), for instance,
should result in a plural conjoined noun phrase.

5 Concluding remarks

We have discussed abduction as an appropriate method for treating long dis-
tance dependencies, both within traditional, hierarchical approaches, and within

12

property-based kinds of grammars, so that even incomplete or incorrect input
will yield interesting, if partial, results.

The present work was inspired by [15], where we provided a left-corner
plus charting datalog approach. This approach recorded parse state constituents
through linear assumptions to be consumed as the corresponding constituents
materialize throughout the computation. Parsing state symbols corresponding to
implicit structures remained as undischarged assumptions, rather than blocking
the computation as they would if they were subgoals in a query. They could
then be used to glean the meaning of elided structures, with the aid of parallel
structures.

While being quite minimalistic in the amount of code required, this approach
involved sophisticated process synchronization notions, as well as the use of linear
affine implication. In the present work we showed how the use of abduction helps
retain the advantages of [15] while drastically simplifying our methodology.

Various authors, e.g.[22] discuss an alternative approach to anaphoric depen-
dencies in ellipsis, in which the dependence between missing elements in a target
clause and explicit elements in a source clause does not follow from some uni-
form relation between the two clauses, but follows indirectly from independently
motivated discourse principles governing pronominal reference. While contain-
ing linguistically deep discussions, the literature on this discourse-determined
analysis also focusses on ellipsis resolution, while still leaving unresolved (to the
best of our knowledge) the problem of automatically determining which are the
parallel structures.

On another line of research, Steedman’s CCGs [25] provide an elegant treat-
ment of a wide range of syntactic phenomena, including coordination, which
does not resort to the notions of movement and empty categories, instead using
limited combinatory rules such as type raising and functional composition . How-
ever, these are also well known to increase the complexity of parsing, originating
spurious ambiguity- that is, the production of many irrelevant syntactic analyses
as well as the relevant ones. Extra work for getting rid of such ambiguity seems
to be needed, e.g. as proposed in [24].

With this work we hope to stimulate further research into the uses of abduc-
tion in constraint-based parsing.

Acknowledgements

This research was made possible by the author’s NSERC research grant.

References

1. Abdennadher, S. and Schtz, H. CHR: A Flexible Query Language. In International
conference on Flexible Query Answering Systems, FQAS’98, LNCS, Springer,
Roskilde, Denmark (1998)

2. Balsa, J., Dahl, V. and and Pereira Lopes, J. G. Datalog Grammars for Abductive
Syntactic Error Diagnosis and Repair. In Proceedings of the Natural Language
Understanding and Logic Programming Workshop, Lisbon (1995)

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Blache, P. and Azulay, D. Parsing Ill-formed Inputs with Constraints Graphs. In A.
Gelbukh (ed), Intelligent Text Processing and Computational Linguistics, LNCS,
Springer, 220-229 (2002)

Bes G. and Blache, P. Propri/’et/’es et analyse d’un langage. In Proceedings of
TALN’99 (1999)

Bes G., Blache, P., and Hagege, C. The 5P Paradigm. Research report, GRIL/LPL
(1999)

Christiansen, H. and Dahl, V. Logic Grammars for Diagnosis and Repair. In Pro-
ceedings of 14th ITEEE International Conference on Tools with Artificial Intelli-
gence, Washington D.C., 307-314 (2002)

Dahl V. and Voll K. (2004) “Concept Formation Rules: an executable cognitive
model of knowledge construction”, in proceedings of First International Workshop
on Natural Language Understanding and Cognitive Sciences, INSTICC Press.
Barranco-Mendoza, A., Persaoud, D.R. and Dahl, V. (2004) “A property-based
model for lung cancer diagnosis”, in proceedings of 8th Annual Int. Conf. on Com-
putational Molecular Biology, RECOMB 2004, San Diego, California (accepted
poster).

Christiansen, H. and Dahl, V. Assumptions and Abduction in Prolog. In Proceed-
ings MULTICPL’04 (Third International Workshop on Multiparadigm Constraint
Programming Language, Saint-Malo, France (2004)

Christiansen, H. Logical Grammars Based on Constraint Handling Rules,(Poster
abstract). In Proc. 18th International Conference on Logic Programming, Lecture
Notes in Computer Science, 2401, Springer-Verlang, p. 481 (2002)

Christiansen, H. Abductive Language Interpretation as Bottom-up Deduction. In
Proc. NLULP 2002, Natural Language Understanding and Logic Programming,
Wintner, S. (ed.), Copenhagen, Denmark, 33-48 (2002)

Christiansen, H. CHR as Grammar Formalism, a First Report. In Sixth Annual
Workshop of the ERCIM Working Group on Constraints, Prague (2001)

Dahl, V. and Blache, P. Directly Executable Constraint Based Grammars. In Proc.
Journees Francophones de Programmation en Logique avec Contraintes, Angers,
France (2004).

Dahl, V. and Tarau, P. Assumptive Logic Programming. In Proc. ASAI 2004,
Cordoba, Argentina (2004).

Dahl, V. On Implicit Meanings. In Computational Logic: from Logic Programming
into the Future. F. Sadri and T. Kakas (eds), Springer-Verlang (2002)

Dahl, V., Tarau, P., and Li, R. Assumption Grammars for Processing Natural
Language. In Fourteenth International Conference on Logic Programming, MIT
Press, 256-270 (1997)

Dahl, V. and McCord, M. Treating Coordination in Logic Grammars. In American
Journal of Computational Linguistics 9, 69-91 (1983)

Darlymple, M., Shieber, S., and Pereira, F. Ellipsis and Higher-Order Unification.
In Linguistics and Philosophy, 14(4), 399-452 (1991)

Fruhwirth, T. W. Theory and Practice of Constraint Handling Rules. In Journal
of Logic Programming, 37, 95-138 (1998)

Haugeneder, H. A Computational Model for Processing Coordinate Structures:
Parsing Coordination will-out Grammatical Specification. In ECAI 1992, 513-517
(1992)

Kakas, A.C., Michael, A., and Mourlas, C. ACLP: Abductive Constraint Logic
Programming. The Journal of Logic Programming, Vol.44, pp. 129-177, 2000.
Kehler, A. and Shieber, S. Anaphoric Dependencies in Ellipsis. In Computational
Linguistics, 23(3) (1997)

14

23.

24.

25.

26.

27.

Milward, D. Non-Constituent Coordination: Theory and Practice In Proceedings
of COLING 94 , Kyoto, Japan, 935-941 (1994)

Park, J.C and Cho, H.J. Informed Parsing for Coordination with Combinatory
Categorial Grammar. COLING’00, pp. 593-599, (2000)

Steedman, M. Gapping as Constituent Coordination. In Linguistics and Philosophy
(1990)

Voll, K., Yeh, T., and Dahl, V. An Assumptive Logic Programming Methodology
for Parsing. In International Journal on Artificial Intelligence Tools (2001)
Woods, W. An Experimental Parsing System for Translation Network Grammars.
In R. Rustin, editor, Natural Language Processing, Algorithmic Press, New York,
145-149 (1973)

15

Invited Talk
(no title provided at time of printing)

Denys Duchier

Equipe Calligramme, LORIA, Nancy, France
duchier@loria.fr

16

The Other Syntax

Gerald Penn

Department of Computer Science
University of Toronto
10 King’s College Rd.
Toronto M5S 3G4
Ontario, Canada
gpenn@cs.toronto.edu

Abstract. The ultimate goal of linguistics is to explain the relationship
between the form of sound (or text) and the substance of meaning. Al-
most 50 years ago now, Artificial Intelligence promised that computers
were capable of mimicking and possibly even learning this correspon-
dence in a way that would revolutionize the manner in which we interact
with them. To put it mildly, we have not fulfilled that promise yet, and
the reason we have not has at least something to do with where most of
us have been looking for the answer: to a view of syntactic phrase struc-
ture that has, at best, a circuitous connection to meaning. Even within
the Chomskyan linguistic tradition, there has been an acknowledgement
that a “logical form” quite unlike syntactic structure must exist. But log-
ical form is still a “form,” a different syntax for talking about meaning
in the absence of any kind of inference that could justify viewing it as
meaning.

This talk will describe a research programme in progress that seeks to
connect grammar, in the conventional sense that computational linguists
use that term, with real semantic inference, and thus a real semantics. In
our approach, this connection is made by viewing the syntactic, logical
form, and semantic components of grammar as instances of common
methods in constraint logic programming.

17

Gradience, Constructions and Constraint Systems

Philippe Blache! and Jean-Philippe Prost?: !

! LPL-CNRS
Université de Provence
29 Avenue Robert Schuman
13621 Aix-en-Provence, France
pb@lpl.univ-aix.fr
2 Centre for Language Technology
Macquarie University
Sydney NSW 2109, Australia
jpprost@ics.mg.edu.au

Abstract. One important question to be addressed by modern linguistics con-
cerns the variability of linguistic constructions. Some of them are very regular,
some others quite rare. Some are easy to explain, some others hard. And finally,
some are canonical whereas some others are less grammatical. These different as-
pects have been addressed, usually separately, from a psycholinguistic perspec-
tive. Some elements of explanation are given in terms of sentence complexity
and gradience (see for example [Gibson00], [Sorace04]). It is necessary to ex-
plain why some utterances can be interpretable more easily than some others, or
why some are less acceptable than others.

Several linguistic theories address explicitly such questions, in particular from
the perspective of dealing with ill-formed inputs. Some elements of answer can
be found for example in the optimality theory (see [Prince93]), in the model-
theoretic syntax approach (see [PullumO3]) or in construction grammar (see
[Fillmore98], [Goldberg95]). One of the main challenges in these approaches, is
the characterization of gradience in linguistic data. The basic idea consists in hi-
erarchizing the linguistic information according to some “importance” criterion.
However, such importance is difficult to define. In some approaches such as prob-
abilistic grammars, it relies on frequency information (see [KellerO3]): each rule
is weighted according to its frequency acquired on treebanks. The syntactic con-
structions are specified according to the weights of the different rules. In some
other approaches, explored in this paper, the idea is to propose some objective
information relying on a symbolic representation.

This paper argues in favor of a fully constraint-based approach representing all
kind of information by means of constraints. Such an approach makes it possible
to quantify the information and proposes an ordering relation among the different
utterances relying on the interpretation of satisfied and violated constraints.

1 Constructions
Several modern approaches in linguistics argue in favor of a contextual description

of linguistic phenomena. This way of representing information is typically proposed
in construction grammar (see [Fillmore98] or [Kay99]), in property grammars (see

18

[Blache00]), etc. In these approaches, a specific phenomenon is characterized by a con-
vergence of different properties. For example, taking into account the syntactic level
alone, a dislocated construction is roughly characterized by the realization of an NP,
before or after a main clause, together with an anaphoric clitic inside this clause. Other
properties can be added to this framework, for example concerning the lexical selec-
tion that can be specific to this construction. The important point is that a construction
is specified by a given set of properties, some of them being relevant only for this
construction. In other words, given the fact that, as proposed in property grammars,
a property can be conceived as a constraint, a construction is defined by a constraint
system: what makes sense is not a property taken separately from the others, but the
interaction of the constraints. Contextuality is then implemented by means of such in-
teraction: defining a construction consists in specifying on one hand a set of properties
characterizing the construction and on the other hand some property subset that specif-
ically entails some properties. For example, in the description of passive in French, an
accusative pronoun in the VP has to agree with the subject (has to be reflexive).

(1) Je me le suis dit (I myself it aux-1st tell)

(2) *Je te le suis dit (1 you it aux-1st tell)

Such an approach presents several advantages. First, it is possible to express con-
straints at very different granularity levels for the specification of a given construction.
Moreover, different kinds of constraints, coming from different linguistic domains such
as prosody, semantics, pragmatics, etc. can participate to the definition of a construc-
tion. It is one of the main arguments in favor of construction approaches. This aspect
is illustrated in the following example (from [Mertens93]) illustrating a very specific
construction in which only a little information is available at the syntactic level. In this
case, prosody plays an important role in its interpretation:

(3) lundi lavage mardi repassage mercredi repos

monday washing tuesday ironing wednesday rest

Finally, a constraint can have in such perspective a relative importance. For some
constructions, a constraint can be obligatory whereas the same constraint can be easily
relaxed in some other cases.

2 Constraints

Classically, constraints are used in linguistic theories as a filtering process. This is typ-
ically the case with constraint grammars, but also with most recent constraint-based
approaches such as HPSG (see [Sag99]) or Optimality (see [Prince93]). In HPSG for
example, constraints are applied to a structure in order to verify its well-formedness.
As a side effect, constraints can also implement feature values instantiation or propa-
gation. The valence principle for example plays exactly this double role: ruling out the
structures that don’t satisfy the constraint and, in case of unification between a structure
and a description in the valence list, instantiating some feature values of the structure.
In this case, constraints are seen as structure descriptions, they don’t implement infor-
mation that can be possibly evaluated independently from these structures. This means
that structures are first to be built before verifying their values and syntactic properties
are expressed in terms of relations inside such hierarchized constructions.

19

Constraints are used in a completely different way in OT. They also constitute a
filtering process, but the constraints belong to a system containing two main pieces of
information: the basic information specified by the constraint itself, expressed in uni-
versal and imperative terms and a second-level (rather implicit) information expressed
by ranking. In such system, the fact that a constraint is satisfied or not is in the end less
important than its position in the ranking. Moreover, all constraints are stipulated taking
into account the fact that other opposite constraints also belong to the system. This is a
kind of negative way of using constraints that are in fact stipulated so as to be violated.

There is a common basis of these different uses of constraints. In all cases, they need
to be interpreted into a system. In other words, they cannot be evaluated for themselves,
but in reference to the entire system. This is what Pullum underlines as a holistic way
of seeing syntactic information in which a syntactic property cannot be interpreted in
itself. This is a limitation in the perspective of finding syntactic characterizations of un-
restricted material: in many cases, especially when parsing spoken languages, syntactic
information is sparse. For example in (3), the relation among the different elements is
difficult to express at the syntactic level.

In such cases, information comes from the interaction of different linguistic do-
mains, in particular morphology and prosody more than other kinds of information.
And in such cases, classical approaches fail to build a description. There is also another
drawback. In the case of OT for example, ranking makes it possible to order different
candidates. Such ranking expresses a level of well-formedness, according to the gram-
mar. However, there is no direct relation between well-formedness and more general
notions such as understandability, acceptability, sentence complexity, etc. What is im-
portant to explain from a cognitive point of view is what kind of utterances are more
easily interpretable and why.

We think that constraints can play an important role in this perspective provided that
they are expressed in a non holistic manner. In such a perspective, each constraint must
implement a syntactic property and be expressed independently from the others. Obvi-
ously, constraints have to interact, but they can always be evaluated. This characteristic
is underlined by Pullum as being one of the interests of a model-theoretical approach
in comparison with a deductive one: it is possible to give some information in all cases,
whatever the input form.

2.1 Property Grammars

We briefly describe here a framework for such an approach called property grammars
(see [Blache00]). In this approach, all information is represented by means of con-
straints (also called properties). These constraints are relations among categories ex-
pressed as a set of features. A category, at the difference with HPSG, doesn’t contain
hierarchical information among constituents, but only what is called in construction
grammar intrinsic information. All constraints are expressed independently from the
others and represent a specific kind of syntactic information:

— linear precedence, which is an order relation among constituents,
— subcategorization, which indicates the co-occurrence relations among categories or
sets of categories,

20

the impossibility of co-occurrence between categories,
the impossibility for a category to be repeated,

the minimal set of obligatory constituents (usually one single constituent) which is
the head,
the semantic relations among categories, in terms of dependency.

These different kinds of information correspond to different properties, respectively:
linearity, requirement, exclusion, unicity, obligation, dependency. Such information can
always be expressed in terms of relations among categories, as shown in the following
examples:

Linear precedence: Det < N (a determiner precedes the noun)

Dependency: AP ~» N (an adjectival phrase depends on the noun)

Requirement: V[inf] = to (an infinitive comes with o)

Exclusion: most <& Adj[super] (most can not modify an adjective that already is a
superlative.)

Here is a more formal representation of such information :
let /C be a set of categories, A be the ordered set of categories for a given input,
let pos(C,.A) be a function that returns the position of C in A,
let card(C,.A) be a function that returns the number of elements of type C in A,
let {Cl, CQ} e K,
let comp(C1, C2) be a function that verifies the semantic compatibility of C; and Co and
that completes the semantic structure of Co with that of C;3

LP: C; < Cs holds in A iff pos(C1, A) < pos(Ca,.A)
Req: C; = C3 holdsin AiffC; € AorCy € A

Excl: C; ¢4 Co holds in A iff {C1,C2} N A #£ {C1,Ca}
Uniq: Uniq(Cy) holds in A iff card(C;, A) < 1

Oblig: Oblig(Cs) holds in A iff card(Cy, A) = 1

Dep: C; ~ C2 holds in A iff comp(Cy,C2) holds

A grammar is in this perspective a set of constraints, and nothing else. In particular,
there is neither ranking in the OT sense nor need of building any structure before being
able to evaluate the properties (as in OT with the Gen function or in HPSG with the need
of selecting first a hierarchized structure type). Parsing in property grammars consists
in evaluating for a given input the entire set of constraints. The characterization of an
input is then formed by the set of satisfied constraints and the set of violated ones. More
precisely, the grammar contains for each category a subset of constraints. It is then
possible to specify for each category as well as for the entire input a characterization
(the set of evaluated constraints).

3 The semantic completion follows some schemas such as subject, complement or modifier.

These schema indicate what part of the semantic structure of the modified category must be
completed with that of the dependent.

21

2.2 Property Grammars and Constraint Solving Problem

Unlike a more standard way of seeing a constraint solving problem which would consist
in finding an assignment that satisfies the system of constraints, we start here with
a partial assignment—corresponding to the utterance to be parsed—and we want to
complete this assignment so as to satisfy the system of constraints—i.e. the grammar.
In terms of output of the solving process we are not only interested in the qualitative
aspect of the final assignment but equally in knowing which constraints are satisfied
and which ones are not, both from a qualitative and a quantitative point of view. The
knowledge of the assignment by itself is not enough. Actually, what we want to know
is, given a system of constraints and a first partial assignment—representing the input
to be analysed— a description of the final system and the complete assignment used to
reach it. In a linguistic perspective it means that we want to know the lists of properties
which are satisfied and violated by the input utterance—i.e. the characterisation—when
the input is analysed in such way—i.e. for a given assignment.

2.3 Constructions and Constraints

A fully constraint-based view such as the one proposed by property grammars makes
it possible to implement contextual fine-grained information. In the same way as cat-
egories are described by means of constraint subsets, other kind of objects such as
constructions can also be specified in the same way. The notion of construction is of
deep importance, especially in the perspective of finding gradient judgements: the im-
portance of a constraint can vary from one construction to another. In the remainder of
this section, we describe how constructions can be represented by means of constraints
in the PG framework, taking the example of the subject-auxiliary inversion (SAI) con-
struction in English (see [Fillmore98]). In this construction, there are strong linear con-
straints, especially concerning adverbs as shown in the following examples:

(4) Did you learn your lesson?

(5) Did you really learn your lesson?

(6) Didn’t you learn your lesson?

(7) *Did really you learn your lesson?

(8) *Did not you learn your lesson?

(9) *Did you your lesson learn?

This construction is explained by the following SAI construction:

inherit VHP

level [srs +]

head |aux + | rel [gf subj] || rel [gf —subj] |*
finite +

In terms of PG, this construction can be detailed as a set of such constraints:

V[aux] < NP[subj]

. NP[subj] < V[—fin]

V[aux] = NP[subj]

. V[—fin] < XP[—sub]

. NP[subj] < Adv[neg,—contraction]

[S I

22

6. NP[subj] < Adv[—neg]
7. NP~V
8. Adv~V

This subset of constraints {1,2,4,7,8} represents the information of the SAI con-
struction represented above and we can say that these two notations are equivalent.
Adding new information simply consists in adding new constraints to the set describing
the construction, at the same level. In this example, on top of these general constraints,
it is necessary to specify some constraints. For example, the negative form has to be
contracted here. This constraint is imperative in this construction, whereas it can be
optional in other cases. This constitutes one important interest in the perspective of as-
sociating constraints with an “importance” degree: such degree may vary according to
the construction. Using the terminology of [Sorace04], a constraint can be hard in some
construction or soft in some others.

3 Gradience and Density

A fully constraint-based representation may also be helpful in identifying criteria for
sentence complexity as well as acceptability. The idea is to make use of the informa-
tion contained in characterizations in terms of satisfied and violated constraints. More
precisely, some figures can be extracted from these characterizations illustrating the dif-
ference in the realization of a given category. For example, the ratio of satisfied/violated
constraints is obviously of main interest.
(10) Quelles histoires Paul a-t-il écrites ?

What stories Paul did he write[fem-plu]? / What stories did Paul write?
(11) Quelles histoires Paul a-t-il écrit ?

What stories Paul did he write[masc-sing]? / What stories did Paul write?
(12) Quelles histoires a-t-il écrites Paul ?

What stories did he write[fem-plu] Paul? / What stories did he write Paul?
(13) Quelles histoires a-t-il Paul écrites

What stories did he Paul write[fem-plu]? / What stories did he Paul write?

These examples are given in order of (un)acceptability which corresponds in our
hypothesis to a progressively greater number of violated constraints. Constraints are
given here without taking into account specificities of the interrogative construction.
(11) NP[obj] ~ VP[ppas]

(12) NP[subj] < VP
(13) NP[subj] < VP, V ¢ NP[subj]

Even without a precise evaluation of the consequence of constraint violations type
by type, this first criterion can constitute an objective element of estimation for ac-
ceptability: unacceptability increases with the number of constraint violations (Keller’s
property of Cumulativity). This indication seems trivial, but directly comes from the
possibility of representing separately the different types of syntactic information by
means of properties. Such estimation is for example not possible with a phrase-structure
representation and even difficult using classical constraint-based approaches such as
HPSG.

23

However, it is necessary to have a finer-grained use of such information. In particu-
lar, the number of constraints may vary from one category to another. Some categories,
such as adverbial phrases are very static and are described with a limited number of
properties. At the opposite, the noun phrase, that can have many different forms, needs
an important number of properties. It is then necessary to distinguish the number of
constraint violation in these cases: violating a constraint for an AdvP has more con-
sequences on acceptability than for the NP. Again, this indication is purely quantita-
tive and doesn’t take into account constraint type. It is probably the case that some
constraints (for example exclusion) play a more important role on acceptability than
dependency for example. However, when taking into consideration interpretability for
example, a hard constraint such as unicity with respect to acceptability becomes soft
for the interpretation, as shown in the following examples:

(14) Paul reads a book

(15) Paul reads reads a book

The second example is obviously unacceptable but perfectly understandable. We
propose then a first stage in the identification of gradient criterion by means of purely
quantitative aspects. This is the role played by the notion of density. This information
indicates two figures: the number of satisfied properties with respect to the total number
of properties that described the object and the same ratio for violated properties. We
note respectively these figures as dens_sat and dens_unsat with the following
definitions:

— dens_sat =nb of satisfied properties / total nb of properties
— dens_unsat = nb of unsatisfied properties / total nb of properties

To some extent the notion of density can be compared to the one of recall, which is
used in evaluation.
Density in itself, at the difference with the ratio satisfied/violated properties, gives some
indication about the quantity of information of a given object. In the case of a high
density of satisfied properties, this means that an important number of syntactic charac-
teristics contained in the grammar is realized in the object. In other words, we can say
that this object contains, with respect to the grammar, important syntactic information.
Reciprocally, a low density of satisfied properties can have different interpretations. In
case of a high density of violated constraints, the object is clearly ill-formed and we can
suspect a low probability for its acceptability. But it can also be the case that there is
a low density for violated constraints. This situation indicated that the object contains
little syntactic information. In the following example, extracted from a corpus analysis,
the category, a sentence, is formed with a PP and a VP:

(16) En renforcant le projet, avancons vers le succes.

in reinforcing the project, let’s go toward the success

Cat|dens_sat|dens_unsat |construction
S 10,5 0,125 PP; VP
Such a construction is not frequent, but some information can be given, according
to the grammar. Concerning the violated properties, the non-null density comes from
the fact that there is a dependency relation between the VP and a NP subject which is
not realized. The level of satisfied properties density comes from the fact that even if the

24

properties involving PP and VP are satisfied, many properties describing S involve an
NP. There is then a high number of properties for S that cannot be evaluated, explaining
alow dens_sat.

These different ratios constitute then a first tool providing some indication on ac-
ceptability and interpretability. Acceptability primarily depends on the ratio of satisfied
constraints with respect to the number of violated ones. Interpretability can be illus-
trated by the densities of satisfied and violated constraints. Low densities, as shown
above, indicate a low level of syntactic information. More generally, there is a correla-
tion between the quantity of information contained by an object and its interpretability:
a high density of satisfied constraints comes with an easier interpretation. In case of low
densities, it is necessary to obtain information from other domains such as prosody.

Using these different indications makes it possible to give information about any
kind of input, without any restriction to well-formed ones. Moreover, it becomes pos-
sible to propose quantitative elements towards gradience in linguistic data concerning
both acceptability and interpretability. Moreover, such elements of information give
also some indication about domain interaction. For some utterances, it is necessary to
extract information from the different linguistic domains such as morphology, syntax,
prosody or pragmatics. In some other cases, the morpho-syntactic level alone contains
enough information in order to make an utterance interpretable. In other words, there is
a balance among the different domains. Each domain can be characterized with densi-
ties such as the one described here for syntax, the balance status being a function of the
different densities. A high density of satisfied properties for one domain is an indication
of a high level of information. The hypothesis stipulates that in this case, other domains
can contain a low level of information without consequence on the interpretability. For
example, for some construction, if there is a high density in syntax and semantics, then
the density of prosody is not constrained and can take any value. Concretely, this means
that intonation is not constrained anymore and can be realized in various ways. On the
contrary, when syntactic and semantic densities are not heavy enough, then the prosody
density has to be high and the intonation is less variable. This is the case in the example
(3) for which prosody plays an important role in the interpretation.

4 Experiment

In the following, we give some indications from different French corpora, calculated
from the output of a deterministic property grammar parser (see [Blache(01] for a de-
scription of this parser). One important restriction is that, insofar as the parser used is
deterministic, the number of violated constraints has been restricted to a minimal level.
In particular, only the linearity, exclusion and unicity constraints have to be satisfied.
The density of violated constraints is therefore not relevant for our discussion. We take
then only into account the density of satisfied constraints. The aim of this experiment is
to extract some figures from different data, for a given grammar and a given parser. It
cannot be considered as a parser (or grammar) evaluation.

Three different corpora have been used: the first from the newspaper “Le Monde °,
with 15,420 words, the two others are transcribed spoken language corpora containing
respectively 523 and 1,923 words. These corpora are very small, which is justified by

25

the difficulty in parsing such data. Moreover, they have been filtered: incomplete words
for example have been eliminated. However, all repetitions are kept.

The first observation in this experiment is that, even if most of the categories have
a null density (for the reasons explained above), there is a huge difference among the
densities of satisfied constraints. The following table indicates for example some figures
concerning the noun phrase in the written text corpus:

Density |Const Density |Const
0.034483 |PPro 0.310345|Det AP PP
0.068966 |Clit 0.379310(Det N Rel
0.103448 |N 0.413793|Det AP N

0.1724138(ProP AP (|0.413793|Det N PP
0.206897 |Det AP 0.517241|Det N Rel PP
0.241379 |Det PP Rel||0.551724|Det N AP PP
0.275862 |Det N 0.655172|Det N PP AP Rel

In these figures, one can remark that density doesn’t grow systematically with gram-
maticality. For example, the two lowest densities correspond to grammatical construc-
tions (personal pronoun and clitic). This comes from the fact that the noun phrase,
which is the most frequent category, has many different constructions and needs a lot
of constraints to describe them. In all cases, even when a given construction satisfied
all its corresponding constraints, insofar as the total number of constraints for the NP
is high, the density is necessarily low. Moreover, the realizations observed here only
contain one category. The total number of satisfied properties is then by definition very
low without having any consequence on the grammaticality (which should be indicated
by the ratio satisfied/violated constraints). The same explanation is valid when com-
paring the realization /Det N/ with /Det N PP/. The first has a lower density whereas
one should expect a high one for this basic construction. Frequency information plays
then an important role in the use of the density notion. The following table indicates the
mean density with respect to the frequency of the category in the different corpora:

Cat |Frequency |Density

S 0.069917582|0.4733535
AP]0.108379121|0.408556
AdvP |0.048139361|1
NP |0.302047952|0.204571
PP |0.1003996 |0.31331
VP |0.218981019|0.341995
Circ |0.064360639|0.718518
Coord|0.071978022|0.4821425
Rel |0.015796703|0.3543475

We can see in this table that the most frequent categories (NP, VP and PP) are also
those with the lowest mean density whereas the less frequent ones (Circ, AdvP and
Coord) are associated with high densities. The arguments given above concerning the
number of constituents, the number of properties and the number of different construc-
tions can be used for explaining these differences.

This density parameter has then to be modulated with the frequency of the construc-
tion. In all cases, the progression of the density comes with an increasing quantity of

26

information. It is important to notice that the density notion is not directly useful in the
identification of sentence complexity. For example, one can consider that a realization
of a NP with a relative clause is more complex than a construction /Det N/. However,
the first has a higher density than the second, for the reasons explained above. But from
the interpretability point view, these aspects are disconnected. For example, a cleft con-
struction, which is identified as being complex, is easily understandable because of the
high number of constraints describing it. The following examples illustrate some den-
sity differences from a construction with few constraints to be satisfied and another
containing more information:

Example Density
(16) celui rouge 0,1724138
that red

Le contenu de Ia future con-
(17) vention qui devrait permettre de|0,6551724

régler les problemes de fond
the content of the future con-

vention that may allow to solve
problems in depth

5 Further Works

Intuitively, the notion of density could be refined by weighting the constraints accord-
ing to their importance. The hard/soft discrimination ([Sorace(04]), for instance, is not
accounted at the moment by the density whereas we have seen previously that the con-
straints play roles of different importance when it comes to acceptability. Some sort of
constraint ranking would also let us model the cumulativity and ganging up effects (i.e.
when multiple violations of soft constraints could possibly be more unacceptable than
a single violation of a hard constraint) described by [Sorace04].

Another object of further investigation concerns the use of weighted densities during
the parsing process as an element of disambiguation. Indeed when faced with differ-
ent possible assignments heuristics could be based on the measure of density for each
possibility in order to rank the structures by preference. Subsequently a deterministic
approach, of course, could also use this preferred structure to reduce the search space
at different stages in the solving process.

6 Conclusion

The constraint-based approach proposed in this paper presents several advantages. In
particular, all information is represented by means of constraints. Moreover, these con-
straints are at the same level (there is no ranking between them) and the grammar is
formed by the constraint system. In contrast with other holistic approaches, each con-
straint can then be evaluated separately. Concretely, this means that syntactic informa-
tion can be built for any input, whatever its form. Moreover, such information can be
quantified and gives some indications about acceptability (high ratio satisfied/violated
constraints) and interpretability (high density of satisfied constraints). One of the in-
terests of this approach is that such information can be modulated. For example, it has

27

been shown that the importance of some constraints may vary from one construction
(represented in our approach as a subset of constraints) to another.

From a cognitive point of view, the use of a fully constraint-based system may have
some interest in terms of modeling. Constraints play the role of a filtering process: lin-
guistic information does not consist in defining all and only the possible constructions,
but in indicating for some construction what kind of information can be extracted. This
means that in some cases (at least theoretically), little (or no) information can be ex-
tracted from one domain. But even in this case, such utterances can be treated.

Acknowledgements

We would like to acknowledge the support from an International Macquarie Univer-
sity Research Scholarship (iMURS) for JPP, from the CNRS and from a Macquarie
University Research Development Grant (MURDG).

References

[BlacheO1] Blache P. & J-M. Balfourier (2001). “Property Grammars: a Flexible Constraint-
Based Approach to Parsing”, in proceedings of IWPT-2001.

[Blache00] Blache P. (2000). “Constraints, Linguistic Theories and Natural Language Process-
ing”, in Natural Language Processing, D. Christodoulakis (ed), Lecture Notes in Artificial
Intelligence 1835, Springer-Verlag

[Croft03] Croft W. & D. Cruse (2003) Cognitive Linguistics, Cambridge University Press.

[Fillmore98] Fillmore C. (1998) “Inversion and Contructional Inheritance”, in Lexical and Con-
structional Aspects of Linguistic Explanation, Stanford University.

[Gibson00] Gibson T. (2000) “Dependency locality theory: a distance-based theory of linguistic
complexity”, in Marantz & al. (eds), Image, Language and Brain , MIT Press.

[Goldberg95] Goldberg A. (1995) Constructions: A Construction Grammar Approach to Argu-
ment Structure, Chicago University Press.

[Kay99] Kay P. & C. Fillmore (1999) “Grammatical Constructions and Linguistic Generaliza-
tions: the what’s x doing y construction”, Language.

[Keller03] Keller F. (2003) “A probabilistic Parser as a Model of Global Processing Difficulty”,
in proceedings of ACCSS-03

[Langacker99] Langacker R. (1999), Grammar and Conceptualization, Walter de Gruyter.

[Mertens93] Mertens P. (1993) ” Accentuation, intonation et morphosyntaxe”, in Travaux de Lin-
guistique 26

[Pollard94] Pollard C. & 1. Sag (1994), Head-driven Phrase Structure Grammars, CSLI,
Chicago University Press.

[Prince93] Prince A. & Smolensky P. (1993), Optimality Theory: Constraint Interaction in Gen-
erative Grammars, Technical Report RUCCS TR-2, Rutgers Center for Cognitive Science.

[Pullum03] Pullum G. & B. Scholz (2003), Model-Theoretic Syntax Foundations - Linguistic
Aspects, ESSLLI lecture notes, Vienna University of Technology.

[Sag99] Sagl. & T. Wasow (1999), Syntactic Theory. A Formal Introduction, CSLI.

[Sorace04] Sorace A. & F. Keller (2004), Gradience in Linguistic Data, to appear, Lingua.

[VasishthO3] Vasishth S. (2003) ”Quantifying Processing Difficulty in Human Sentence Pars-
ing”, in procedings of Eurocogsci-2003

28

Problems of Inducing Large Coverage

Constraint-Based Dependency Grammar for
Czech

Ondfiej Bojar

Center for Computational Linguistics, MFF UK
Malostranské namésti 25, CZ-118 00 Praha 1, Czech Republic
obo@cuni.cz

Abstract. This article describes an attempt to implement a constraint-
based dependency grammar for Czech, a language with rich morphology
and free word order, in the formalism Extensible Dependency Grammar
(XDG). The grammar rules are automatically inferred from the Prague
Dependency Treebank (PDT) and constrain dependency relations, mod-
ification frames and word order, including non-projectivity. Although
these simple constraints are adequate from the linguistic point of view,
their combination is still too weak and allows an exponential number of
solutions for a sentence of n words.

1 Introduction

Czech is a thoroughly studied Slavonic language with extensive language data
resources available. Traditionally, most of the research on Czech is performed
within the framework of Functional Generative Description (FGD, [1]). This
dependency-based formalism defines both surface syntactic (analytic) and deep
syntactic (tectogrammatical, syntactico-semantic) level of language description.
Language data sources for Czech include Prague Dependency Treebank (PDT,
[2,3]) and Czech valency lexicon (VALLEX, [4]). Specific properties of Slavonic
languages and Czech in particular make the task of syntactic analysis signifi-
cantly more difficult than parsing English. Available parsers of Czech ([5], [6]
and an adapted version of [7]) are statistical, aimed at surface syntactic analysis
and there is no simple way to extending them to include deep syntactic analy-
sis. Up to now, no attempt has been made to approach large-coverage syntactic
analysis with a constraint-based technology.

Extensible Dependency Grammar (XDG, [8]) is a promising relational frame-
work aimed at multi-dimensional constraint-based analysis of languages. So far,
only small scale grammars have been implemented in XDG. These grammars
illustrated efficient and elegant treatment of various complex syntax and seman-
tic phenomena in XDG [9, 10]. However, the grammars were always tailored to a
few test sentences and constraints implemented in XDG never had to cope with
syntactic ambiguity of a grammar inferred from a larger amount of data.

This paper describes a first experiment of inducing a large-coverage XDG
grammar for Czech from PDT.!

' A more detailed description is given in [11].

29

1.1 Properties of Czech Language

Table 1 summarises some of the well known properties of Czech language?. Czech
is an inflective language with rich morphology and relatively free word order al-
lowing non-projective constructions. However, there are important word order
phenomena restricting the freedom. One of the most prominent examples are
clitics, i.e. pronouns and particles that occupy a very specific position within the
whole clause. The position of clitics is very rigid and global within the sentence.
Locally rigid is the structure of (non-recursive) prepositional phrases or coordi-
nation. Other elements, such as the predicate, subject, objects or other modifica-
tions may be nearly arbitrarily permuted. Such permutations correspond to the
topic-focus articulation of the sentence. Formally, the topic-focus articulation is
described at the deep syntactic level.

Moreover, like other languages with relatively free word order, Czech allows
non-projective constructions (crossing dependencies). Only about 2% of edges
in PDT are non-projective, but this is enough to make nearly a quarter (23.3%)
of all the sentences non-projective.

The task of parsing languages with relatively free word order is much more
difficult than parsing of English, for example, and new approaches still have to
be searched for. Rich morphology is a factor that makes parsing more time and
data demanding.

Czech English
Morphology rich limited
> 4,000 tags 50 used

> 1,400 actually seen

Word order free with rigid
rigid global
phenomena

Known parsing results

Edge accuracy 69.2-82.5% 91%

Sentence correctness 15.0-30.9% 43%

Table 1. Properties of Czech compared to English.

1.2 Overview of the Intended Multi-dimensional Czech Dependency
Grammar

Figure 1 summarises data sources available for a Czech grammar induction.
PDT contains surface syntactic (analytic, AT) as well as deep syntactic (tec-
togrammatical, TG) sentence annotations. The Czech valency lexicon is under

2 Data by [5], [12], Zeman (http://ckl.mff.cuni.cz/~zeman/projekty /neproj), [13] and
[14]. Consult [15] for measuring word order freeness.

30

development, and alternatively, the valency lexicon collected while annotating
the tectogrammatical level of PDT could be used.

A grammar in the formalism of XDG could be inferred from these sources
addressing the immediate dominance (ID), linear precedence (LP) and predicate-
argument (PA) dimensions.

Only a part of this overall picture has been implemented so far. First, the
correspondence between tectogrammatical and analytic levels is quite compli-
cated, some nodes have to be deleted, some nodes have to be added. Second,
the tectogrammatical valency information from Vallex is mostly useful only if a
tectogrammatical structure is considered, only then the constraints addressing
surface realization can be fully exploited. Therefore, in the first approach the
current grammar implementation focuses only on ID an LP levels.

PDT
127,000 analytic trees
' \
Induction of
ordering patterns

Induction of
dependency constraints
and requirements

Vallex PDT
1,000 verbs 55,000 tectogrammatical trees

[N
Vallex requires TG TG-AT (PA-ID)
then constrains AT correspondence is complex

Fig. 1. Czech data sources available for XDG grammar.

2 Description of the Grammar Parts

The experimental XDG grammar induced from PDT utilizes basic principles
that are linguistically motivated and traditionally used in many varieties of de-
pendency grammars, including XDG. The current XDG grammar extracted from
PDT consists of the following parts: ID Agreement, LP Direction, Simplified ID
Frames and ID Look Right. For every part independently, the properties of in-
dividual lexical entries (with an arbitrary level of lexicalization) are collected
from the training data. The contributions are then combined into XDG lexical
entries and classes in a conjunction manner: when parsing, every input word
must match one of the observed configurations in all the grammar parts.

31

For practical reasons (memory and time requirements), the grammar finally
used in the XDG parser is restricted to the word forms of the test sentences only.
Figure 2 summarizes the pipeline of grammar extraction and evaluation.

Training data

RN
Extract ID Extract simplified
agreement 1D frames

Extract ID Extract LP
look right direction

Generic grammar, ID+LP Test data

f

Optional
morphological
anaysis

~

Restrict the generic grammar to cover only
tested word forms but model the whole observed XDG parser
syntactic ambiguity of the word forms.

Fig. 2. XDG grammar parts and evaluation.

2.1 Grammar Non-lexicalized in General

XDG is designed as a lexicalized formalism, most syntactic information is ex-
pected to come from the lexicon. Conversely, to make the most use of this ap-
proach, the information in an XDG grammar should be as lexicalized as possible.

Despite the size of PDT (1.5 million tokens), there is not enough data to
collect syntactic information for individual word forms and even lemmas.

All the grammar parts described below are therefore based on simplified
morphological tags only (part and subpart of speech, case, number and gender).
Table 2 justifies this simplification. Theoretically, full morphological tags could
be used, but we would face sparse data problem if pairs (such as head-dependent
pairs) or n-tuples of tags were examined.

After having observed 20,000 75,000 sentences

a new ... comes every test sent.
lemma (i.e. word) 1.6 1.8 test sent.
full morphological 110 290 test sent.
simplified tag 280 870 test sent.

Table 2. Lack of training data in PDT for full lexicalization.

32

2.2 ID Agreement

The ID Agreement part of the grammar allows for a specific edge type between
a father and a daughter. The edge type is cross checked in both directions: from
the father and from the daughter.

Technically, the lexical entry of a father (with known morphological prop-
erties) contains a mapping from edge labels to morphological requirements on
any possible daughter. If a daughter is connected via a particular edge label to
this father, the daughter’s morphology must match at least one of the require-
ments. Conversely, the daughter’s lexical entry contains a mapping to restrict
the morphology of the father.

This approach ensures grammatical agreement between the father and the
daughter and also helps to reduce morphological ambiguity of nodes: For every
node, only such morphological analyses remain allowed which fit the intersec-
tion of requirements of all the connected nodes. During parsing, the ambiguous
morphology of the node is reduced step by step, as more and more edges are
assigned.

2.3 LP Direction

The LP Edge Direction part describes simplified linear precedence rules and
handles non-projectivity. In the original design of XDG grammars, motivated
by German, the LP dimension is used to describe topological fields [16]. Unfor-
tunately, the word order of Czech and other Slavonic languages does not exhibit
similar word order restrictions in general. (To a very limited extent, one could
think about three fields in a clause: preclitic, clitic and postclitic field.) How-
ever, there is often an important distinction between dependencies to the left
and dependencies to the right. In this first attempt, the LP constraints of the
grammar ensure only an acceptable direction (left/right) of an edge between a
father and a daughter. The constraints do not model acceptability of different
mutual orderings of several daughters of a father.

Technically, the checking of edge direction is implemented by means of topo-
logical fields, but these are extremely simplified. Every father at the LP dimen-
sion offers three fields: the left and right fields of unlimited cardinality® and the
head field to contain only the father itself. The left field is offered for all the
daughters to the left, the head field is used for the father itself and the right
field is offered for all the daughters to the right. There is no restriction on mu-
tual ordering of the left or right daughters, the only ensured thing is that every
left daughter must precede the father and every right daughter must follow the
father.

The LP edge direction is coupled with the ID label of the corresponding ID
edge. Given a daughter connected to the father with an ID edge of a particular
label, the corresponding P edge is in certain cases allowed to have only the label

3 In other words, unlimited number of outgoing LP edges can have the label LEFT and
all edges labelled LEFT must be present first in the left-to-right ordering of nodes.

33

LEFT, in other cases only the label RIGHT but sometimes both of the labels (i.e.
both directions) are allowed. As illustrated in Figure 3, under the preposition
about, an (ID) edge labelled ATR can go to the right only, so the corresponding
LP edge must have the label RIGHT. On the other hand, adverbs can be found
both before and after the governing verb and therefore the verb was accepts
outgoing (ID) edges labelled ADV both in the left and right fields.

?\PRED\D\
NE

OV
o™
D_\,,/AUXP : :

4 T
533 O délnici jiz byla fec
#* About highway already was a talk

right

et
;xmcp_c\\mbeg/ o

r"gﬁt\m

533 0 délnici jiz byla fet
About highway already was a talk

Fig. 3. LP dimension to handle edge direction and non-projectivity.

An intuitive approach to handle non-projectivities in Czech is to require pro-
jective analyses in general but allow for non-projective edges in specific observed
cases.* My XDG grammar expresses this requirement in the LP tree only, the
ID tree is allowed to be non-projective in general. The LP tree is required to be
projective and the exceptions are handled by the so-called climbing principle.
In order to obtain a projective LP tree from a non-projective one, the tree is
“flattened” by climbing. For example, the AUXP edge is non-projective in the
ID tree in Figure 3. Moving the corresponding LP edge one step up from the
governor talk to the governor was, the LP edge becomes projective.

To distinguish LP edges that had to climb from LP edges directly correspond-
ing to ID edges, a set of extra LP labels is introduced: AUXP-CLIMBED-1, ATR-
CLIMBED-1... These additional LP labels encode also the ID label, because the

4 Consult [17] for a more advanced approach to restricting non-projectivity.

34

syntactic role of the daughter is important with respect to allowing or denying
the non-projective realization.

The nodes where a climbed edge may land (such as the word was in Figure
3) offer not just the left, head and right fields, but also the required amount of
specific X-CLIMBED-Y edges. There is no restriction on mutual linear ordering
of the LEFT/RIGHT and *-CLIMBED-* edges.”

This way, sentences are analyzed projectively in general, but specific known
non-projectivities (based on the simplified morphological tag of the father and
the daughter and the ID label of the non-projective edge) are modelled, too.

The current model still lacks restrictive power to control the clitic position.
Similarly, coordination is not modelled properly yet, because the cardinality of
left and right fields is unrestricted in general (for example, both members of a
coordination are allowed to appear on the same side of the conjunction). More
adequate handling of these phenomena remains open for further research.

2.4 Simplified ID Frames

One of the crucial principles restricting available sentence analyses in XDG is
the valency principle: Every father node allows only specific combinations and
cardinalities of outgoing (ID) edges.

The Simplified ID Valency Frames ensure that a word doesn’t accept im-
plausible combinations of modifiers. Rarely, they ensure that a word has all
its “modification requirements” saturated, because most of the modifiers are
deletable anyway.

Current approaches® aim at distinguishing complements vs. adjuncts, i.e.
modifications that are typically required vs. optional. However, there is no use
of this distinction, if deletability of modifications is taken into account (in real
Czech sentences, complements are often omitted). Any consistent grammar must
reflect this optionality of complements.

The restrictive power of valency frames in XDG should therefore come from
interdependencies of modifications (e.g. if a secondary object or a specific type
of adjunct was observed, a primary object must be present). The set of allowed
combinations and cardinalities must be explicitly enumerated in the current
XDG implementation. Future versions of this principle might accept a constraint
network (for example a set of implications) of interdependencies.

To my knowledge, no published approach aims at discovering such interde-
pendencies of particular modifications so far. On the other hand, there are too

5 This is due to technical limitations of the XDG parser: currently it is not possible
to impose partial ordering on topological fields, only linear ordering is supported.
Either the *-CLIMBED-* fields are not mentioned in the ordering at all, or one must
specify a full linear ordering among them. It is not possible to express only that all
.cLIMBED- fields precede the HEAD field without specifying the ordering among
them.

6 See [18] for comparison and references.

35

many unique frames observed under a given node type, so it is impossible to
enumerate all of them.”

Therefore, I implemented a naive algorithm to infer simplified modification
frames: this algorithm automatically simplifies treatment of adjuncts and stores
the complexity of interdependencies of other modifications by enumerating them.
As sketched in Figure 4, the set of observed modification frames of a specific
word class can be simplified by removing different modification types. When an
adverbial is removed under a verb, the set of modification frames shrinks to a
half in size. When the subject is removed instead, the set does not shrink at
all. This indicates that an adverbial has no effect on interdependencies of other
modifications: an adverbial may be present or may not—half of the frames was
observed with an adverbial, half of the frames had no adverbial.

Example: Observed under a verb:

4 unique frames:
<SB, OBJ, ADV, AUXP>
<SB, OBJ, ADV>
<SB, OBJ, AUXP>

<SB OBJ»>
/)
Removed SB,
Removed ADV, 4 unique frames:
2 unique frames: <OBJ, ADV, AUXP>
<SB, OBJ, AUXP> <OBJ, ADV>
<SB, OBJ}> <OBJ, AUXP>

<OBJ>

= ADV is more optional than SB.

Fig. 4. Identifying optional modifications in order to simplify the set of allowed modi-
fication frames.

This simplification is applied iteratively, until the number of unique frames is
acceptable. The removed modifications are added to all the frames as optional.

A short example in Figure 5 illustrates the optionality order of modifications
observed under infinite verbs (POS=V, SUBPOS={). In a sample of 2,500 sen-
tences, there were 727 occurrences of infinite verbs. Regardless the mutual order
of modifications of the verbs but with respect to the number of modifications of
a particular kind (i.e. representing the modification frame as a multiset, a bag

7 Enumerating all seen modification frames would face a severe sparse data problem
anyway as the number of unique modification frames steadily grows. In 81,000 sen-
tences, there were 89,000 unique frames observed when describing the frames as lists
of simplified tags of all the daughters of a node.

36

of modification labels), there were 132 unique frames observed. The order of op-
tionality of different modification types is estimated by the described algorithm.
The most optional modification (AUXP®, a prepositional phrase) is torn off in
the first step, reducing the set size from 132 to 95. Equally optional is an adver-
bial (ADV) because tearing off the adverbial alone would lead to the set size of
95, too. In the cumulative process, the set size after removing AUXP and ADV
is 64. The third most optional modification is an object (OBJ) so we arrive at 46
core frames plus three modifications marked as optional. The resulting frames
are shown in Figure 5, too. Each resulting frame contains some fixed members,
strictly required at least once, and also the optional modifications with cardi-
nality 0 to the highest observed cardinality of this particular modification. For
instance, the first resulting frame {AUXP(0-3), ADV(0-3), OBJ(0-2)} contains
no fixed members at all, AUXP and ADV are allowed at most 3 times and OBJ
is allowed at most twice. Finally, the XDG grammar requires every finite verb
in a sentence to satisfy at least one of the allowed modification frames, i.e. to
have exactly the allowed number of outgoing ID edges of a particular kind, as
the frame prescribes.

Unique observed modification frames: 132

Set sizes when removing specific modifiers:

AUXP(95), ADV(95), OBJ(96), AUXC(113), AUXV(119), AUXT(119), AUXX(122),
COORD(123), SB(126), AUXZ(126), AUXR(126), ATVV(127), PNOM(128),
AUXG(128), AUXY(129), APOS(129), EXD(130), COORD_PA(131), ATR(131),
PRED_PA(132), EXD_PA(132)

Cumulative simplification:

132—(AUXP)—95—(ADV)—64—(0OBJ)—46.

Resulting frames:

{AUXP(0-3), ADV(0-3), OBJ(0-2)}

{APOS(1), EXD(1), AUXP(0-3), ADV(0-3), OBJ(0-2)}

{APOS(1), AUXP(0-3), ADV(0-3), OBJ(0-2)}

{ATR(2), COORD(1), AUXP(0-3), ADV(0-3), OBJ(0-2)}

{ATVV(1), AUXC(1), AUXP(0-3), ADV(0-3), OBJ(0-2)}

{ATVV(1), AUXT(1), AUXP(0-3), ADV(0-3), OBJ(0-2)}

(... 46 resulting frames altogether)

Fig. 5. Simplifying modifications of infinite verbs.

It should be noted that the described solution is by no means a final one.
The tasks of inducing modification frames and employing the frames to constrain
syntactic analysis are very complex and deserve much deeper research.

8 See [2] for explanation of the labels.

37

2.5 ID Look Right

The generally accepted idea of dependency analysis is that head-daughter depen-
dencies model syntactic analysis best. [19] doubt this assumption and document
that for German sister-sister dependencies (lexicalized case) are more informa-
tive.

Context Neighbours Sisters
used Head Left Right Left Right
Entropy 0.65 1.20 1.08 1.14 1.15

Table 3. Difficulty of predicting an edge label based on simplified tag of a node and a
node from close context.

Table 3 gives an indication for Czech: if the structure was already assigned,
choosing the edge label is easiest when looking at morphological properties of
the node and its head (lowest entropy). Contrary to Dubey and Keller, Czech
with a very strong tendency for grammatical agreement confirms the generally
accepted view.

The ID Agreement principle is crucial in Czech and it is already employed in
the grammar. Table 3 indicates also which context gives the second best hint: the
right neighbour, i.e. the following word. Therefore, a new principle was added:
ID Look Right: An incoming ID edge to a word must be allowed by the word
class of its right neighbour.

The differences among sisters’ and neighbours’ contributions to the prediction
of edge label are not very significant, so adding more constraints of this kind is
still under consideration.

3 Results

To evaluate the grammar, only the first fixed point in constraint solving is
searched. Given a sentence, the XDG parser propagates all relevant and ap-
plicable constraints to reduce the number of analyses and returns an underspec-
ified solution: some nodes may have unambiguously found a governor, for some
nodes, several structural assignments may still remain applicable. At the first
fixed point, none of the constraints can be used to tell anything more?.

9 At fixed points, also called choice points, the constraint solver of the underlying
system Mozart-Oz makes an arbitrary decision for one of the still underspecified
variables and starts propagating constraints again. Other fixed points are reached
and eventually a fully specified solution can be printed. Different solutions are ob-
tained by making different decisions at the fixed points. The parser can be instructed
to perform a complete search, but in our case there is no point in enumerating so
many available solutions.

38

Two grammars were evaluated: first a version without the Look Right prin-
ciple, second a version that included the new principle, too. The grammars were
trained on sentences from the training part of PDT and evaluated on 1,800 to
2,000 unseen sentences from the standard evaluation part of PDT (devtest). The
results are displayed in Table 4.

Note that the number of training sentences was relatively low (around 2 to
5% of PDT), which explains the relatively high number of unsolved sentences
(around 10 to 20%). A wider coverage of the grammar is achieved by training on
more data but immediately leads to significant growth of the number of solutions
available. This problem with scalability can be solved only by providing the
grammar with more constraints of various kinds. As indicated in the row Avg.
ambiguity /node, a node has 8 to 9 possible governors (regardless the edge label).
Compared with the average sentence length of 17.3 words, the grammar reduces
the theoretically possible number of structural configurations to a half. At the
first fixed point, the parser has enough information to establish only 3 to 5% of
edges, an edge with a label can be assigned only to 2 to 4% of nodes. Out of
the assigned structural edges, around 82% is correct, out of the assigned labelled
edges, around 85% is correct. Based on other experiments, training on more data
leads to a lower error rate but less edges securely established.

Contrary to our expectations, adding the new principle Look Right did not
help the analysis. The average ambiguity per node became even higher. There
were slightly more edges securely assigned, but the correctness of this assignment
has dropped. One possible explanation comes from the word order freedom of
Czech. The Look Right principle probably helps to establish rigid structures
such as dates but leads to wrong decisions in general, because it faces a serious
sparse data problem. A deeper analysis is necessary to confirm this explanation.

4 Discussion and Further Research

The presented results indicate several weak points in the described approach to
constraint-based dependency parsing. All these points remain open for further
research.

First, the current grammar relies on very few types of constraints. More
constraints of different kinds have to be added to achieve both a better scal-
ability of the grammar and a more effective propagation of the constraints.'®
The current grammar lacks especially such a kind of constraints that bind infor-
mation together—the current constraints are too independent to achieve strong
propagation. A related problem is the locality of the constraints. All the current
constraints rely on a too local context. There are too many analyses available,
because the local constraints are not powerful enough to check invariant prop-
erties of clauses or sentences as a whole.

19 Similarly as [20] observed for English, purely syntactic constraints are too weak
to analyse Czech. The deep syntactic level of PDT and the Czech valency lexicon
provide a promising source of additional constraints.

39

Training sentences 2500 5000
Unsolved sentences

Without Look Right 21.1 11.9
With Look Right 25.6 15.4
Avg. ambiguity /node

Without Look Right 8.09 8.91
With Look Right 8.17 9.05
Assigned structural edges
Without Look Right 4.4 3.3
With Look Right 4.7 35
Correct structural edges
Without Look Right 82.3 82.5
With Look Right 81.9 81.0
Assigned labelled edges
Without Look Right 3.4 2.3
With Look Right 3.6 2.5
Correctly labelled edges
Without Look Right 85.9 85.9
With Look Right 85.0 83.5

Table 4. Results of underspecified solutions.

Second, there are several kinds of expressions that in fact have no depen-
dency structure, such as names, dates and other multi-word expressions. Coor-
dination should be handled specifically, too. The “dependency” analysis of such
expressions in PDT reflects more the annotation guidelines than some linguistic
motivation. Separate treatment of these expressions by means of a sub-grammar
would definitely improve the overall accuracy. This expectation comes from my
analysis of sources of structural ambiguity modelled by the grammar: given the
set of all trees assigned by the grammar to a string of words, punctuation sym-
bols, cardinals, adverbs and conjunctions (in this order) are the parts of speech
that have most different governors.

Third, the tested version of XDG parser could not make any use of frequency
information contained in PDT.!! [21] attempt at guiding the XDG parser by
frequency information which should help to find a plausible solution sooner, but
the research is still in progress.'?

1 In an experiment, frequency information was used as a threshold to ignore rare edge
assignments. The thresholding resulted in lower coverage and lower precision.

12°A similar constraint-based dependency parsing by [22] inherently includes weight
of constraints, but no directly comparable results were published so far. [23] report
edge accuracy of 96.63% on a corpus of 200 sentences with average length 8.8 words,
significantly less than in our data.

40

5 Conclusion

I described an experiment with constraint based dependency parsing of a lan-
guage with rich morphology and relatively free word order. Although the con-
straints are linguistically adequate and serve well when employed on small-scale
corpora, they face a serious problem when trained on large data sets. The con-
straints are too local and weak in order to restrict the number of available
solutions.

6 Acknowledgement

I’'m grateful to Ralph Debusmann for his explanatory and immediate implementation
support of new features needed in the XDG parsing system for this experiment. The
work could not have been performed without the support of Programming Systems Lab
headed by Gert Smolka (Universitdt des Saarlandes) and without the insightful guid-
ance by Geert-Jan Kruijff and Denys Duchier. This work has been partially supported
by the Ministry of Education of the Czech Republic, project LNOOA063.

References

1. Sgall, P., Hajicovd, E., Panevovéd, J.: The Meaning of the Sentence and Its Semantic
and Pragmatic Aspects. Academia/Reidel Publishing Company, Prague, Czech
Republic/Dordrecht, Netherlands (1986)

2. Hajic, J., Panevové, J., Burdnova, E., Uresovd, Z., Bémova, A.: A Manual for
Analytic Layer Tagging of the Prague Dependency Treebank. Technical Report
TR-2001-, UFAL MFF UK, Prague, Czech Republic (2001) English translation of
the original Czech version.

3. Hajicova, E., Panevova, J., Sgall, P.: A Manual for Tectogrammatic Tagging of
the Prague Dependency Treebank. Technical Report TR-2000-09, UFAL MFF UK,
Prague, Czech Republic (2000) In Czech.

4. Zabokrtsky, Z., Benesovd, V., Lopatkové, M., Skwarskd, K.: Tektogramat-
icky anotovany valen¢ni slovnik ¢eskych sloves. Technical Report TR-2002-15,
UFAL/CKL7 Prague, Czech Republic (2002)

5. Collins, M., Haji¢, J., Brill, E., Ramshaw, L., Tillmann, C.: A Statistical Parser of
Czech. In: Proceedings of 37th ACL Conference, University of Maryland, College
Park, USA (1999) 505-512

6. Zeman, D.: Can Subcategorization Help a Statistical Parser? In: Proceedings of
the 19th International Conference on Computational Linguistics (Coling 2002),
Taibei, Tchaj-wan, Zhongyang Yanjiuyuan (Academia Sinica) (2002)

7. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the
1st Meeting of the North American Chapter of the Association for Compu-
tational Linguistics (NAACL-2000), Seattle, Washington, USA (2000) 132-139
http://www.cs.brown.edu/people/ec/papers/.

8. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:
A relational syntax-semantics interface based on dependency grammar. In: Pro-
ceedings of COLING 2004, Geneva, Switzerland (2004)

41

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based
account of linear precedence. In: 39th Annual Meeting of the Association for
Computational Linguistics (ACL 2001). (2001)

Debusmann, R., Duchier, D.: A meta-grammatical framework for dependency
grammar (2003)

Bojar, O.: Czech Syntactic Analysis Constraint-Based, XDG: One Possible Start.
Prague Bulletin of Mathematical Linguistics (2004)

Holan, T.: K syntaktické analyze ¢eskych(!) vét. In: MIS 2003, MATFYZPRESS
(2003)

Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector
machines. In: Proceedings of the International Workshop on Parsing Technologies
(IWPT 2003), Nancy, France (2003)

Bojar, O.: Towards Automatic Extraction of Verb Frames. Prague Bulletin of
Mathematical Linguistics (2003) 101-120

Kruijjff, G.J.M.: 3-phase grammar learning. In: Proceedings of the Workshop on
Ideas and Strategies for Multilingual Grammar Development. (2003)

Bech, G.: Studien tiber das deutsche Verbum infinitum. (1955) 2nd unrevised
edition published 1983 by Max Niemeyer Verlag, Tiibingen (Linguistische Arbeiten
139).

Holan, T., Kubon, V., Oliva, K., Platek, M.: Two Useful Measures of Word Order
Complexity. In Polguere, A., Kahane, S., eds.: Proceedings of the Coling 98
Workshop: Processing of Dependency-Based Grammars, Montreal, University of
Montreal (1998)

Sarkar, A., Zeman, D.: Automatic Extraction of Subcategorization Frames for
Czech. In: Proceedings of the 18th International Conference on Computational Lin-
guistics (Coling 2000), Saarbriicken, Germany, Universitit des Saarlandes (2000)

Dubey, A., Keller, F.: Probabilistic parsing for German using sister-head depen-
dencies. In: Proceedings of the 41st Annual Meeting of the Association for Com-
putational Linguistics, Sapporo (2003) 96-103

Harper, M.P., Helzerman, R.A., Zoltowski, C.B., Yeo, B.L., Chan, Y., Stewart, T.,
Pellom, B.L.: Implementation Issues in the Development of the PARSEC Parser.
SOFTWARE - Practice and Experience 25 (1995) 831-862

Dienes, P., Koller, A., Kuhlmann, M.: Statistical a-star dependency parsing. In
Duchier, D., ed.: Prospects and Advances of the Syntax/Semantics Interface, Nancy
(2003) 85-89

Heinecke, J., Kunze, J., Menzel, W., Schoder, 1.: Eliminative parsing with graded
constraints. In: Proceedings of COLING-ACL Conference, Montreal, Canada
(1998)

Foth, K., Menzel, W., Schrider, I.: Robust parsing with weighted constraints.
Natural Language Engineering (2004) in press.

42

Metagrammar Redux

Benoit Crabbé and Denys Duchier

LORIA, Nancy, France

Abstract. In this paper we introduce a general framework for describing
the lexicon of a lexicalised grammar by means of elementary descriptive
fragments. The system described hereafter consists of two main com-
ponents: a control device aimed at controlling how fragments are to be
combined together in order to describe meaningful lexical descriptions
and a composition system aimed at resolving how elementary descrip-
tions are to be combined.

1 Introduction

This paper is concerned with the design of large scaled grammars for natural
language. It presents an alternative language of grammatical representation to
the classical languages used for this purpose such as PATR II.

The need for a new language is motivated by the development of strongly
lexicalised grammars based on tree structures rather than feature structures,
and by the observation that, for tree based formalisms, lexical management with
lexical rules raises non trivial practical issues [1].

In this paper we revisit a framework — the metagrammar — designed in partic-
ular for the lexical representation of tree based syntactic systems. It is articulated
around two central ideas: (1) a core grammar is described by elementary tree
fragments and (2) these fragments are combined by means of a control language
to produce an expanded grammar. Throughout the paper, we illustrate the fea-
tures of the framework using Tree Adjoining Grammar (TAG)[2] as a target
formalism.

The paper is structured as follows. First (Section 2) we introduce the key
ideas underlying grammatical representation taking PATR II as an illustration.
We then provide the motivations underlying the design of our grammatical repre-
sentation framework. The core metagrammatical intuition: lexical representation
by manipulating fragments made of tree descriptions is provided in (Section 3).
The motivations concerning the set up of an appropriate tree representation lan-
guage are provided in Section 4. The fragment manipulation language is then
developped in section 5. Section 6 introduces further questions concerning global
conditions on model admissibility. And finally, the computational treatment of
our description language is detailed in Section 7.

2 Lexical organisation

In this section we introduce the issue and the main ideas concerning lexical
organisation of tree based syntactic systems. We begin by investigating the core

43

ideas developped in PATR II then we highlight inadequacies of PATR II for
representing the lexicon of tree based syntactic systems such as Tree Adjoining
Grammar.

An historical overview: PATR II Since the very first works in computational
linguistics [3], lexical description roughly consists of specifying lexical entries
together with a subcategorisation frame such as in PATR II:

love :
<cat> = v
<arg0 cat> = np
<argl cat> = np

where we specify that the verb love takes two arguments: a subject noun phrase
and an object noun phrase. This lexical entry, together with an appropriate
grammar, is used to constrain the set of sentences in which love may be inserted.
For instance this lexical entry is meant to express that love is used transitively
as in John loves mary but not intransitively such as in John loves or John loves
to Mary.

PATR 1II offers two devices to facilitate lexical description: templates and
lexical rules. Templates are described by [3] as macros, and permit to easily
state that that love and write are transitive verbs by writing:

love :
transitiveVerb
write :
transitiveVerb
transitiveVerb :
<cat> = v
<arg0 cat> = np
<argl cat> = np

where transitiveVerb is a macro called in the descriptions of love and write.
On the other hand, lexical rules are used to describe multiple variants of verbs.
For instance, to express that a transitive verb such as love may be used in its
active or passive variant we may add the following lexical rule to our lexicon:

passive :
<out cat> = <in cat>
<out argl cat> = <in arg0 cat>
<out arg0 cat> = pp

This rule says that a new lexical entry out is to be build from an initial lexical
entry in where the category of out is identical to the category of in, the category
of the object becomes the category of the subject and that the subject category
now becomes prepositional phrase.

Lexical rules are meant to allow a dynamic expansion of related lexical vari-
ants. So for the verb love the application of the passive lexical rule to its base
entry generates a new, derived, passive lexical entry meaning that both active
and passive variants are licensed by the lexical entries.

44

Variants and improvements of this classical system have been (and are still)
used for describing the lexicon in various syntactic frameworks such as LFG[4] or
HPSG [5]. Whatever the differences, two leading ideas remain nowadays: lexical
description aims both at factorising information (templates) and at expressing
relationships between variants of a same lexical unit (lexical rules).

Tree Adjoining Grammar: a case study Tree adjoining grammar (TAG)! is a
tree composition system aimed at describing natural language syntax [2] which
strongly lexicalised. In other words, a tree adjoining grammar consists of a lex-
icon, the elementary trees, each of them being associated to a lexical unit, and
two operations used for combining the lexical units: adjunction and substitution.

Following the conventions used in TAG implementations such as XTAG [6],
we work with tree schematas (or templates) such as these?:

N

S N|

N
A
Nx S
/’\
N| Vo NJ| N| Vo N| Vo N|

Jean voit Marie Quelle fille Jean voit (Jean) qui voit Marie
John sees Mary ~ Which girl John sees (John) who sees Mary (1)

where the appropriate lexical word is inserted dynamically by the parser as a
child of the anchor (marked ¢). The nodes depicted with an arrow (|) are the
substitution nodes and those depicted with a star (x) are the foot nodes.

Strikingly, works concerning lexical organisation of strongly lexicalised syn-
tactic systems often try to provide alternative solutions to that of Shieber. The
main reason is that the amount and the variety of lexical units is much more im-
portant, therefore the number of templates and lexical rules to be used is strongly
increased. In the context of the development of large sized grammars, this situ-
ation requires the grammar writer to design complicated ordering schemes as it
is illustrated by [1].

To overcome this, we take up an idea first introduced in [8] for Construction
Grammar. Roughly speaking they describe the lexicon using a dynamic process:
given a core lexicon manually described they build up an ezpanded lexicon by
combining elementary fragments of information.

Besides strong lexicalisation, setting up a system representing a TAG lexicon
raises another problem, that of the structures used. In Construction Grammar,
[8] combine elementary fragments of information via feature structure unifica-
tion. When working with TAG, however, one works with trees

! Strictly speaking, we mean here Lexicalised Tree Adjoining Grammar (LTAG). In-
deed, the system is usually used in its lexicalised version[6].

2 The trees depicted in this paper are motivated by the French grammar of [7] who
provides linguistic justifications in particular for the non utilisation of the VP cate-
gory and the use of N at multiple bar levels instead of introducing the category NP
in French.

45

3 Introduction to the framework

In this section we sketch the idea of describing the lexicon by controlling com-
binations of elementary fragment descriptions.

This idea stems from the following observation: the design of a TAG grammar
consists of describing trees made of elementary pieces of information (hereafter:
fragments). For instance the following tree is defined by combining a subtree rep-
resenting a subject another subtree representing an object and finally a subtree
representing the spine of the verbal tree:

CanonicalSubject ActiveVerb CanonicalObject
R A
N| V —|— Vo —|— vV N| — N| Vo NJ
Jean ... voit ... Marie Jean voit Marie
John ... sees ... Mary John sees Mary

Of course, we will also want convenient means of expressing variants of the
above tree; for example, where, the subject instead of being realized in canonical
position is realized as a questioned subject (wh) or a relative subject.

More generally while designing a grammar one wants to express general state-
ments for describing sets of trees: for instance, a transitive verb is made of a
subject, an object and a verbal active spine. In short we would like to write
something like:

TransitiveVerb = Subject N ActiveVerb N Object
where Subject and Object are shortcuts for describing sets of variants:

Subject = CanonicalSubject V RelativeSubject
Object = CanonicalObject Vv WhObject

and where CanonicalSubject, WhSubject. .. are defined as the actual fragments
of the grammar:

S S S
CanonicalSubject = /‘ Canonical Object = N ActiveVerb =
Nl V V N| Vo
N
S
RelativeSubject = Nx S WhObject = /\
N| S
NV

Given the above definitions, a description such as Transitive Verb is intended
to describe the following tree schematas depicted in (1)3. That is each variant

3 The combination of relative subject an a questioned object is rejected by the principle
of extraction unicity (See section 6).

46

description of the subject embedded in the Subject clause is combined with each
variant description of the object in the Object clause and the description in the
ActiveVerb clause.

As it stands, the representation system we have introduced so far requires to
set up two components: first we investigate which language to use for describing
tree fragments and combining them (Section 4). Second we detail the language
which controls how fragments are to be combined (Section 5).

4 A language for describing tree fragments

In this section, we consider two questions: (1) how to conveniently describe
tree fragments, (2) how to flexibly constrain how such tree fragments maybe
combined to form larger syntactic units. We first introduce a language of tree
descriptions, and then show how it can be generalized to a family of formal
languages parametrized by an arbitrary constraining decoration system that
further limits how elements can be combined.

The base language L. Let x,y, z ... be nodes variables. We write < for immediate
dominance, <* for its reflexive transitive closure (dominance), < for immediate
precedence (or adjacency) and <™ for its transitive closure (strict precedence).
We let £ range over a set of node labels generally intended to capture the notion
of categories. A tree description ¢ has the following abstract syntax:

¢ n= zay | z<y | ey | z<Ty | x:l | dAS (2)

L-descriptions are, as expected, interpreted over first-order structures of finite,
ordered, constructor trees. As usual, we limit our attention to minimal models.

Throughout the paper we use an intuitive graphical notation for represent-
ing tree descriptions. Though this notation is not sufficient to represent every
expression of the language, it nonetheless generally suffices for the kind of trees
typically used in natural language syntax. Thus, the description (Dg) on the left
is graphically represented by the tree notation on the right:

rFwATIYyANxdz X
Dy=Ny<tTzAz<w (Do) /r\\ (3)
ANx:XNy:YANz:ZANw:W Y<tZ W

where immediate dominance is represented by a solid line, dominance by a
dashed line, precedence by the symbol < and adjacency is left unmarked.

A parametric family of languages. It is possible to more flexibly control how tree
fragments maybe combined by adding annotations to nodes together with stipu-
lations for how these annotations restrict admissible models and interpretations.
In this manner, we arrive at the idea of a family of languages L(C') parametrized
by a combination schema C.

In the remainder of this section we discuss three instantiations of L(C') that
have been used for describing the lexicon of Tree Adjoining Grammars. The first

47

one, L() is used by Xia [9], the second one L(names) is used by Candito [10]. We
show that neither L(()) nor L(names) are appropriate for describing the lexicon
of a French TAG Grammar. We then introduce L(colors) which we have used
successfully for that purpose.

Language L((). This first instantiation of L(C) is used by F. Xia[9]. This lan-
guage does not use any combination constraint. The combination schema C is
thus empty. Equipped with such a language we can independently describe frag-
ments such as these?:

S
N s
NP| S
" (Do) NP, VP (D)) (4)
NP
| Vo NP

where Dg describes a relative NP and D; a transitive construction. Their com-
bination leads to the following two models:

S
N NP

NP|

M M, 5

NI{\VP (Mo) NPLK() ()
RN Vo N‘P

>m

Vo NP

However this language faces an expressivity limit since, for the purpose of lex-
ical organisation, linguists want to constrain combinations more precisely. For
instance, in the French Grammar the following fragment composition is badly
handled since:

SN

/V\ N| S S
Ccll Vo C Vo (Do) v <t Nl (D1) (6)
‘ ... la pomme
qui e the apple
C est Jean qui mange

That is John who eats

* These fragments and the related models are those used by F. Xia in the context of
the XTAG English Grammar.

48

yields, among others, the following results:

. e S

VN| S VN|N|S V N| S
NN M) N N () N N (M)
Cl] Vo (‘] Vo N| Cl] Vo (‘J Vo Cl] Vo (‘3 Vo
qui qui qui

where only My is normally deemed linguistically valid.

Language L(names). In her thesis, M.-H. Candito [10] introduces an instance
of L(C) that constrains combinations to avoid cases such as the one outlined
above. The combination schema C' is as follows: (1) a finite set of names where
each node of a tree description is associated to such a name and (2) Two nodes
sharing the same name are to be interpreted as denoting the same entity, hence
when merging descriptions, only the nodes with the same names are merged. In
other words, a model is valid if (1) every node has exactly one name and (2)
there is at most one node with a given name®.

Sextr
Vybar Nlarg—subj Sm Sm
T— Do) [T— (D) (¥
Cllcecl Vocleft\/ Ccomp VQanchor Vanchor '<+ Nlarg—obj
l
quicomplex

The model resulting from merging Do with D; is only My depicted in (7). In
such a case, L(names) corrects the shortcomings of L(()). However, during the
development of a non trivial grammar using this language, it turned out that
L(names) was eventually unsatisfactory for two main reasons:

The first is practical and rather obvious: the grammar writer has to manage
naming by hand, and must handle the issues arising from name collisions.

The second is more tricky: the grammar writer may need to use the same
tree fragment more than once in the same description. For example, such an

5 To be complete, M.-H. Candito uses additional operations to map multiple names
on a single node. However this does not change the content of our actual discussion.

49

occasion arises in the case of a double PP complementation:

S

/N

N Vo PP PP

PPy,
(DO) /\ (MO) /\ /\ (9)

Po, N| Po, N|

Jean parle de Marie a Paul
John tells Paul about Mary

where one cannot use the fragment (D) more than once to yield M, since
identical names must denote identically the same nodes.

A Language with colored nodes L(colors). We used this language in the devel-
opment of a large scale French TAG patterned after the analysis of [7].

L(colors) was designed to overcome the shortcomings of languages L()) and
L(names). We want (1) to be able to constrain more precisely the way fragments
combine together than with language L(()) (2) we want to eschew the explicit
naming management of language L(names).

To do this, the combination schema C used in L(colors) decorates all nodes
with colors: black (eg), white (o), red (ey) or failure (L). The additional con-
dition on model admissibility is that each node must be either red or black.

When combining tree descriptions, nodes are merged and their colors com-

bined. The table to the right specifies the result of combining two oo |ow| L
colors. For instance, combining a white node with a black node |®s|L|L|®s|L
yields a black node; combining a white node with a red node is [®x|L|L|L|L
illegal and produces a failure. As a matter of illustration, the fol- [°w|®s Llow| L
lowing color enriched descriptions yields only the desired model L)L L)L
(Mp) for example number (7)8
Ser
Ver Nl.“ Se Sow
s s (Do) [T—— (D) (10)
Cll.R V<>on Con VQ.R Vow _<+ Nl.R

qul,y

Intuitively the colors have a semantic similar to that of ressources and require-
ments systems such as Interaction Grammars [11]. A tree is well formed if it is
saturated. The colors representing saturation are red or black the color repre-
senting non saturation is white and we have a color representing failure.

6 We let the reader figure out how to express double PP complementation (9). Tt
requires to use a description similar to (D;) depicted here, patterned for describing
a prepositional phrase though.

50

Though L(colors) turned out to be satisfactory for designing a large scale
French TAG, it might not be similarly adequate for other frameworks or lan-
guages.” However, alternative instances of L(C) might be suitable. For example
a combination schema based on polarities seems a very reasonable foundation
for interaction grammars [11] and even for polarity based unification grammars
[12].

5 Controlling fragment combinations

In Section 3 we identified a number of desirable requirements for a metagrammar
language: (1) it should support disjunctions to make it easy to express diathesis
(such as active, passive), (2) it should support conjunction so that complex
descriptions can be assembled by combining several simpler ones, (3) it should
support abstraction so that expressions can be named to facilitate reuse and
avoid redundancy.

In this section, we introduce the language Lo to control how fragments can
be combined in our proposed lexical representation framework, and show how
L satisfies all the above requirements.

Clause := Name — Goal (11)
Goal = GoalAGoal | GoalvVGoal | ¢ | Name (12)

This language allows to manipulate fragment descriptions (¢), to express the
composition of statements (Goal A Goal), to express nondeterministic choices
(GoalV Goal), and finally to name complex statements for reuse (Name — Goal).

The main motivation for the control language is to support the combination
and reuse of tree fragments. Instead of manipulating directly tree descriptions,
the language allows to define abstractions over (possibly complex) statements.
Thus, the clause:

S
CanonicalSubject — A (13)
NIV

defines the abstraction CanonicalSubject to stand for a tree description which
can be subsequently reused via this new name, while the clause:

Transitive VerbActive — Subject A ActiveVerb A Object (14)

states that a lexical tree for a transitive verb is formed from the composition of
the descriptions of a subject, of an object and of an active verb.

Disjunction is interpreted as an nondeterministic choice: each of the alter-
natives describes one of the ways in which the abstraction can be realized. As

" The current framework is not restricted to the specific case of Tree Adjoining Gram-
mars. It should be straightforward to adapt it to other cases of tree based syntactic
systems such as Interaction Grammars.

51

illustrated by lexical rules as used e.g. in PATR II [3], a system of lexical rep-
resentation needs to be equipped with a way to express relationships between
lexical items such as does a passive lexical rule relating an active and a passive
lexical entry. In our approach, similar relations are expressed with disjunctions.
Thus the following statement expresses the fact that various realisation of the
subject are equivalent:

Subject — CanonicalSubject (15)
VvV WhSubject
V RelativeSubject
vV CliticSubject

As surely has become evident, the language presented in this section has
very much the flavor of a logic programming language. More precisely, it can
be understood as an instance of the Definite Clause Grammar (DCG) paradigm.
DCGs were originally conceived to express the production rules of context free
grammars: they characterized the sentences of a language, i.e. all the possible
ways words could be combined into grammatical sequences by concatenation.
Here, instead of words, we have tree fragments, and instead of concatenation we
have a composition operation. In other words, L¢ allows us to write the grammar
of a tree grammar, which surely justifies the name metagrammar.

6 Principles of well-formedness

So far, the current system assumes that one can describe grammatical informa-
tion by combining fragments of local information. There are however cases where
the local fragments interact when realised together. To handle these interactions
in an elegant way, the system allows to formulate additional global constraints
on tree admissibility, called the principles.

Let us express in the control language the fact that a transitive verb is made
of a subject, an object and a verb in the active form:

TransitiveVerb — Subject \ ActiveVerb A Object (16)
Subject — CanonicalSubject V CliticSubject (17)
Object — CanonicalObject vV CliticObject (18)

Clitic ordering According to the subject and object clauses, it is the case that
among others, a description of a transitive verb is made of the composition of a
clitic subject and a clitic object® whose definitions are as follows:

v v
CliticSubject — P N CliticObject — N (19)
Cl|[case = nom] <+ V Cl|[case = acc] <t V

8 In French, clitics are small non tonic pronominal particles realized in front of the
verb which are ordered according to a fixed order. The problem of clitic ordering is
a well known case of such an interaction. It was already described as problematic in
the Generative litterature in the early 70’s [13].

52

When realized together, none of the clitic descriptions say how these clitics
are ordered relative to each other so that a merge of these two descriptions yields
the following two models:

)%)%
(Mo) [T (M)
Cl|[cse=nom)] Cl|[cse=acc] Vo Cl|[ese=acc] Cl|[cse=nom]| V¢

where M7 is an undesirable solution in French.

French clitic ordering is thus rendered by a principle of tree well formedness:
sibling nodes of category Clitic have to be ordered according to the respective
order of their ranking property. So, if we take the case feature of descriptions
(19) to be the ranking property, and that the order defined over the property
constrains (inter alia) nominative to precede accusative then in every tree where
both a nominative and an accusative clitic are realised, the principle ensures
that only My is a valid model.

Eztraction unicity Another principle presented hereafter (Section 7) is that of
extraction unicity. We assume that, in French, only one argument of a given
predicate may be extracted®. Following this, the extraction principle is respon-
sible for ruling out trees models where more than a node would be associated to
the property of extraction.

Two other principles have actually been used in the implementation of the
French Grammar: a principle for ensuring clitic unicity and a principle for ex-
pressing islands constraints'®. The expression of an additional principle of func-
tional unicity is currently under investigation.

7 A constraint satisfaction approach

As mentioned earlier, the control language Lo of Section 5 can be regarded as
an instance of the Definite Clause Grammar (DCG) paradigm. While DcGs are
most often used to describe sentences, i.e. sequences of words, here, we apply
them to the description of formulae in language L(colors), i.e. conjunctions of
colored tree fragments.

A consequence of regarding a metagrammar, i.e. a program expressed in
language L¢, as a DCG is that it can be reduced to a logic program and executed
as such using well-known techniques. What remains to be explained is how, from
a conjunction of colored tree fragments, we derive all complete trees that can be
formed by combining these fragments together.

For this task, we propose a constraint-based approach that builds upon and
extends the treatment of dominance constraints of Duchier and Niehren [15].
We begin by generalizing slightly the language introduced in Section 4 to make

9 Actually, cases of double extraction have been discovered in French, they are so rare
and so unnatural that they are generally ruled out of the grammatical implementa-
tions.

!0 This principle is related to the way one formalises islands constraints in TAG [14].

53

it more directly amenable to the treatment described in [15], then we show
how we can enumerate the minimal models of a description in that language by
translating this description into a system of constraints involving set variables,
and solving that instead.

Tree description language. In order to account for the idea that each node of
a description is colored either red, black or white, we let x,y, z range over 3
disjoint sets of node variables: V;, Vi, Viy. We write < for immediate dominance,
<t for its transitive closure, i.e. strict dominance, < for immediate precedence,
and <7 for its transitive closure, i.e. strict precedence. We let £ range over a set
of node labels. A description ¢ has the following abstract syntax:

) = Ry | z<y | z<y | z:4 | oA (20)

where R C {=,<",pT, <7 =T} is a set of relation symbols whose intended
interpretation is disjunctive; thus x {=,<"} y is more conventionally written
< y.

In [15], the abstract syntax permitted a literal of the form z : £(z1,...,2y)
that combined (1) an assignment of the label ¢ to z, (2) immediate dominance
literals x<z;, (3) immediate precedence literals ; < x;11, (4) an arity constraint
stipulating that = has exactly n children. Here we prefer a finer granularity and
admit literals for immediate dominance and immediate precedence. For simplic-
ity of presentation we omit an arity constraint literal.

FEnumerating minimal models. We now describe how to convert a description into
a constraint system that uses set constraints and such that the solutions of the
latter are in bijection with the minimal models of the former. Such a constraint
system can be realized and solved efficiently using the constraint programming
support of Mozart/Oz. Our conversion follows very closely the presentation of
[15].

The general intuition is that a literal * R y should be represented by a
membership constraint y € R(z) where R(x) is a set variable denoting all the
nodes that stand in R relationship with z. We write V¢ for the set of variables
occurring in ¢. Our encoding consists of 3 parts:

[¢] = A Ar(x) /\¢A2(~T,Z/) A B[] (21)

zeV P z,yeV

A1 (+) introduces a node representation per variable, A (-, -) axiomatizes the tree-
ness of the relations between these nodes, and B(-) encodes the problem-specific
restrictions imposed by ¢. ®

Right

7.1 Representation Tese

When observed from a specific node z, the nodes of a solution
tree (a model), and hence the variables which they interpret, are
partitioned into 5 regions: the node denoted by z itself, all nodes below, all

Down

54

nodes above, all nodes to the left, and all nodes to the right. The main idea
is to introduce corresponding set variables Fq,, Up,, Down,, Left,, Right, to
encode the sets of variables that are interpreted by nodes in the model which
are respectively equal, above, below, left, and right of the node interpreting x.
First, we state that x is one of the variables interpreted by the corresponding
node in the model:

x € Eq, (22)
Then, as explained above, we have the following fundamental partition equation:
V¢ = Eq, W Up, W Down, & Left, W Right, (23)

where W denotes disjoint union We can (and in fact must, as proven in [15])
improve propagation by introducing shared intermediate results Side, Eqdown,
FEqup, Eqdownleft, Eqdownright.

Side, = Left, W Right, Eqdownleft, = Eqdown, & Left, (24)
Eqdown,, = Eq, ¥ Down, Eqdownright,, = Eqdown,, W Right, (25)
Equp, = Eq, & Up, (26)

which must all be related to V¢:
V? = Eqdown, & Up, W Side, V? = Eqdownleft, & Up, & Right, (27)
V¢ = Equp, & Down,, 4 Side, V¢ = Eqdownright, W Down, & Left, (28)

We define A;(x) as the conjunction of the constraints introduced above.

7.2 Welformedness

Posing Rel = {=,<",p", <T =T} in a tree, the relationship that obtains be-
tween the nodes denoted by x and y must be one in Rel: the options are mutually
exclusive. We introduce a variable Cy,, called a choice variable, to explicitly rep-
resent it and contribute a well-formedness clause Az[x r y] for each r € Rel.

Ax(z,y) = Cuy € Rel A AN{Az]zry] | r € Rel} (29)
Aslzry] = Dlzry]ACoyy=7r V Cuy#1rAD[x-ry] (30)
For each r € Rel, it remains to define D[z r y] and D]z —r y] encoding respec-

tively the relationships xr ¢y and z —ry by set constraints on the representations
of x and y.

D[z = y] = Eq, = Eq, AN Up, = Up, A\ ... (31)

Dlz ==y] = Eq, || Eq, (32)

Dz <t y] = Eqdown, C Down, A Equp, C Up, N (33)
Left, C Left, N Right, C Right,

Dz —~<" y] = Eq, || Up, A Douwn, || Eq, (34)

D[z <" y] = Eqdownleft, C Left, N Eqdownright, C Right, (35)

D[z -<" y] = Eq, || Left, N Right, I Eq, (36)

55

where || represents disjointness.

7.3 Problem-specific constraints

The third part B[¢] of the translation forms the problem-specific constraints
that further restrict the admissibility of well-formed solutions and only accepts
those which are models of ¢. The translation is given by case analysis following
the abstract syntax of ¢:

Blgn¢T = Blel AB[¢] (37)

A rather nice consequence of introducing choice variables Cy,, is that any domi-
nance constraint x Ry can be translated as a restriction on the possible values
of Cy,y. For example z <* y can be encoded as Cyy € {=,<"}. More generally:

BlrRy] = Cxy€R (38)
A labeling literal z : £ simply restricts the label associated with variable x:
Blz:¢] = Label,=¢ (39)

An immediate dominance literal z <y not only states that x <t y but also that
there are no intervening nodes on the spine that connects the two nodes:

Blz<y] = Cuy=<" A Up, = Equp, (40)

An immediate precedence literal <y not only states that x <™ y but also that
there are no intervening nodes horizontally between them:

Blz < y] = Cuy = < A Eqdownleft, = Left, N Right, = Eqdownright, (41)

7.4 Well-coloring

While distinguishing left and right is a small incremental improvement over
[15], the treatment of colors is a rather more interesting extension. The main
question is: which nodes can or must be identified with which other nodes? Red
nodes cannot be identified with any other nodes. Black nodes may be identified
with white nodes. Each white node must be identified with a black node. As a
consequence, for every node, there is a unique red or black node with which it
is identified. We introduce the (integer) variable RB, to denote the red or black
node with which x is identified.
For a red node, x is identified only with itself:

z € Wi = RB, =z N Eq, ={z} (42)

For a black node, the constraint is a little relaxed (it may also be indentified
with white nodes):

©€Vy = RBy=ux (43)

56

Posing VB¢ = V%NV, each white node must be identified with a black node:
reVy = RB,eVy (44)

Additionally, it is necessary to ensure that RB, = RB, iff x and y have been iden-
tified. We can achieve this simply by modifiying the definition (32) of D[z —= y]
as follows:

Dlx~=y] = Eq,| Eq, A RB,# RB, (45)

7.5 Extraction Principle

As an illustration of how the framework presented so far can be extended with
linguistically motivated principles to further constrain the admissible models,
we describe now what we have dubbed the extraction principle.

The description language is (somehow) extended to make it possible to mark
certain nodes of a description as representing an extraction. The extraction prin-
ciple then makes the additional stipulation that, to be admissible, a model must
contain at most one node marked as extracted.

Let VXQ;R be the subset of V¢ of those node variables marked as extracted.
We introduce the new boolean variable Extracted, to indicate whether the node
denoted by z is extracted:

Extracted, = Eq,N VX‘{’FR # 0 (46)

Posing Vi = V¢ n (Ve U V3), and freely identifying the boolean values false
and true respectively with the integers 0 and 1, the extraction principle can be
enforced with the following constraint:

Z Extracted, < 2 (47)

zeVid

8 Conclusion

This paper introduces a core abstract framework for representing grammati-
cal information of tree based syntactic systems. Grammatical representation is
organised around two central ideas: (1) the lexicon is described by means of el-
ementary tree fragments that can be combined. (2) Fragment combinations are
handled by a control language, which turns out to be an instance of a DCG.

The framework described here, generalises the TAG specific approaches of
[9, 10]. We have provided a parametric family of languages for tree composition
as well as constraints on tree well formedness.

Besides the non TAG specific tree composition language, it mostly differs
from the TAG instanciations by (1) it introduces a control language allowing to
express explicitly composition of fragments as well as variants of related lexical

57

entries. The two existing systems of [10] and [9] rely mostly on an algorithmic de-
vice for expressing variants, namely a crossing algorithm for [10], and an external
module of lexical rules for [9].

The introduction of the control language (1) avoids to work with different
modules and (2) introduces more flexibility in expressing variants that avoids to
deal with ”shadow” classes as it turns out to be the case in [10].

The framework presented here has been extensively tested against the devel-
opment of a large sized French TAG based on [7]. This grammar covers most of
the phenomenons related to the syntax of French verbs.

References

1. Prolo, C.: Generating the xtag english grammar using metarules. In: Proc. COL-
ING 2002, Taiwan (2002)

2. Joshi, A.K., Schabes, Y.: Tree adjoining grammars. In Rozenberg, G., Salomaa,
A, eds.: Handbook of Formal Languages. Springer Verlag, Berlin (1997)

3. Shieber, S.M.: The design of a computer language for linguistic information. In:
Proceedings of the Tenth International Conference on Computational Linguistics,
Stanford University, Stanford, California (1984) 362-366

4. Kaplan, R.M., Maxwell, J.T.: Lfg grammar writer’s workbench. Technical report,
Xerox PARC (1996)

5. Meurers, W.D.: On implementing an hpsg theory — aspects of the logical architec-
ture, the formalization, and the implementation of head-driven phrase structure
grammars. In: Erhard W. Hinrichs, W. Detmar Meurers, and Tsuneko Nakazawa:
Partial-VP and Split-NP Topicalization in German — An HPSG Analysis and its
Implementation. Arbeitspapiere des SFB 340 Nr. 58, Universitdt Tiibingen (1994)

6. XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania (2001)

7. Abeillé, A.: Une grammaire d’arbres adjoints pour le frangais. Editions du CNRS,
Paris (2002)

8. Koenig, J.P., Jurafsky, D.: Type underspecification and on-line type construction
in the lexicon. In: Proceedings of WCCFL94. (1995)

9. Xia, F.: Automatic Grammar Generation from two Different Perspectives. PhD
thesis, University of Pennsylvania (2001)

10. Candito, M.H.: Organisation Modulaire et Paramétrable de Grammaires Electron-
iques Lexicalisées. PhD thesis, Université de Paris 7 (1999)

11. Perrier, G.: Les grammaires d’interaction. Université Nancy 2 (2003) Habilitation
a diriger des recherches.

12. Kahane, S.: Grammaires d’unification polarisées. In: Proc. TALN 2004, Fés (2004)

13. Perlmutter, D.: Surface structure constraints in syntax. Linguistic Inquiry 1 (1970)
187-255

14. Kroch, A., Joshi, A.K.: The linguistic relevance of tree adjoining grammar. Tech-
nical report, IRCS, Philadelphia (1985)

15. Duchier, D., Niehren, J.: Dominance constraints with set operators. In: Proceedings
of the First International Conference on Computational Logic (CL2000). Volume
1861 of Lecture Notes in Computer Science., Springer (2000) 326-341

58

Multi-dimensional Graph Configuration
for Natural Language Processing

Ralph Debusmann!, Denys Duchier?, and Marco Kuhlmann'
! Programming Systems Lab, Saarland University, Saarbriicken, Germany
{rade,kuhlmann}@ps.uni-sb.de
2 BEquipe Calligramme, LORIA, Nancy, France
duchier@loria.fr

Abstract. We introduce the new abstract notion of multi-dimensional
lexicalized graph configuration problems, generalising over many impor-
tant tasks in computational linguistics such as semantic assembly, surface
realization and syntactic analysis, and integrating them. We present Ez-
tensible Dependency Grammar (XDG) as one instance of this notion.

1 Introduction

A variety of tasks in computational linguistics can be regarded as configuration
problems (CPs) [1]. In this paper, we introduce the notion of lezicalised, multi-
dimensional CPs, a particular class of configuration problems that both has a
wide range of linguistic applications, and can be solved in a straightforward way
using state-of-the-art constraint programming technology. Linguistic modeling
based on multi-dimensional CPs brings two major benefits: complete modularity
of the developed resources, and tight integration of the individual modules.

We first consider configuration problems where the input is a set of com-
ponents, and the output is a valid assembly of these components that satisfies
certain problem-specific constraints. We then broaden the perspective to permit
ambiguity as to the choice of each component. We call a configuration problem
lezicalized when, as is the case in typical linguistic applications, this ambiguity
is stipulated by a lexicon. Finally, to permit modeling with multiple levels of
linguistic description (e.g. syntax, linear precedence, predicate/argument struc-
ture ...), we introduce the notion of a multi-dimensional configuration problem
where we must simultaneously solve several configuration problems that are not
independent, but rather constrain each other.

We then provide an introduction to Extensible Dependency Grammar (XDG)
which is a development environment for linguistic modeling embracing the ap-
proach of lexicalised, multi-dimensional CPs.

The methodology based on lexicalized, multi-dimensional configuration prob-
lems is attractive for several reasons: for linguistic modeling, it is possible, for
each level of linguistic description, to design a dimension that is especially well
suited to it. For constraint-based processing, an inference on any dimension may
help disambiguate another.

59

2 Configuration Problems in NLP

In this section, we develop the point that many tasks in computational linguistics
can be usefully regarded as instances of configuration problems. We illustrate this
point with three representative examples for which we have developed constraint-
based processing techniques: semantic assembly, surface realization, and syntax
analysis.

2.1 Semantic Assembly

We first turn to the task of assembling the semantic representation of a sentence
from the individual fragments of representation contributed by its words in the
context of scope ambiguity. Consider the following sentence:

(1) Every researcher deals with a problem.

This sentence has two readings, which may be disambiguated by the following
continuations:

(1a) ... Some of these problems may be unsolvable.
(1b) ... This problem is his funding.

If represented in terms of Montague-style semantics, the two readings could be
rendered as follows:

Vx: researcher(xz) — Jy: problem(y) A (deal with)(z,y) (1a)
Jy: problem(y) A Vz: researcher(z) — (deal with)(z,y) (1b)

Notice that both these terms are made up of exactly the same “material”:
Va: (researcher(z) — ...) Jy: (problem(y) A...) (deal with)(z,y)

The only difference between the two is the relative ordering of these term frag-
ments: in (1a), the universal quantifier takes scope over the existential quantifier;
in (1b), it is the other way round. Formalisms for scope underspecification [2—4]
aim for a compact representation of this kind of ambiguity: they can be used to
describe the common parts of a set of readings, and to express constraints on
how these fragments can be “plugged together”.

The left half of Fig. 1 shows an underspecified graphical representation of
the two readings of 1 in the formalism of dominance constraints [4]. The solid
edges in the picture mark the term fragments that are shared among all readings.
Two fragments can combine by “plugging” one into an open “hole” of the other.
The dashed edges mark dominance requirements, where dominance corresponds
to ancestorship. For instance, the fragments for “every researcher” and for “a
problem” dominate the “deal with” fragment, i.e. both must be ancestors of the
latter. With the given dominance requirements, exactly two configurations of the
fragments are possible (shown schematically in the right half of Fig. 1); these
two configurations correspond to the readings (1a) and (1b).

60

e Y every

a problem
© lam @ lam researcher

* *

every researcher BN a problem, \ v
K . every

a problem
' researcher
_____________ " ' ’
\ v
deal with deal with

deal with var

Fig. 1. A dominance constraint for the two readings of (1), and its two solutions

2.2 Surface realisation

Surface realisation is the sub-task of natural language generation that maps a
semantic representation to a grammatical surface string. More specifically, for
some given grammar, surface realisation takes as its input a bag of semantic de-
scriptions, ¢, and returns as its output a syntax tree containing the verbalisation
of ¢.

Here we discuss surface realisation for Tree Adjoining Grammar (TAG) [5].
One of the underlying design principles of many TAG grammars is semantic
minimality: each lexical entry (elementary tree) of a TAG grammar corresponds
to an atomic semantics. Surface realisation then can be reduced to the problem
of selecting for each semantic atom a matching elementary tree, and assembling
these trees into a derivation tree using the standard TAG operations that combine
grammatical structures, namely substitution and adjunction [6].

We illustrate this by means of an example. Assume that we want to realise
the following (event-based) input semantics using some given TAG grammar G:

x = Peter, see(e,x,y), some(x), fat(z), rabbit(zx).

(Note that all atoms are considered to be ground.) In a first step, we need to
choose for each of the semantic atoms an elementary tree from G that verbalises
its semantics. A sample selection of trees is shown in the left half of Fig. 2. The
dashed arrows in the figure indicate a way to compose the chosen elementary
trees by means of substitution and ajunction. For example, the tree realising the
semantic atom fat(x) can adjoin into the root node (labelled with N) of the tree
realising the semantics of rabbit(z). The right half of Fig. 2 shows the resulting
derivation tree for the sentence. In a post-processing step, this derivation tree
can be transformed into a derived tree, whose yield is a possible realisation of
the intended semantics.

2.3 Syntactic Analysis

Our final example is the parsing of dependency grammars. As we have seen,
surface realisation can be reduced to the configuration of a labelled tree in which

61

NP VP
A
\ nPL_ .03 NP2
RETEE Y] NP LeetT T
NP | A o« e S
| saw " NP : ; N N0
X see(e,,y) /\ ‘ : .
Peter Det N. ‘ : f o*
r = Peter | . : ;
N ... a :v i ;
/'\ ‘.' some(z) "-' Peter saw a faf 'r'q()bzt
Adj N* 1 N Peter see(e,z,y) some(s fat(z) rabbit(z

fat ’ rabbit

fat(z) rabbit(x)

Fig. 2. Generation

the nodes are labelled with lexical entries (elementary trees), and the edges are
labelled with sites for substitution and adjunction. It has often been noted that
these derivation trees closely resemble dependency trees.

A dependency tree for a sentence s is a tree whose nodes are labelled with the
words of s, and whose (directed) edges are labelled with antisymmetric grammat-
ical relations (like subject-of or adverbial-modifier-of). Given an edge u —p— v
in a dependency tree, u is called the head of u, and v is called the dependent of v.
p is the grammatical relation between the two. A dependency grammar consists
of a lexicon and a walency assignment for the lexical entries that specifies the
grammatical relations a given entry must or may participate in as head and as
dependent. A dependency tree is licensed by a given grammar if for every edge
u —p— v, the relation p is a grammatical relation licensed by both the lexical
entries for u and v.

Lezical entry incoming outgoing

ein {det} {}
Buch {subj, obj} {det}
hat {+ {subj, vpp}
der {det} {}

ein Buch hat der Student gelesen Student {SUbJ’ObJ} {deF}
gelesen {vpp} {obj}

Fig. 3. A dependency tree for the German sentence

The left half of Fig. 3 shows a dependency tree for the sentence

(2) Ein Buch hat der Student gelesen.

62

The right half of the figure shows a valency assignment with which this tree
would be licensed: it specifies possible incoming edges and required outgoing
edges. For example, the lexical entry for Student can act both as a subject and
an object dependent of its head, and itself requires a dependent determiner.

3 Graph Configuration Problems

The problems described in the previous section have this in common: the task
is always one where we are given a number of tree (or graph) fragments, and we
must plug them together (under constraints) to obtain a complete assembly. We
call this class of problems graph configuration problems.

For such problems, it is often convenient to represent the plugging of a frag-
ment w into another w’ by means of a directed labeled edge w—/¢—w’ which
makes explicit that a resource of type £ supplied by w’ is being matched with a
corresponding need in w.

We are thus led to the notion of (finite) labeled graphs. Consider given a
finite set £ of labels. A L-labeled graph (V| E) consists of a set V of nodes and
aset E CV xV x L of directed labeled edges between them. We can interpret
each label ¢ as a function from node to set of nodes defined a follows:

lw) ={w | w—t—w" € E}

£(w) represents the set of immediate successors of w that can be reached by
traversing an edge labeled ¢. Duchier [7] developed this set-based approach and
showed e.g. how to formulate a constraint system that precisely characterizes all
labeled trees which can be formed from the finite set of nodes V' and the finite
set of edge labels £. This system is formulated in terms of finite set variables
{(w), daughters(w), down(w), eqdown(w) and roots:

V =roots W W{daughters(w) | w € V'}

A Jroots| =1
AN YweV
MeLl lw)CV) (3)

A eqdown(w) = {w} W down(w)
A down(w) = U{eqdown(w’) | w" € daughters}
A daughters = W{l(w) | £ € L}

By taking advantage of the constraint programming support available in a lan-
guage such as Mozart/Oz, this formal characterization of finite labeled trees can
be given straightforwardly a computational interpretation.

Using this approach as a foundation, we can encode graph configuration
problems with additional constraints. For example, each node typically offers a
specific subset of resources. Such a restriction can be enforced by posing con-
straints on the cardinality of ¢(w) (for £ € L), e.g. |¢{(w)| = 0 for a resource not
offered by w, [¢(w)| = 1 for a resource offered exactly once, etc...This is how
we can model subcategorization in the application to dependency parsing.

63

4 Lexicalized Configuration Problems

The view presented sofar, where we are given a fixed number of fragments to be
plugged together into a fully configured assembly, is not yet sufficient to capture
realistic tasks. In the surface realization problem, there may be several alter-
native ways to verbalize the same semantic element. Similarly, in the syntax
analysis problem, one word may have several readings, alternative subcatego-
rization frames, alternative linearization constructions.

We generalize the previous view by replacing each fragment with a finite
collection of fragments from which one must be selected. Since the mapping
from nodes to collection of alternative fragments is often stipulated by a lexicon,
we call such problems lexicalized configuration problems.

The challenge is now to adapt the constraint-based approach outlined earlier
to gracefully handle lexical ambiguity.

4.1 Selection constraints

Let’s consider again the dependency parsing application. As described in the
previous section, for a given set V of words, we can (a) model the possible
dependency trees as the solutions of constraint system (3), and (b) we can enforce
subcategorization frames using cardinality constraints on ¢-daughter sets ¢(w).

If we now assume that w has k lexical entries, each one may stipulate a
different cardinality constraint for £(w). Clearly, in order to avoid combinatorial
explosion, we do not want to try all possible combinations of selection for the
given words. Instead, we would like to take advantage of constraint propagation
to avoid having to make non-deterministic choices.

What we want is an underspecified representation of the lexical entry that is
ultimately chosen in a form that integrates well in a constraint-based formula-
tion. This is the purpose of the selection constraint:

X =(V1,...,Y)[]

Its declarative semantics is X = Y;. All of X, Y; and I may be variables and
propagation takes place in both directions: into X in a manner similar to con-
structive disjunction, and into I whenever a Y}, becomes incompatible with X
(and thus k can be removed from the domain of).

We have implemented support for selection constraints for integer variables
(FD) and integer set variables (F'S). This support can easily be lifted over feature
structures as follows:

f1 =uv; f1 =0 flz(vi...,vﬂ[l]
< : e : >[I] = : (4)
fp:v; fp:vllf fp:<v;,...,vg>[l]

and, in this manner, can apply to complex lexical entries. Notice how features
f1 through f,, are constrained by concurrent selection constraints which are all
covariant because they share the same selector I.

64

5 Multi-dimensional Configuration Problems

Sofar, we have informally introduced the notion of lexicalized graph configuration
problems and suggested how they can be encoded into systems of contraints that
are adequately supported by corresponding constraint technology.

However, when modeling language, we must contend with multiple descrip-
tive levels (e.g. syntax, linear precedence, predicate/argument structure, infor-
mation structure, etc...). Each is concerned with a different aspect of linguistic
description, yet they are not independent: they interact and constrain each other.

Our notion of lexicalized configuration problems is an excellent tool for mod-
eling each individual descriptive level, but, as we said, these levels are not in-
dependent. For this reason, we now propose a generalized approach where we
have several configuration problems, all simultaneously constrained by the same
lexical entries.

This is what we call a multi-dimensional configuration problem. For each
descriptive level, there is one dedicated dimension. Every lexical entry now con-
tains a sub-lexical entry for each dimension. In this manner, each lexical entry
simultaneously constrains all dimensions. Furthermore, we also permit inter-
dimensional principles, i.e. global constraints that relate one dimension with
another. In this manner, they are not merely coupled through the lexicon, but
also by linguistically motivated well-formedness relations.

Figure 4 illustrates the selection constraint operating simultaneously on 3
dimensions over 3-dimensional lexical entries.

123456

Fig. 4. Multi-dimensional selection

An important methodological motivation for the generalisation to multi-dim-
ensional graph configuration problems is the desire to obtain a modular and scal-
able framework for modeling linguistic phenomena. We now illustrate the idea
with the dependency analysis of word order phenomena in German. Consider
again the parsing example sentence from Section 2:

65

(5) Ein Buch hat der Student gelesen.

It illustrates object topicalisation in German. Starting from the “canonically”
ordered sentence Der Student hat ein Buch gelesen, it may be construed as the
result of the fronting of ein Buch (the object of the verb), and a successive move-
ment of der Student (the subject) to the now vacant object position — but a far
more natural and perspicuous account is obtained when separating constituency
and linear precedence, and describing word order variation as a relation between
those two structures. Fig. 5 shows the analysis of the sentence using Topological
Dependency Grammar (TDG, [8]) which dedicates one dimension to immediate
dominance (ID) and another to linear precendence (LP).

Each dimension has its own set of well-formedness conditions (principles):
both 1D and LP structures are required to be trees, but LP structures must also be
ordered and projective. Moreover, a multi-dimensional principle called climbing
constrains the LP tree to be a flattening of the ID tree.

nvf

|
|
|
1
ein Buch hat der Student gelesen ein Buch hat der Student gelesen

(a) Immediate Dominance (b) Linear Precedence

Fig. 5. Topicalisation

The parsing task of Topological Dependency Grammar is an example for a
multi-dimensional graph configuration problem according to the characterisa-
tion above: to find the structures licensed by a given input, one has to find all
triples (V, Tig, Tip) in which Tiq is a licensed ID tree, Tj, is a licensed LP tree, the
two trees share the same node set V', and the climbing relation holds between
them. Section 6 describes XDG which is an extended version of this model with
additional dimensions for deep syntax, predicate/argument structure, and scope.

How does the multi-dimensional graph model relate to other approaches?
With various multi-stratal formalisms, like Lexical Functional Grammar (LFG)
[9] and Meaning-Text Theory (MTT) [10], it shares the idea of distinguishing sev-
eral representational structures. In contrast to these formalisms, however, it does
not presuppose a layered representation (where only adjacent layers can share
information directly), nor does it assume that information can only flow in one
direction: multi-dimensional principles can connect arbitrary dimensions. How-
ever, given that all dimensions share the same set of nodes, multi-dimensional

66

graphs also exhibit many of the benefits that arise through the tight integration
of information as it is obtained in mono-stratal formalisms like HPSG [11].

6 Extensible Dependency Grammar

In this section, we introduce Extensible Dependency Grammar (XDG) [12], our
flagship instance of a lexicalized multi-dimensional configuration problem. XDG
is a generalization of TDG. It supports the use of arbitrary many dimensions
of linguistics representation, and of arbitrary principles® regulating the well-
formedness conditions. XDG was devised to be maximally general, and allow the
grammar writer the freedom to decide how to split up linguistic modeling into
separate dimensions.

6.1 Example

As an illustrative example, we propose a five-dimensional grammar and illustrate
it on the following example, an English passive construction paraphrasing the
ubiquitous linguistic example “Every man loves a woman”:

By every man, a woman is loved. (6)

In the following, we give a quick tour through the five dimensions of our example
grammar to see what aspects of the linguistic analysis of this sentence they cover.

ID dimension The 1D dimension (where ID stands for immediate dominance)
was already introduced for TDG, and represents the linguistic aspect of gram-
matical function. We display the ID analysis of the example below:

Ny
AN “o
/pobl
Q\Pc‘o O/
: mp___ . (7)
\/Q
ot
Q/
B.y ev:ery man a worman i:v lm.red

W

Here, “woman” is the subject (edge label subj) of the finite verb “is”. “a” is

the determiner (edge label det) of “woman”. “loved” is the verbal past partici-
ple (vpp) of “is”. Moreover, “by” is the prepositional object (pobj) of “loved”,
“man” the prepositional complement (pcomp) of “by”, and finally “every” the
determiner of “man”.

3 Currently instantiated from a library of parametric principles.

67

LP dimension The LP dimension (LP stands for linear precedence) represents
the linguistic aspect of word order, and has also already been introduced in the
preceding section for TDG. On the LP dimension, the edge labels are names for
word positions?:

ot ﬁ{?()\ or.
pCOrnpf de’é\ :
: N o : finf : (8)
pf & : : nounf : infinf
: O/ nounf detf . :
detf : : : : :
By every man a woman is loved

Here, the finite verb “is” is the root. “by” is in the topicalization position (topf),
“woman” in the subject position (subjf), and “loved” in the verbal past participle
position (vppf). Furthermore, “man” is in the prepositional complement position
of “by” (pcompf), and “every” in the determiner position of “man” (detf). Sim-
ilarly, “a” is in the determiner position of “woman” (detf).

On the LP dimension, we additionally annotate the nodes with node labels
(displayed on the dotted projection edges connecting nodes and words). These
are required for specifying the relative order of mothers and their daughters, e.g.
that a determiner in the determiner position (edge label detf) of a noun must
precede the noun (node label nounf).

DS dimension The DS dimension (DS stands for deep syntaz) represents an
intermediate structure between syntax and semantics. In this dimension, e.g.
function words such as the preposition “by” or “to”-particles are not connected
since they have no impact on the semantics. Also, constructions such as control,
raising and passive are already resolved on the DS dimension, to enable a more

seamless transition to semantics. Below is an example DS analysis:®:
o Sty
T (9)
— ® . :
d/o d/o/ : :
e© &©
o~ o~
By ev:ery man a woman i's lm;ed

[13 bl

Here, “loved” is subordinated to “is” (edge label subd). “man” is the deep
subject (subjd) of “loved”, and “woman” the deep object (objd). “every” is the

4 Following work on TDG, we adopt the convention to suffix LP edge labels with “f”
for “field” to better distinguish them from 1D edge labels.

5 We adopt the convention to suffix Ds edge labels with “d” for “deep” to better
distinguish them from 1D edge labels.

68

determiner of “man”, and “a” the determiner of “woman”. Notice that in this
example, the relations of deep subject and deep object do not match the relations
of subject and prepositional object on the ID dimension, due to the passive
construction. Whereas in the ID analysis, “woman” is the subject of the auxiliary
“is”, and “by” the prepositional object of “loved”, the DS analysis mirrors the
underlying predicate-argument structure much more closely. Here, “woman” is

the deep object of “loved”, whereas “man” is its deep subject.

PA dimension The pA dimension (PA for predicate-argument structure) rep-
resents semantic predicate-argument structure, or, in terms of logic, variable
binding. The idea is that quantifiers such as the determiners “every” and “a”
introduce variables, which can then be bound by predicates (e.g. common nouns

or verbs):
o) arg‘/‘()a@z/?
T T z (10)

By every man a worman is loved

In the example analysis, think of the quantifier “every” as introducing variable
x and “a” as introducing the variable y. Now, “man” binds the z, and “woman”
the y. Finally, the x is the first argument of the predicate expressed by “loved”,
and y is the second argument. I.e. the PA analysis represents a flat semantics in
the sense of [13], where the semantics of a sentence is represented by a multiset
of first order predicates, and scopal relationships are completely omitted:

{every(zx), man(x), a(y), woman(y), love(x,y)} (11)

SC dimension The sc dimension (SC for scope structure) represents semantic
scope structure. Contrary to [13], who advocates a semantic representation which
completely omits scopal relationships, we follow of Minimal Recursion Semantics
(MRS) [3] and have both: the PA dimension represents a flat semantics, and the
sc dimension the scopal relationships. Here, e.g. quantifiers such as “every” and
“a” have a restriction and a scope:

o—_ . ™o (12)
L \O TS \O
By ev'ery man a woman is loved

69

“a” has “woman” in its restriction (edge label r), and “every” in its scope
(edge label s), and “every” has “man” in its restriction, and “loved” in its scope.
Notice that this is only one of the two possible scope readings of the sentence
— the “strong” reading where the existential quantifier outscopes the universal
quantifier. The SC analysis representing the other, “weak” reading is depicted
below:

7.

\SO\)(st (13)
To o

By every man a worman is loved

6.2 Principles and the lexicon

XDG describes the well-formedness conditions of an analysis by the interaction
of principles and the lexicon. The principles stipulate restrictions on one or more
of the dimensions, and are controlled by the feature structures assigned to the
nodes from the lexicon. The principles are drawn from an extensible principle
library. The principle library already contains the necessary principles to model
the syntax and semantics for large fragments of German and English, and smaller
fragments of Arabic, Czech and Dutch. We present a representative subset of it
below.

Tree principle. Dimension ¢ must be a tree. In the example above, we use this
principle on the 1D, LP and SC dimensions.

DAG principle. Dimension ¢ must be a directed acyclic graph. We use this
principle on the DS and PA dimensions, which need not necessarily be trees.

Valency principle. For each node on dimension ¢, the incoming edges must be
licensed by the in specification, and the outgoing edges by the out specification.
This is a key principle in XDG, and used on all dimensions. It is also lexicalized
(cf. the lexical entries for TDG in the preceding section).

Order principle. For each node v on dimension 4, the order of the daughters
depends on their edge labels. We use this principle on the LP dimension to
constrain the order of the words in a sentence. We can use it e.g. to require that
determiners (“a”) precede nouns (“woman”).

Projectivity principle. Dimension ¢ must be a projective graph. We use this

principle on the LP dimension to ensure that LP trees do not have crossing
edges.

70

Climbing principle. The climbing principle is two-dimensional, and allows us to
constrain the relation between two dimensions. It stipulates that dimension 7
must be flatter than dimension j. We use it to state that the LP dimension (8)
must be flatter than the 1D dimension (7).

Linking principle. The linking principle relates two dimensions 7 and j, and in
particular allows us to specify how semantic arguments must be realized in the
syntax. It is lexicalized, and we use it to stipulate e.g. that the first argument
(argl) of “loved” on the PA dimension (10) must be realized by the deep subject
(subjd), and the second argument (arg2) by the deep object (objd) on the Ds
dimension (9).

Contra-dominance principle. The contra-dominance is also two-dimensional. We
use it to constrain the relation between the two semantic dimensions PA and SC,
in particular to stipulate that the semantic arguments of verbal predicates (on
the PA dimension) must dominate them on the s¢ dimension. For instance, the
first semantic argument of “loved” on the PA dimension (in (10), this is the
determiner “every” of the NP “every man”) must dominate (be an ancestor of)
“loved” on the sC dimension (12) and (13).

6.3 Parsing and generation

Parsing and generation with XDG grammars is done using constraint solving by
the XDG solver. XDG solving has a natural reading as a constraint satisfaction
problem (CSP) on finite sets of integers, where well-formed analyses correspond
to the solutions of the CSP [7]. We have implemented the XDG solver with the
Mozart/Oz programming system [14], [15].

XDG solving operates on all dimensions concurrently. This means that the
solver can infer information about one dimension from information on any other,
e.g. by the multi-dimensional principles (climbing, linking, contra-dominance).
For instance syntactic information can trigger inferences in semantics, and vice
versa.

Because XDG allows us to write grammars with completely free word order,
XDG solving is an NP-complete problem [6]. This means that the worst-case
complexity of the solver is exponential at present. However, the behaviour of
the solver on NL grammars is excellent in practice. Constraint propagation is
both fast and very effective, and permits to enumerate solutions with few or no
failures.

6.4 Underspecification

Similar to MRS and also CLLS, XDG supports the use of underspecification. An
underspecified XDG analysis is a partial XDG dependency graph where not all of
the edges are fully determined. We show an underspecified XDG analysis for the

71

SC dimension below:

~ v =

By ev'ery mézn a wor:nan is loved

In this analysis, the edges from “every” to “man” (labeled r) and from “a”
to “woman” (also labeled r) are already determined, i.e. we know already that
“man” is in the restriction of “every”, and that “woman” is in the restriction of
“a”. However, the scopal relationship between the two quantifiers is yet unknown.
Still, the XDG constraint solver has already inferred that both dominate the verb
“loved” (as indicated by the dotted “dominance edge”). This partial analysis
abstracts over both fully specified analyses (12) and (13) above.

Whereas in MRS and CLLS, only scopal relationships can be underspecified,
XDG goes one step further and allows to underspecify any of its dimensions, i.e.
not only the scopal but also the syntactic dimensions. This can be used e.g. to
compactly represent PP-attachment ambiguities.

7 Conclusion

We proposed a notion of lezicalized multi-dimensional configuration problems
as a metaphor and a practical constraint-based approach for a wide range of
tasks in computational linguistics, including semantic assembly, surface realiza-
tion and syntactic analysis, and how it can be used to integrate them. We then
presented XDG as an instance of this approach, and showed how to use it to
integratively handle syntax and semantics of natural language. We think that
multi-dimensional lexicalized configuration problems can play an important role
in the future, as an overarching framework for computational linguistics research,
on the theoretical and on the algorithmic side. For instance, research on con-
figuration problems for semantic assembly have already yielded highly efficient
algorithms for satisfiability and enumeration of dominance constraints [16]. For
surface realization, an efficient algorithm was presented in [6]. At the moment,
we are working on making the integrated processing of syntax and semantics in
XDG more efficient.

References

1. Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In:
Proceedings of the International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1989) 1395-1401

2. Bos, J.: Predicate logic unplugged. In: Proceedings of the 10th Amsterdam Collo-
quium. (1996) 133-143

72

10.

11.

12.

13.

14.

15.
16.

Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics.
an introduction. Journal of Language and Computation (2004) To appear.

Egg, M., Koller, A., Niehren, J.: The constraint language for lambda structures.
Journal of Logic, Language, and Information (2001)

Abeillé, A., Rambow, O.: Tree Adjoining Grammar: An Overview. In: Tree Adjoin-
ing Grammars: Formalisms, Linguistic Analyses and Processing. CSLI Publications
(2000)

Koller, A., Striegnitz, K.: Generation as dependency parsing. In: Proceedings of
ACL 2002, Philadelphia/USA (2002)

Duchier, D.: Configuration of labeled trees under lexicalized constraints and prin-
ciples. Research on Language and Computation 1 (2003) 307-336

Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based
account of linear precedence. In: Proceedings of ACL 2001, Toulouse/FRA (2001)
Bresnan, J., Kaplan, R.: Lexical-functional grammar: A formal system for gram-
matical representation. In Bresnan, J., ed.: The Mental Representation of Gram-
matical Relations. The MIT Press, Cambridge/USA (1982) 173-281

Mel’¢uk, I.: Dependency Syntax: Theory and Practice. State Univ. Press of New
York, Albany/USA (1988)

Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago/USA (1994)

Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:
A relational syntax-semantics interface based on dependency grammar (2004)
Trujillo, I.A.: Lexicalist Machine Translation of Spatial Prepositions. PhD thesis,
University of Cambridge, Cambridge/USA (1995)

Smolka, G.: The Oz Programming Model. In van Leeuwen, J., ed.: Computer
Science Today. Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin (1995) 324-343

Mozart Consortium: The Mozart-Oz website (2004) http://www.mozart-oz.org/.
Fuchss, R., Koller, A., Niehren, J., Thater, S.: Minimal recursion semantics as
dominance constraints: Translation, evaluation, and analysis. In: Proceedings of
ACL 2004, Barcelona/ESP (2004)

73

An intuitive tool for constraint based grammars

Mathieu Estratat and Laurent Henocque

Université d’Aix-Marseille 111,
Laboratoire des Sciences de I'Information et des Systémes
Avenue Escadrille Normandie Niemen
13397 Marseille cedex 20, France

{mathieu.estratat, laurent.henocque}@lsis.org

Abstract. A lot of recent linguistic theories are feature-based and heavely
rely upon the concept of constraint. Several authors have pointed out the
similitude existing between the representation of the features on feature-
based theories and the notions of objects or frames. Oriented object
configuration allows us to deal with these modern grammars. We pro-
pose here a systematic translation of the concepts and constraints intro-
duced by two linguistic formalisms : the very useful HPSG and the recent
property grammars to configuration problems representing specific tar-
get languages. We assess the usefulness of these translations by studying
first a part of the grammar for english proposed by the HPSG’s authors
then a natural language subset with lexical ambiguities, using property
grammars.

1 Introduction

A lot of recent linguistic theories are feature-based and heavely rely upon the
concept of constraint. Several authors have pointed out the similitude existing
between the representation of the features on feature-based theories and the no-
tions of objects or frames. Oriented object configuration[8] allows us to deal with
these modern grammars. Configuration task consists in building (a simulation of)
a complex product from components picked from a catalog of types. Neither the
number nor the actual types of the required components are known beforehand.
Components are subject to relations (this information is called ”partonomic”),
and their types are subject to inheritance (this is the taxonomic information).
Constraints (also called well formedness rules) generically define all the valid
products. A configurator expects as input a fragment of a target object struc-
ture, and expands it to a solution of the problem constraints, if any. This problem
is undecidable in the general case. Such a program is well described using an ob-
ject model (as illustrated by the figures 8 and 10), together with well formedness
rules. Technically solving the associated enumeration problem can be made using
various formalisms or technical approaches : extensions of the CSP paradigm [9,
5], knowledge based approaches [14], terminological logics [10], logic program-
ming (using forward or backward chaining, and non standard semantics) [13],
object-oriented approaches [8,14]. Our experimentations were conducted using
the object-oriented configurator Ilog JConfigurator [8].

74

More precisely, a configurator is a constraint-based solver. Technically, its
constituents are a catalog of types of components and a set of constraints over
this components. An oriented oject configurator like Ilog JConfigurator repre-
sents its catalog of types through an object model, containing classes, attributes
and relations between classes. These relations can be inheritance, composition
or also aggregate relations. The configurator’s user has to represent a generic
(object) model of the knowledge field he wants to implement. This model is
not usually sufficient to represent all the relations between elements. For in-
stance, to represent a PC, we have to state the model described in figure 1.
This model represent one (or more) PC and its (theirs) components. We can
see that a PC must have one and only one Motherboard!', one and only one
Supply, one and only one Monitor. But it can have to one to four Disk(s)?. The
Motherboard can have one or two Processor(s) and one to four Memory(ies).
Any PC can be represented by an instance of this model. Some attributes need

Shoppingltem

-price:int
| A
,—|> Device
~]

-powerUsed:int

Disk Memory
-capacity:int -capacity:int
14 Monitor Processor 1,4
-size:int -speed:int

1,2
MotherBoard

-totalPower:int
-totalPrice:int Supply
-power:int —
PC

-totalPrice:int

Fig. 1. A generic object model for a PC configuration

1 Simple arrows with no label represent a relation of cardinality one
2 Simple arrows with label X, Y represent a relation of cardinality X to Y

75

some other constraints to be instanciated correctly. For sample, the attribute
totalPrice of an instance of the class PC is calculated with the constraint
: PC.totalPrice = SUM (MotherBoard.totalPrice, Supply.price, Monitor.price,
Disk_1.price, Disk_2.price, Disk_3.price, Disk_j.price)?

The configurator JConfigurator is implemented in Java. User draws the ob-
ject model with a graphic tool incorporated and states constraints using an other
incorporated tool or using a java program.

We want to show that a configurator can deal with some other constraint-
based grammars. Hence, we propose a systematic translation of the concepts and
constraints introduced by two linguistic formalisms : the very useful HPSG[11]
and the recent property grammars[1] to configuration problems representing spe-
cific target languages. We assess the usefulness of these translations by studying
first a part of the grammar for english proposed by the HPSG’s authors then a
natural language subset with lexical ambiguities, using property grammars. We
have already presented the traduction of property grammars into configuration
problem in [3,4]. Section 2 describes a mapping from feature structures to object
model. Section 3 presents the translation of a grammar based on HPSG into a
configuration problem. Section 4 presents a mapping from a property grammar
to a configuration problem. Section 5 shows an application of the previous trans-
lation to a subset of the french grammar proposed in [1] with ambiguous words.
Section 6 concludes and presents ongoing and future research.

2 Feature structures as object model

A lot of recent theories are based on feature structures to represent constituents
of the grammar and informations over syntax, semantic, phonology, and others.
A feature structure is a set of (attribute, value) pairs used to label a linguistic
unit, as illustrated in figure 2(2), where son is a masculine noun, at the singu-
lar, 37 pers. This definition is recursive : a feature value can be another feature
structure, or a set of features. Feature structures are often used in several linguis-
tic theories. For example, GPSG[6], HPSG[11], Property grammars[1], Depen-
dency Grammars[2] use feature structures. Several authors have pointed out the
similitude existing between the representation of the features on feature-based
theories and the notions of objects or frames. We will see how such structures
can be represented with oriented object paradigm over the Unified Modeling
Language(UML)[7].

Functionally, a feature can be mapped to a CSP variable, and a feature struc-
ture can be seen as a binding of values to an aggregate of feature variables. A
feature value can be a constant from a specific domain (for instance an enumer-
ation as {Singular, Plural}, or an integer as {1(st),2(nd),3(rd)}). A feature
value can also be a (set of, list of) feature structure(s) (as Agreement in figure

3 The usually dot notation is used to access to attributes of a class and also class
linked to an other class. Disk_[1,4] represent the possible instance of the class Disk
in relation with the class PC. Each of them could be present or not (only one is
mandatory) and if others are not present the default value 0 is set

76

Cat: N
Phon: list(String)
Gen : {masc,fem,neutral}
Agreement: | Num : {sing,plur}
Per : {1st,2nd,3rd }
Case : {Common, proper}
(1) - general feature structure for a noun.

Cat: N
Phon: son
Gen : masc
Agreement: | Num : sing
Per : 3rd
Case : Common
(2) - instance of (1) for the noun son.

Fig. 2. General feature structure for a noun and one of its instances (son as example)

2). Hence standard finite domain CSP variables cannot be used to model fea-
tures, and a notion of relations, or set variables must be used (as in [8,14,2]). It
is worth pointing that feature structures are available as a language construct in
Oz [12] and support feature constraints. Feature structures are aggregates well
modeled using classes in an object model. A feature structure, following the
studied formalism, naturally maps to a class in an object model, inserted in a
class hierarchy involving inheritance (possibly multiple [11]). For instance, the
category in figure 2 is translated into a class in an object model, as illustrated
by figure 3. In this translation, the feature structure is represented by the class
N . This class inherits from the class TerminalCat, representing all terminal cat-
egories. So N inherits the attribute phon (representing the lexical entry) from
TerminalCat and the relation with class Agreement (representing the feature
agreement in figure 2, each of its attributes represents one of the features of the
composed feature agreement). For the noun son, the instance of the model rep-
resent perfectly this feature structure. We have seen that feature structures may
be represented with an object model (which itself can be represented using an
UML diagram). This UML diagram maps straightforwardly to the object model
used in JConfigurator.

3 The HPSG structure and principles as a configuration
problem

Feature structures are named Signs in HPSG. These signs map to all syntactic
units as words or sentences. The Principles state the available values for some
attributes of some coexistent signs.

7

Agreement -
TerminalCat N
-gen:String : <l .
-pers:String -phon:String -case:String
-pers:int

(1) - generic object model representing feature structure of figure 2.

Agreement_X
N_X
-gen:masc
-num:Sing -phon:son
-pers:3rd -case:common

(2) - instance of (1).

Fig. 3. A generic object model for the category N and an instance of it

3.1 The signs

Signs are implemented with classes on the object model where composition and
inheritance relations are explicits. Some signs are non-specific to linguistic as
list and set (see figure 4 for sort hierarchy of these feature structures). Lists are

Partition of list(o): nonempty-list(c) (nelist(o)), empty-list (elist or ())
Partition of set(c): nonempty-set(c) (neset(o)), empty-set (eset or | |)

Fig. 4. Part of sort hierarchy presented in [11] used to represent list and set relations

translated using a specific class named list which contains an attribute FIRST
(which has the object type) and is linked to itself with the relation REST of
cardinality [0,1]. This cardinality means that an element of this list can have only
one following element at most. The figure 5 presents the object model associated
to this idea. The order of the elements remains the same. It is necessary to set
a constraint specifying that all elements of a same list are of the same type. So
we set the constraint as following:

Vi € list, .REST.FIRST.sort = [.FIRST.sort

The empty list is represented using the value 0 for the cardinality of the relation.
Sets are translated by specifying on the object model that this relation is of sort
set. This relation is presented in figure 9, the star over the relation specifies
that this is a set relation. The feature QSTORE is used in the grammar for

78

list PHON

sign

+IRST:object

0.1
REST

Fig. 5. Translation of list

english as we will see below. An empty set is represented using the value 0
for the cardinality of the relation . Figure 6 represents some feature structures
declarations of the english grammar proposed in [11] while figure 7 represents
some of its sort hierarchy. Informations contained in this two figures, allows us
to define the object model presented in figure 8. Note that these elements are
subparts of the grammar, limited in space for readibility. The grammar is too
expensive to be represented totaly here. Nevertheless these elements permit us to
explain how to translate elements of the HPSG theory on an object model. The
sort hierarchy is translated with the inheritance relations on the object model.
As example we can see in figure 7 that sign is partitioned into 2 sorts : phrase and
word, in figure 8 a inheritance relation exists between classes word and phrase
on one hand and sign on the other hand. The translation of the feature PHON
of the feature structure sign is shown on figure 5. On it we see that the class
sign is linked to the class list with the relation PHON. This relation allows an
instance of the class sign to be linked to the first element of the list and to access
easily to the following elements of this list using the relation REST of the class
list. In order to specify the type of the elements in this list, we have to set the
following constraint :

Vs € sign, s.PHON.FIRST.sort = string

For each feature which value is of list sort, a similary constraint, setting the sort
of the list elements, has to be set. The translation of the feature SYNSEM of
the feature structure sign is implemented directly using a relation on the object
model (figure 6). This relation links the classes sign and synsem. The QSTORE
feature has a set of quantifier as value. As seen previously, this relation of sort set
is direcly translated into a relation on the model without using dedicated feature
structure as in [11]. In the HPSG theory we also need a set of constraints,
named principles, specifying the allowed arrangements of the features values.
We are now presenting some of this principles and their translations.

3.2 Principles

A headed phrase, following the authors notations, is a phrase whose DAUGTH-
ERS value is of sort headed-struc. As a start, we present a translation of the

79

PHONOLOGY Ulist(phonstring)

. SYNSEM synsem HEAD heac?
sign: . category : | SUBCAT Ulist(synsem)
QSTORE set(quantifier) MARKING ki
RETRIEVED list(quantifier) marking
LOCAL local
synsem: {NONLOCAL nonlocal} phrase: [DAUGHTERS con-struc}

CONTENT content

CATEGORY category
local:
CONTEXT context

Fig. 6. Some feature structures presented in [11]

Partition of sign: word, phrase
Partition of con-struc: headed-structure(head-struc), coordinate-structure(coord-struc)

Fig. 7. Part of sort hierarchy presented in [11]

Head Feature Principle.

The Head Feature Principle * :

In a headed phrase (phrase whose DAUGHTERS value is of sort headed-structure),
the value of SYNSEM|LOCAL|CATEGORY|HEAD and DAUGHTERS|HEAD-
DTR|SYNSEM|LOCAL|CATEGORY|HEAD are token-identical.

Along with the partial object model presented in figure 8, we have to state the
constraint, using the usually doted notation :

Vp € phrase p.SYNSEM.LOCAL.CATEGORY.HEAD =

p.DAUGHTERS.HEAD — DTR.SYNSEM.LOCAL.CATEGORY.HEAD

This constraint specifies that if two feature values are equals then only one in-
stance of the class is generated. In fact, if the two values are equals we only need
to generate one instance of the class and link it to the available instances. Some
principles force a feature value to be a union of some other feature values (non
necessary, and generally it is not the case, of the same feature structure). As ex-
ample the SUBCATEGORIZATION Principle®. These principles are translated
using a constraint of union, implemented to make set with other sets. As we
have seen, the configuration paradigm seems to be really useful to implement
a heavily linguistic theory as HPSG. We are now going to see how we can also
translate a more recent theory, the property grammars[1], heavily relying upon
constraints.

4 State in [11] p.34

5 State in [11] p.34 : In a headed phrase, the list value of DAUGHTERS|HEAD-
DAUGHTER|SYNSEM|LOCAL|CATEGORY|SUBCAT is the concatenation of
the list value of SYNSEM|LOCAL|CATEGORY|SUBCAT with the list consist-
ing of the SYNSEM values (in order) of the elements of the list value of
DAUGHTER|COMPLEMENT-DAUGTHER.

80

sign SYNSEM synsem

Zﬁ Zﬁ LOCAL
word phrase local
HEAD-DTR DAUGHTERS CATEGORY
con-struc category
? HEAD
head-struc coord-struc head

Fig. 8. A partial object model for an english grammar

sign quantifier

Fig. 9. Translation on the object model of a feature value of sort set

4 Property grammars

4.1 An other feature based theory

Property grammars, as the author says, heavily rely upon constraints. The syn-
tactic units are represented with features structures named categories. These cat-
egories are translated into an object model. For each phrase like NP or VP, some
well formedness rules are stated. This rules or constraints are called properties
and are translated directly into the object model (using relations cardinalities)
or through added constraints to the model. As it has been done for the HPSG
paradigm in section 3.2.

4.2 Object model constraints for properties

Properties define both object model relations and constraints, adjoined to the
object model built from a given property grammar. We use uppercase symbols
to denote categories (e.g. S, A, B,C...). We also use the following notations :
when an anonymous relation exists between two categories S and A, we denote

81

as s.A the set of As linked to a given S instance s, and as |s.A| their number.
For simplicity, and wherever possible, we will use the notation VSF(S) (where
F is a formula involving the symbol S) rather than Vs € SF(s). Class attributes
are denoted using standard dotted notation (as e.g a.begin that represents the
begin attribute for object a). I4 denotes the set of all available indexes for the
category A.

— Constituents :
Const(S) = {Am}mer, specifies that an S may only contain elements from
{A;,}. This property is described by using relations between S and all { A4, },
as shown in the object models presented in figure 10.

— Heads :
The Heads(S) = { Ay }mer, property lists the possible heads of the category
S. The head’s element is unique, and mandatory. For example, Heads(N P) =
{N, Adj}. The word ”door” is the head in the NP : ”the door”. The Head
relation is a subset of C'onst. Such properties are implemented using rela-
tions as for constituency, plus adequate cardinality constraints.

— Unicity :
The property Unic(S) = {An}mer, specifies that an instance of the cat-
egory S can have at most one instance of each A,,,m € I, as a con-
stituent. Unicity can be accounted for using cardinality constraints as e.g :
VS|{z : S.Const | © € Ay, }| < 1 which for simplicity in the sequel, we shall
note |S.A4,,| < 1. For instance, in an NP, the determiner Det is unique.

— Requirement :
{An}mern =5 {{Bn}neig, {Co}oci, } means that any occurrence of all A,,
implies that all the categories of either {B,} or {C,} are represented as con-
stituents. As an example, in a noun phrase, if a common name is present, then
so must a determiner ("door” does not form a valid noun phrase, whereas
"the door” does). This property maps to the constraint

VS(Ym e Ia |SAp] >1) =
(Yne€Ip |S-B,|>1)V (Yo e Ic |S.C,| > 1))

— Exclusion :
The property {Am}tmer, 4 {Bn}necr, declares that two category groups
mutually exclude each other, which can be implemented by the constraint :

(Vm € Ia |S-Ap| > 1) = (Yn € Ip |S.B,| = 0)
VS, N
(Ynelg |S.Bp|>1)= (Vmels |S.Anl =0)

For example, a N and a Pro can’t cooccur in a NP. (Note that in the for-
mulation of these constraints, = denotes logical implication, and not the

82

requirement property.)

— Linearity :

The property {Am }mer, <s {Bn}ner, specifies that any occurrence of an
{An }mer, precedes any occurrence of an { B, }ner,;. For example, in a NP
a Det must precede an N (if present). Implementing this property induces
the insertion in the representation of categories in the object model of two
integer attributes begin and end that respectively denote the position of
the first and last word in the category. This property is translated as the
constraint:

VS Vm € I Vn € Ip,
mazx({i € S.A,, ei.end}) < min({i € S.B,, e i.begin})

— Dependency :
This property states specific relations between distant categories, in relation
with text semantics (so as to denote for instance the link existing between
a pronoun and its referent in a previous sentence). For instance, in a verb
phrase, there is a dependency between the subject noun phrase and the verb.
This property is adequately modeled using a relation.

Properties can therefore be translated as independent constraints. It is how-
ever often possible to factor several properties within a single modeling construct,
most often a relation and its multiplicity. For instance, constituency and unicity
can be grouped together in some models where one relation is used for each
possible constituent (we made this choice in the forthcoming example, in figure
10).

5 Parsing a lexically ambiguous natural language

Figure 10 represents a fragment of the constrained object model for a subset of
french, where constituency and unicity are made explicit. The figure 11 illustrates
some well formedness constraints. In the figure 12 we define a small example
lexicon.
The language accepted by this constrained object model is made of phrases
constructed around a subject, a verb and a complement, where both the subject
and the verb are mandatory, and both the subject and the complement are noun
phrases.
Both constraints are stated straightforwardly within the object model via re-
lations and their cardinalities (as can be seen in the figure 11). However, more
constraints are required, like the constraints stating that a Head is a constituent,
or the constraints ruling the value of the begin and end attributes in syntagms.
The program runs as it : Its root object (the object from which the research
is launched) is state to be an instance of Sentence. From this root, the solver
tries to complete the relations and attributes for each component (in respect

83

firstWord

T : Syntax

Word 1..* wordList Cat Aggreement
-position:int -begi.n:im agreement —gen:string
0..1] -end:int -numb:string
theWord next / -person:int
theTerminalCat Zr
TerminalCat

Phrase
Pro 0.1 thePro
/\

theDet

——— HeadN
N [
0.1 theN
———————_ 0.1 HeadAd]

0.1 theAd)

\ theV I
VP

Fig. 10. Object model used to parse our language

subject complement

with the adjunct constraints). Moreover, for each word it generates the number
of instances of terminalCat associated to this word. For instance, for the french
determiner/pronoun ”La”, the program will create an object word named La,
and two terminalCat, LaDet and LaPro. Each terminalCat is linked to a word,
for example, LaDet will be linked to the word La.

5.1 Experimental results

We tested the object model with sentences involving variable levels of lexical
ambiguity, as from the lexicon listed in figure 12.

Sentence (1), "la porte ferme mal” (the door doesn’t close well) is fully ambigu-
ous. In this example, ”1a” can be a pronoun (i.e. it as in ”give it to me !"”) or

Head : [NP.headN| + |NP.headAdj| = 1;
Linearity : Det < N; Det < Adj;

Exzclusion : ((NP.N| >=1) = (|[NP.Pro| = 0) and
(INP.Pro>=1) = (|NP.N| =0);

Requirement : ((NP.N| =1) = (|[NP.det| = 1)

Fig.11. Some NP constraints

84

WORD CAT GEN NUM PERS
ferme N fem sing 3

ferme Adj - sing -
ferme V - sing 1,3
la Det fem sing 3
la Pro fem sing 3
mal N masc sing 3
mal Adj - - -
porte N fem sing 3
porte V - sing 1,3

Fig.12. A lexicon fragment

a determiner(like the in "the door”), "porte” can be a verb (i.e. to carry) or a
noun (door), ”ferme” can be a verb (to close), a noun (farm) or an adjective
(firm) and "mal” can be an adjective (badly) or a noun (pain). Our program
produces a labeling for each word and the corresponding syntax tree (figure 13).

la porte ferme mal

syntax ’

SV
sWement
NP %4 NP
D'et/\]‘\f fer‘me Ajdj
la porte mal

Fig. 13. Syntax tree for the french sentence ”la porte ferme mal”

Sentence (2) is "la porte bleue possede trois vitres jaunes” (the blue door has
three yellow windows). Here ”bleue” and ”jaunes” are adjectives, ”vitres” is
a noun and “trois” is a determiner. The last sentence (3), ”"le moniteur est
blew” (the monitor is blue) involves no ambiguous word. The table 1 presents
results obtained for the sentences (1), (2) and (3). These results show that the

Table 1. Experimental results for french phrases

p |# fails|#cp|#csts|H#Hvars|#secs
(1) 4 40 | 399 | 220 |0.55 s
2) 3 50 | 442 | 238 |0.56 s
3)] 1 35| 357 | 194 |0.52s

85

correct labeling is obtained after very few backtracks (fails). The number of
fails depends on the number of ambiguous words in the sentence. The execution
time also depends on the sentence length. Explanation of these three samples :

— (1) : The solver badly associates the Verb of the sentence : it states porte as
being the verb. Hence it cannot create a complement to this verb because
”ferme mal” is not a NP, and the program backtracks on the instanciation
SV.comp = SN1. As there is not anymore available instanciation, it back-
tracks on the instanciation porteV.theW ord = porte and also backtracks on
the instanciation SV.theV = porteV. At this time, the verb is now stated
to fermeV and the program goes on and instantiates all possible variables.
The solver has as heuristic to try to state the more little value first. As
a consequence it first states the value 0 for the cardinality of the relation
S N.noyauAdj, but this leads to a fail so it backtracks again and changes the
value to 1. The remaining variables are instantiated with no more fail.

— (2) : The three fails, as for (1), are dued to the instanciation of SV.theV to
porteV. Like in (1) three backtracks are needed.

— (3) : The remaining value is due to the minimalisation inherents heuris-
tic. The solver first tries to set the value of the cardinality of the relation
SN.noyauAdj to 0.

We have not already implemented an analyser with sufficient efficiency to
compare our results to those of other approches. We have only shown a trans-
lation of linguistic theories to a configuration problem. This work was the first
part of a most important project to deal with syntax and semantic on a same
object model.

6 Conclusion

We showed that data structures and inner mechanism (the principles) of a use-
ful linguistic theory as HPSG can be translated into a configuration problem,
solved with a general solver. We also showed that an other linguistic theory can
be translated into a configuration problem and we presented (an embryo of) a
parser, which is available to disambiguate sentences that can be used over it.
Other grammars could be translated into a configuration problem. For example
the dependency grammars|2] is clearly described by the author as a configuration
problem. Our intuition leads us to think that where there is feature structures
there is object model and where there is constraints on these feature structures,
there is a configuration problem. A configurator seems to be an intuitive tool for
linguistic theories based on constraints. First step of our work was to represent
grammar concepts in term of a configuration problem. The second will be to
upgrade this simple parser into a more general one, and by this way, using con-
figurators to deal with syntax and semantic on a same object model, as we have
seen that configurators are used to deal with semantic of some knowledge field.
They are used to represent a world which can be describe with a description lan-
guage (PCs can be represented as a configuration problem and we can describe

86

PCs with description language). Ongoing research involves the implementation
of a parser for a natural language subset of french dealing with the semantics of
three dimensional scene descriptions.

References

1.

2.

10.

11.

12.

13.

14.

P. Blache, Les Grammaires de Propriétés : des contraintes pour le traitement au-
tomatique des langues naturelles, Hermes Sciences, 2001.

Denys Duchier, ‘Axiomatizing dependency parsing using set constraints’, in Sizth
Meeting on Mathematics of Language, Orlando, Florida, pp. 115-126, (1999).
Mathieu Estratat and Laurent Henocque, ‘Application des programmes de con-
traintes orientés objet a I’analyse du langage naturel’, Traitement Automatique du
Langage Naturel, TALN 2004, 163-172, (2004).

Mathieu Estratat and Laurent Henocque, ‘Parsing languages with a configurator’,
European Conference on Artificial Intelligence, ECAI 2004, (2004). To appear.
G. Fleischanderl, G. Friedrich, A. Haselbck, H. Schreiner, and M. Stumptner, ‘Con-
figuring large-scale systems with generative constraint satisfaction’, IEEE Intelli-
gent Systems - Special issue on Configuration, 13(7), (1998).

G. Gazdar, E. Klein, G.K. Pullum, and I.A. Sag, Generalized Phrase Structure
Grammar, Blackwell, Oxford, 1985.

Object Management Group, ‘Uml v. 1.5 specification’, OMG, (2003).

D. Mailharro, ‘A classification and constraint based framework for configuration’,
AI-EDAM : Special issue on Configuration, 12(4), 383 — 397, (1998).

Sanjay Mittal and Brian Falkenhainer, ‘Dynamic constraint satisfaction problems’,
in Proceedings of AAAI-90, pp. 25-32, Boston, MA, (1990).

B. Nebel, ‘Reasoning and revision in hybrid representation systems’, Lecture Notes
in Artificial Intelligence, 422, (1990).

C. Pollard and I.A. Sag, Head-Driven Phrase Structure Grammar, The University
of Chicago Press, Chicago, 1994.

Gert Smolka and Ralf Treinen, ‘Records for logic programming’, The Journal of
Logic Programming, 18(3), 229-258, (April 1994).

Timo Soininen, Ilkka Niemela, Juha Tiihonen, and Reijo Sulonen, ‘Representing
configuration knowledge with weight constraint rules’, in Proceedings of the AAAI
Spring Symp. on Answer Set Programming: Towards Efficient and Scalable Knowl-
edge, pp. 195-201, (March 2001).

Markus Stumptner, ‘An overview of knowledge-based configuration’, AI Commu-
nications, 10(2), 111-125, (June 1997).

87

A broad-coverage parser for German based on
defeasible constraints

Kilian A. Foth, Michael Daum, and Wolfgang Menzel

Natural Language Systems Group, University of Hamburg

Abstract. We present a parser for German that achieves a competitive
accuracy on unrestricted input while maintaining a coverage of 100%. By
writing well-formedness rules as declarative, defeasible constraints that
integrate different sources of linguistic knowledge, very high robustness
is achieved against all sorts of language error.

1 Introduction

Although most linguists agree that natural language to a large degree
follows well-defined rules, it has proven exceedingly difficult to actually
define these rules well enough that a computer could reliably assign the
intuitively correct structure to natural language input. Therefore, almost
all current approaches to parsing constitute compromises of some kind:

1. Often the goal of full syntactic analysis is abandoned in favour of
various kinds of shallow parsing, which is all that is needed for many
applications. Instead of a full syntax tree, e.g., only the boundaries of
major constituents [Schmid and Schulte im Walde2000] or topological
fields [Becker and Frank2002] are computed.

2. Instead of casting the language description into linguistically moti-
vated rules, a probability model is induced automatically from a large
amount of past utterances, which is then used to maximize the sim-
ilarity to previously seen structures [Collins1999]. This approach is
robust and efficient, but relies on a large amount of existing data, and
the resulting model is difficult to comprehend and extend.

3. Formalisms that do perform deep analysis by following explicit rules
typically often have to be restricted to particular subsets of linguistic
constructions or to particular domains. Also, their robustness and
coverage (the performance for ungrammatical and extragrammatical
input, respectively) is often rather low on realistic data.

We present a parsing system that tries to avoid all three compromises
to the extent possible at the current time. Instead of a derivation gram-

88

mar, we employ a declarative formalism in which well-formedness condi-
tions are expressed as explicit constraints (which take the form of logical
formulas) on word-to-word dependency structures. Since there is no limit
to the complexity of these formulas, every conceivable well-formedness
condition can be expressed as a constraint. Although the formal power of
this approach would theoretically make the parsing problem intractable,
we have found that approximative solution methods yield good results in
practice.

All grammar rules are ordered by a preference measure that distin-
guishes e.g. less important rules of style from more important fundamental
grammar rules. This not only ensures robust behaviour against all kinds
of deviant input, but also allows us to integrate the information from ex-
ternal shallow parsers, such as a part-of-speech tagger, without becoming
dependent on their results.

The output of the system consists of labelled dependency trees rather
than constituent-based structures. Although this is mainly a consequence
of casting the parsing problem in the form of a constraint optimization
problem, it also has benefits for the processing of languages like German
with a relatively free word order.

2 The WCDG parsing system

man hat uns ein Angebot gemacht . das wir nicht ablehnen konnten

(they have us a offer made which we not refuse could)

_/

REF

Fig. 1. Dependency analysis of a German sentence.

Weighted constraint dependency grammar (WCDG) [Schroder2002] is
an extension of the CDG formalism first described by [Maruyamal990].

89

It describes the structure of natural language as a set of labelled subor-
dinations: each word is either subordinated to exactly one other word or
considered the root of the syntax tree (also called a NIL subordination).
See Figure 1 for an example. Each subordination is annotated with one
of a fixed set of labels such as ‘subject’, ‘direct object’ or ‘indirect ob-
ject’, but no larger groups of words carry labels. This means that there
is no direct equivalent to the constituents postulated by phrase structure
grammar.

Since there are no constituents, there are also no generative rules
along the lines of ‘S — NP VP’; these are often problematic for languages
with free or semi-free word order since they mingle dominance principles
with linear precedence rules. Instead, the grammar rules take the form
of declarative constraints about permissible subordinations. These con-
straints can reference the position, reading and lexical features of the con-
cerned word forms, as well as features of neighbouring dependency edges.
Every subordination that is not forbidden by any constraint is consid-
ered valid. The goal of the parser is to select a set of subordinations that
satisfies all constraints of the grammar.!

As an example of a constraint, consider the rule that normal nouns of
German require a determiner of some kind, either an article or a nominal
modifier, unless they are mass nouns. This rule can be formulated as a
constraint as follows:?

{X:SYN} : ’missing determiner’ : 0.2 :
X@cat = NN
->
exists(X@mass_noun) |
has(X@id, DET) |
has (X@id, GMOD);

It states that for each subordination on the syntax level (SYN), a word
with the category ‘normal noun’ (NN) must either bear the feature ‘mass
noun’ or be modified by a determiner (label DET) or a genitive modifier
(label GMOD).

Each constraint bears a score between 0.0 and 1.0 that indicates its
importance relative to other constraints. The acceptability of an analy-
sis is defined as the product of the scores of all instances of constraints

! Categorial and morphological ambiguity must also be resolved for each word in a
sentence. While often glossed over, this task is quite difficult in languages with a rich
morphology; the average German adjective form has 10 morphosyntactic variants
that are relevant for agreement.

2 This constraint is considerably simplified for exposition purposes, since the rule
actually has many systematic exceptions.

90

that it violates. This means that constraints with a score of 0.0 must
be satisfied if at all possible, since violating them would yield the worst
possible score.? Note that the score of the determiner constraint is 0.2,
which means that missing determiners are considered wrong but not to-
tally unacceptable. In fact, many other constraints are considered more
important than the determiner rule.

The selection of real-valued weights for all constraints of a grammar is
a difficult problem because of the virtually unlimited number of possibil-
ities. A score for a new-written constraint can be calculated by counting
how often it holds and fails on an annotated corpus, or by measuring
the overall performance when different weights are assigned to it. (This
method usually shows very little variation; better results are achieved
when only sentences that actually contain the described phenomenon are
analysed.) In general the exact score of a rule is less important than the
relative score of two rules that might interact [Foth2004].

By assigning values other than 0.0 to all rules that might conceivably
be broken, a prescriptive grammar can easily be converted to one that
is robust against all kinds of language errors, while still preferring con-
forming over deviant structures wherever possible. In fact, a coverage of
100% can be guaranteed with an appropriately written grammar. This is
achieved by giving those constraints which could forbid all structures for
a given utterance a higher value.

I,S I ATTR DET

Bush : New initiative a success
Fig. 2. Analysis of an elliptical utterance.

One easy way of ensuring this property is to allow surplus words to
form the roots of isolated subtrees. This is possible because WCDG by
itself does not enforce a unique NIL subordination. Note that in some
cases a set of fragments actually is the most faithful rendition that is pos-
sible in a dependency formalism. Consider the typical elliptical headline
“Bush: New initiative a success”, where the verbs “said” and “is” have

3 However, the parser will still return such a structure if no analysis with a positive
score can be found.

91

been elided. This should actually be modelled as a forest of three tree
fragments (cf. Figure 2). Assigning a heavy penalty to fragments that are
not finite verbs ensures that they will be avoided unless absolutely nec-
essary. Partial parsing can thus be achieved simply by not constraining
the number of NIL subordinations.

Since there are no generative rules, WCDG does not have a deriva-
tion component. Instead, parsing a sentence defines a multidimensional
optimization problem that can be solved by all known methods of
constraint optimization. Where the problem instance is too large to
be solved via complete search, good success has been achieved with
transformation-based heuristic solution methods [Daum and Menzel2002]
[Foth and Menzel2000] that approximate the acceptability model defined
by the constraints. In a large-scale grammar with many defeasible con-
straints, different analyses of the same sentence usually carry at least
slightly different scores, so that full disambiguation is achieved. If differ-
ent analyses happen to have the same score, the one that the transfor-
mation process finds first is usually selected as the output of the parser.
By default, analysis terminates when it has repaired, or failed to repair,
all important constraint violations (those whose score lies below a config-
urable threshold).

3 A comprehensive grammar of German

We have developed a grammar for the WCDG formalism that is intended
to cover the entire realm of modern German. As an example of our depen-
dency representation, consider again the analysis of the sentence “Man
hat uns ein Angebot gemacht, das wir nicht ablehnen konnten.” (They
made us an offer we could not refuse.) in Figure 1. Note that there are
two instances of nonprojective structure in this sentence, i.e. the vertical
projection lines must cross dependency edges in two places no matter how
the tree is drawn. WCDG does not require its structures to be projective,
although constraints to that effect can easily be written and then have
a considerable disambiguating effect. We can thus represent phenomena
such as German auxiliary groups or extraposed relative sentences faith-
fully by writing constraints that enforce projectivity in general, but make
exceptions for edges with these particular labels.

The referential relationship between the relative pronoun ‘das’ and
its antecedent ‘Angebot’ cannot be represented on the syntax level, since
both words already function as direct objects. Instead, it is represented by
an additional edge which connects the two words on an extrasyntactical

92

‘reference’ level. The agreement of gender and number that must hold
between the two words can thus be checked directly.*

The grammar currently consists of about 700 handwritten constraints,
although much information is lexicalized, in particular valence informa-
tion of verbs and prepositions. An extensive lexicon of full forms is used
that includes all closed-class forms of German. Among the open-class
forms, around 6,000 verb stems and 25,000 noun stems are covered; com-
pound forms can be deduced from their base forms on the fly to deal
with the various types of German compounds. As a last resort, lexicon
templates provide skeleton entries for totally unknown words; these only
contain the syntactic category and underspecified values for case, num-
ber etc. In the experiment reported here, 721 of 16649 tokens had to be
hypothesized from such templates, such as personal names and foreign-
language material.’

So far we have considered phenomena from about 28,000 sentences
from various text types, such as newspaper text, appointment schedul-
ing dialogues, classical literature, law texts, and online newscasts. Al-
though obscure extragrammatical constructions are still occasionally en-
countered, the great majority of new input is covered accurately, and we
do not expect major changes to the existing rules to become necessary.
Many problem cases involve constructions that are probably impossible
to represent accurately in a word-based dependency tree, such as compli-
cated conjunctions or heavy ellipsis.

We estimate the overall effort for our grammar of German at about
5 work-years. A large part of this work, however, consisted in creating
manual syntax annotations for testing the predictions of the constraint
model; this corresponds to the effort needed to create the treebank that a
stochastical parser is then trained on. Another very time-consuming task
was to collect and classify open-class lexicon entries with respect e.g. to
their inflection and valence features. While helpful for disambiguation
in many cases, this information is not strictly necessary for running the
parser.

4 Although other pronouns, and possibly nouns, can refer to other words, these re-
lationships are usually outside the scope of a sentence-based parser because they
transcend sentence boundaries. Therefore, this grammar describes reference edges
only for the relative pronouns.

5 In theory, an unknown word could be of any open class, and thus introduce very
great ambiguity; but most of these alternatives are usually discarded by the POS-tag
preprocessing.

93

4 Evaluation

Exact solution of the optimization problem posed by a large constraint
grammar is often computationally infeasible for long input sentences, so
that incomplete solution methods must usually be employed. Therefore,
in addition to model errors, where the linguistic intuition contradicts the
model defined by the actually implemented grammar, search errors can
occur, where the parser output in turn differs from the modelled optimum
because the heuristic optimization algorithm terminated in a local peak.

In the case of the earlier example sentence, no problems occur: the
grammar assigns the highest score to the desired analysis shown in Fig-
ure 1, and the solution algorithm actually finds it. In general, this is not
always the case, particularly for long sentences. Although all individual
cases we have investigated suggest that the accuracy of the model es-
tablished by our grammar is higher than the actual performance of the
parser (i.e., search errors decrease rather than increase the overall accu-
racy), this is not of practical use because the better solutions cannot be
efficiently computed. Therefore, all results reported in this paper use the
strictest possible measure: only the accuracy of the computed structures
with respect to the intended (annotated) ones is reported.

Since our parser always returns exactly one complete syntax struc-
ture, recall and precision are both identical to the percentage of cor-
rect versus incorrect dependency edges. According to this measure, our
parser typically computes between 80% and 90% of correct dependency
attachments for written German. This is near the performance of the
Collins parser for English [Collins1999], but somewhat below the results
of [Tapanainen and Jarvinen1997], who report precisions above 95% (also
for English), but do not always attach all words. More relevant are the
results described by [Dubey and Keller2003], who analysed 968 sentences
(with at most 40 words) from the NEGRA corpus of German newspaper
text. Reimplementing Collins’ parser for German, they only achieved a
labelled precision and recall of 66.0%/67.9%. This suggests that German
syntax is considerably more difficult to analyse for this kind of parser
than English. [Dubey and Keller2003] improved the parsing model to
70.9%/71.3% by considering sister-head dependencies instead of head-
head dependencies.

For purposes of comparison we analysed the same section of the NE-
GRA treebank with our own parser. We first translated the phrase tree-
bank to dependencies automatically, with only few edges corrected to
conform to our annotation guidelines [Daum et al.2004]. The accuracy of

94

parsing is then measured by counting the number of correctly computed
dependency edges. Input is first annotated with part-of-speech tags by
the statistical trigram tagger TnT, and some typical errors of the tri-
gram model are automatically corrected by about 20 handwritten rules.
The resulting scores are integrated into the constraint grammar with a
constraint that disprefers word forms with improbable categories.

We employ a heuristic transformation-based solution method that first
constructs a complete syntax tree in linear time, and then tries to trans-
form it so as to remove errors that were diagnosed by violated constraints.
Three passes are made over each sentence; in the first phase, only sub-
ordinations between nearby words are allowed, and the resulting partial
trees are recombined by their roots in the second phase. A third pass
then tries to repair any remaining errors; only this phase investigates the
entire space of possible subordinations. We have found that the phase-
based approach yields better results than tackling the full optimization
problem to begin with [Foth and Menzel2003].

Table 1 gives the results; altogether 89.0% of all dependency edges
are attached correctly by the parser (87.0% if we also demand the correct
edge label). Since the previous work reported constituent-based preci-
sion and recall figures, a direct comparison is not possible, but it seems
safe to say that parsing accuracy is somewhat higher in our system. A
more telling comparison would be achieved by transforming the phrase
structure results of the sister-head-dependency model into dependency
structures with the same tool used for transforming the treebank, and
measuring the edge accuracy directly.

Sentence length correlates with a slowly increasing number of parsing
errors; to a certain degree this simply reflects the greater number of plau-
sible but wrong subordinations in long sentences. However, the incom-
pleteness of the solution algorithm also contributes to this: as the search
space increases, more alternatives are overlooked, so that the method
effectively becomes less and less complete.

Corpus # of sent. edges lab. edges
all sentences 1000 89.0% 87.0%
<60 words 998 89.1% 87.1%
<40 words 963 89.7% 87.7%
<20 words 628 92.3% 90.1%
<10 words 300 93.4% 91.0%

Table 1. Parsing results for NEGRA sentences.

95

5 Further experiments

A WCDG provides remarkable flexibility with respect to aspects of pars-
ing behaviour. In particular, although the exact solution of the optimiza-
tion problem that it poses would theoretically require exponential run-
time, good results can also be achieved with much less resources. In fact,
an arbitrary time limit can be set for the parsing process because the
algorithm exhibits the anytime property: processing can be interrupted
at any time if necessary, and the current analysis returned. This allows
a trade-off to be made between parsing time and quality of results, since
improvements to the score of an analysis generally coincide with a better
accuracy.

For the results in Table 1, we allowed the parser to spend up to 600
seconds on each sentence (on 1533-MHz Athlon PC processors), and it
actually terminated within 68 seconds on the average. If the time limit is
lowered, accuracy slowly decreases, as shown in Table 2.

Time limit Actual time edges lab. edges
600 seconds 68.0s 89.0% 87.0%
400 seconds 59.3s 88.7% 86.8%
200 seconds 44.9s 88.2% 86.2%
100 seconds 31.8s 87.1% 85.0%
50 seconds 21.6s 84.6% 82.3%

Table 2. Parsing results with reduced runtime limit.

We also investigated the generality of our model of German, originally
developed to parse the text of online technical newscasts, by parsing a va-
riety of other text types. Table 3 gives results of analysing various corpora
under the same conditions as those in Table 1. In general, performance is
measurably affected by text type as well as sentence length, but the ac-
curacy is comparable to that on the NEGRA corpus. Classical literature
was notably more difficult to parse, since it employs many constructions
considered marked or extragrammatical by our current model of German.
Transcriptions of spontaneous speech also pose some problems, since they
contain many more sentence fragments than written text and no disam-
biguating punctuation.

A particular advantage of a language model composed of many coop-
erating constraints is that any single rule is not vital to the operation of

96

Text type sentences avg. length edges lab. edges

Trivial literature 9547 14 words 93.1% 91.1%
Law text 1145 19 words 88.8% 86.7%
Verbmobil dialogues 1316 8 words 90.3% 86.3%
Online news 1894 23 words 89.8% 88.1%
Serious literature 68 34 words 78.0% 75.4%

Table 3. Parsing results on different text types.

the grammar. In fact, since constraints forbid rather than license partic-
ular structures, a missing rule can never cause parsing to fail completely;
at most it can increase the search space for a given sentence. This means
that a grammar can be applied and tested even while it is still under
construction, so that a realistic grammar for an entire language can be
developed step by step.

To demonstrate this robustness against omitted rules, we deliberately
disabled entire groups of constraints of the grammar, one group at a time,
and repeated the comparison experiment of Section 4. Table 4 shows the
results. For each group of constraints the general purpose is given as well
as the informal version of an example constraint. The importance of each
constraint group is given as the ratio between the structural correctness
achieved with and without the constraints from this group.

Class Purpose Example Importance
agree rection and agreement subjects have nominative case 1.02
cat category cooccurrence prepositions do not modify each other 1.13
dist locality principles prefer the shorter of two attachments 1.01
exist valency finite verbs must have subjects 1.04
init hard constraints appositions are nominals 3.70
lexical word-specific rules “entweder” requires following “oder” 1.02
order word-order determiners precede their regents 1.11
pos POS tagger integration prefer the predicted category 1.77
pref default assumptions assume nominative case by default 1.00
proj projectivity disprefer nonprojective coordinations 1.09
punc punctuation subclauses are marked with commas 1.03
root NIL subordinations only verbs should be tree roots 1.72
sort sortal restrictions “sein” takes only local predicatives 1.00
uniq label cooccurrence there can be only one determiner 1.00

zone crossing of marker words conjunctions must be leftmost dependents 1.00

Table 4. Measuring the effect of different constraint classes.

97

As expected, the most important type of constraints (in that their
omission degrades performance the most) is the “init” group, into which
most hard constraints fall. Parsing here suffers from a vastly increased
initial ambiguity that often prevents the parser from finding the correct
solution even if it is still theoretically optimal. POS preprocessing turns
out to be very important as well, again because it quickly closes huge
but implausible search spaces. Rules that disprefer multiple NIL subor-
dinations effectively prevent the parser from taking the ‘easy’ solution
and treating words that it cannot attach as additional roots. Each other
group of constraints has comparatively little effect on its own.

6 Related Work

Except for [Dubey and Keller2003] there seems to be no other attempt to
evaluate a syntactic parser of German on a gold standard annotation using
the common PARSEVAL methodology. Accordingly, there is no standard
setting available so far which could facilitate a direct parser comparison,
similar to the established Penn Treebank scenario for English. However,
there have been evaluation efforts for more shallow types of syntactic
information, e.g. chunks or topological fields.

Parsing into topological fields like Vorfeld, Mittelfeld, and Nachfeld
usually is considered a somewhat easier task than the construction of
a full-fledged constituency analysis, because it clearly profits from the
easily identifiable position of the finite verb in a German sentence and
avoids any decision about the assignment of syntactic functions to the
constituents. [Braun2003| presents a rule-based approach to topological
parsing of German and reports a coverage of 93.0%, an ambiguity rate of
1.08, and a precision/recall of 86.7% and 87.3% respectively on a test set
of 400 sentences. [Becker and Frank2002] trained a stochastic topological
parser on structures extracted from the NEGRA-Treebank and tested it
on 1058 randomly selected sentences with a maximum length of 40 words.
They achieved a labelled precision/recall of 93.4% and 92.1%.

Chunking, i.e. the segmentation of a sentence into pieces of particular
type (usually NPs and PPs), is an approach to shallow sentence processing
sufficient for many practical purposes. [Brants1999] used cascaded Hid-
den Markov Models to chunk sentences into a hierarchy of structurally
embedded NPs and PPs with a maximum tree depth of nine. He achieved
a precision/recall of 91.4% and 84.8% in a cross evaluation on the 17,000
sentences of the NEGRA-Treebank. [Schmid and Schulte im Walde2000]
trained a probabilistic context-free grammar on unlabelled data and used

98

it to segment sentences into NP chunks. They evaluated the system on
378 sentences from newspaper text and obtained a precision /recall of 93%
and 92% if only the range of a chunk is considered, which decreased to
84% and 83% if also the case of an NP has to be determined.

Special evaluation methodologies have been designed for several
parsers of German. Among them is the one used to evaluate the
quality improvement during the development of the Gramotron parser
[Beil et al.2002]. The method is partly motivated by lexical semantic clus-
tering, the ultimate goal of the project, although the authors admit that a
direct evaluation of head-to-head dependencies as proposed by [Lin1995]
would be more appropriate. Besides avoiding overtraining by monitoring
the cross-entropy on held-out data, a linguistic evaluation was carried out
focussing on selected clauses types. It is based on a randomly sampled
subcorpus of 500 clauses and measured the quality of determining noun
chunks and subcategorization types. The precision of chunking reached
98% if only the range was considered and decreased to 92% if the chunk
type was also included. The subcategorization type of verbs was com-
puted with a precision between 63% and 73% depending on the kind of
clauses under consideration.

[Langer2001] evaluated a GPSG parser with the capability of addi-
tional processing rules (of unlimited generative power) on 62,073 sen-
tences from German newspaper text. Of the sentences with 60 words or
less, 34.5% could be analysed, with an average of 78 solutions per sen-
tence. On a self-selected test corpus with an average length of 6 words,
coverage rose to 83%. Only an indirect measure of accuracy is given: in
80.8% of the newspaper sentences, giving the parser access to partially
annotated target structures (chunks and some POS information) did not
change its output.

[Neumann and Flickinger2002] evaluated their HPSG-parser based on
the DOP-model with 1000 sentences from the Verbmobil-domain. They
measured coverage (70.4% if combined), and the runtime performance of
the system.

[Wauschkuhn1995] developed a two step parser computing a clause
level structure which clause-internally is kept completely flat. The sys-
tem is evaluated on 1097 newspaper sentences only with respect to its
coverage (86.7% if run on manually tagged input and 65.4% for automat-
ically tagged text) and the achieved degree of disambiguation (76.4% for
manually and 57.1% for automatically tagged input).

99

7 Conclusions

A competitive parsing system for unrestricted German input has been
described that is largely independent of domain and text type. Total cov-
erage is ensured by means of defeasible, graded constraints rather than
hard grammar rules. The method of using individual constraints for dif-
ferent grammatical principles turns out to be useful for ongoing grammar
development, as the parser can be run normally from the beginning and
aspects of the working language can be modelled one at a time.

We find that using a powerful formalism that allows all conceivable
rules to be actually used allows for better parsing than using a tractable
but less expressive one: even a theoretically intractable formalism is useful
in practice if its model can be approximated well enough. While casting
syntax analysis as a multidimensional optimization problem leads to high
requirements of processing time, this inefficiency is somewhat mitigated
by the anytime property of the transformational optimizer that allows
the user to limit the desired processing time.

A greater concern is certainly the great amount of expert knowledge
needed to create a complete constraint grammar. We propose that for
deep analysis of German syntax, the greater precision achievable through
handwritten rules justifies the extra effort compared to approaches based
purely on machine learning. Although automatic extraction of constraints
from annotated corpora remains a goal of further research, so far we have
achieved greater success by hand-selecting and scoring all grammar rules,
since this allows the grammar writer to make conscious decisions about
the relative importance of different principles.

An online demonstration of our system can be accessed at http://
nats-www.informatik.uni-hamburg.de/Papa/ParserDemo.

The source code of the parser and the grammar is available un-
der the General Public License at http://nats-www.informatik.
uni-hamburg.de/download.

(© Kilian A. Foth, Michael Daum, Wolfgang Menzel, 2004.

References

[Becker and Frank2002] Markus Becker and Anette Frank. 2002. A stochastic topo-
logical parser for German. In Proc. 19th Int. Conf. on Computational Linguistics,
Coling-2002, Taipeh, Taiwan.

[Beil et al.2002] Franz Beil, Detlef Prescher, Helmut Schmid, and Sabine Schulte im
Walde. 2002. Evaluation of the Gramotron parser for German. In Proceedings of the
LREC Workshop: Beyond PARSEVAL, Las Palmas, Gran Canaria.

100

[Brants1999] Thorsten Brants. 1999. Cascaded markov models. In Proc. 9th Conf. of
the European Chapter of the ACL, EACL-1999, Bergen, Norway.

[Braun2003] Christian Braun. 2003. Parsing German text for syntactico-semantic
structures. In Prospects and Advances in the Syntaz/Semantics Interface, Proc. of
the Lorraine-Saarland Workshop, Nancy.

[Collins1999] Michael Collins. 1999. Head-Driven Statistical Models for Natural Lan-
guage Parsing. PhD thesis, University of Pennsylvania, Philadephia, PA.

[Daum and Menzel2002] Michael Daum and Wolfgang Menzel. 2002. Parsing natural
language using guided local search. In Proc. 15th European Conference on Artificial
Intelligence, ECAI-2002, pages 435-439, Lyon, France.

[Daum et al.2004] Michael Daum, Kilian Foth, and Wolfgang Menzel. 2004. Automatic
transformation of phrase treebanks to dependency trees. In Proc. 4th international
Language Resources and Fvaluation Conference, Lisbon, Portugal.

[Dubey and Keller2003] Amit Dubey and Frank Keller. 2003. Probabilistic parsing
for German using sister-head dependencies. In Proc. 41st Annual Meeting of the
Association of Computational Linguistics, ACL-2003, Sapporo, Japan.

[Foth and Menzel2000] Kilian Foth and Wolfgang Menzel. 2000. A transformation-
based parsing technique with anytime properties. In Proc. International Workshop
on Parsing Technologies (IWPT-2000), pages 89-100, Trento, Italy.

[Foth and Menzel2003] Kilian Foth and Wolfgang Menzel. 2003. Subtree parsing to
speed up deep analysis. In Proc. 8th Int. Workshop on Parsing Techniques, pages
91-102, Nancy, France.

[Foth2004] Kilian A. Foth. 2004. Writing weighted constraints for large dependency
grammars. In Proc. Recent Advances in Dependency Grammars, COLING-Workshop
2004, Geneva, Switzerland.

[Langer2001] Hagen Langer. 2001. Parsing-Ezperimente: prazisorientierte Unter-
suchungen zur automatischen Analyse des Deutschen. Peter Lang, Frankfurt am
Main.

[Lin1995] Dekang Lin. 1995. A dependency-based method for evaluating broad-
coverage parsers. In IJCAI pages 1420-1427.

[Maruyamal990] Hiroshi Maruyama. 1990. Constraint dependency grammar. Techni-
cal Report RT0044, IBM Research, Tokyo Research Laboratory.

[Neumann and Flickinger2002] Giinter Neumann and Dan Flickinger. 2002. HPSG-
DOP: Data-oriented parsing with HPSG. In Proc. of the 9th Int. Conf. on HPSG,
HPSG-2002, Seoul, South Korea.

[Schmid and Schulte im Walde2000] Helmut Schmid and Sabine Schulte im Walde.
2000. Robust German noun chunking with a probabilistic context-free grammar.
In Proc. 18th Int. Conf. on Computational Linguistics, Coling-2000, Saarbriicken,
Germany.

[Schroder2002] Ingo Schroder. 2002, Natural Language Parsing with Graded Con-
straints. PhD thesis, Hamburg University, Hamburg, Germany.

[Tapanainen and Jarvinen1997] Pasi Tapanainen and Timo Jarvinen. 1997. A non-
projective dependency parser. In Proc 5th Conference on Applied Natural Language
Processing, Washington, D.C.

[Wauschkuhn1995] Oliver Wauschkuhn. 1995. The influence of tagging on the re-
sults of partial parsing in German corpora. In Proc. 4th Int. Workshop on Parsing
Technologies, IWPT-1995, pages 260-270, Prague/Karlovy Vary, Czech Republic.

101

The Role of Animacy Information in Human Sentence
Processing Captured in Four Conflicting Constraints

Monique Lamers & Helen de Hoop

Department of Linguistics, Radboud University Nijmegen®
{H.deHoop, M.Lamers} @ let.kun.nl

Abstract. To formalize and analyze the role of animacy information in on-line
sentence comprehension, results of several on-line studies are compared and
analyzed according to a new model of incremental optimization of
interpretation. This model makes use of violable ranked constraints. To analyze
the use of animacy information a set of four constraints is needed, namely Case,
Selection, Precedence, and Prominence. It is shown that the pattern of
constraint violations of these four constraints provide sufficient information to
reflect the on-line effects of language comprehension studies in which animacy
information played a crucial role. More specifically, the evaluation of sentences
in which either case information or animacy information in combination with
the selection restrictions of the verb were used, showed that the model can
account for the ambiguity resolution with both sorts of information. The model
was also successfully applied to the on-line processing of a more complex
object relative structure in English.

1 Introduction

The different sorts of information that become available incrementally during natural
language comprehension are very diverse varying from morphosyntactic information
(e.g. case marking, word order, number) to semantic/conceptual information (e.g.
animacy, specificity). In contrast to the morphological marking of case and number,
which incorporates both semantic and syntactic information, animacy is merely
semantic (or conceptual) in nature. It plays a role of utmost importance in fulfilling
the selectional criteria of the verb, and as such, it is quintessential for the incremental
interpretation of a sentence.

To investigate the role of animacy information in sentence comprehension a newly
developed model of incremental optimization of interpretation is used [7]. This model
uses a set of ranked interpretive constraints that are violable on a word-by-word basis.
These constraints are derived by analyzing characteristics of Dutch and English that
are relevant to the processing of animacy information.

! The research reported here was supported by the Netherlands Organisation of Scientific
Research (grants #220-70-003 to the PIONIER project Case Cross-linguistically and #051-
02-070 to the Cognition project Conflicts in Interpretation), which is gratefully
acknowledged.

102

This paper presents a first attempt to map the patterns of constraint violations onto
the on-line effects found in studies in which the use of animacy information was
investigated. Thus, the model of incremental optimization of interpretation that is
adapted in this paper can be shown to predict the kind of processes elicited on-line on
the basis of the pattern of constraint violations. By applying this model that is based
on principles of the time insensitive model of Optimality Theoretic Semantics [6] to
on-line human sentence processing studies, we bridge the gap between theoretical
linguistic models and natural language processing.

2 Four Constraints on Interpretation: Case, Precedence,
Prominence, and Selection

In languages with a case system such as German, morphosyntactic information can be
used to interpret the syntactic and semantic relations. In German, not only personal
pronouns, but also articles and adjectives are overtly case marked. If a sentence starts
with an accusative case marked NP, as is illustrated in (1), it will not only be
identified as the object of the sentence, but it also triggers the expectation of a suitable
subject and predicate. Thus case information helps to determine the interpretation.

1. Den Zaun hat der Junge zerbrochen.
[the fence]acc ard,sg hassg,sg [the boy]nomarasg roken
“The fence, the boy broke.”

There are, however, also languages with a poor case system such as Dutch and
English. In these languages, case is only visible on pronouns. Hence, the eventual
interpretation of many sentences is dependent on other sorts of information. Even in
languages with poor case marking there are hardly any sentences that are difficult to
interpret. In English, this is not all that surprising because of the strict word order that
constrains the interpretation in such a way that the first argument in a main clause is
almost always the subject of the sentence.? Because Dutch has a relatively free word
order and no case marking on full noun phrases, many sentences are ambiguous. In
these cases, in Dutch as well as in German, in which due to morphological poverty of
certain phrases the same kind of ambiguities occur, the interpretation will be based on
the strong preference for the canonical word order with its concomitant (subject
precedes object) reading. This is also known as word order freezing (cf. [11], [20]). In
a sentence such as in (2), there is a strong preference for interpreting the first NP as
the subject. In other words, in the absence of conflicting information, the preferred
interpretation is one in which the subject precedes the object (cf. [4], [5], [12]).

2. De patiént heeft dearts bezocht.
[the patient]SUBJ/oBJ has [the dOCtor]SUBJ/OBJ visited
“The patient visited the doctor.”

2 As can be seen in the English translation of example (1), it is possible that the object precedes
the subject in English. This, however, can only be the case as a form of topicalisation.

103

Most experiments that found evidence for the subject before object preference dealt
with sentences where the subject and the object both were animate used in
combination with agentive transitive verbs. However, several off-line and on-line
experiments in Dutch and English showed that besides case-marking and word order,
animacy information is an important source of information for the comprehension
process (cf. [9],[14],[15],[19]). For instance, McDonald [15] compared the validity of
three cues (word order, noun animacy and case inflection on pronouns) in choosing
the controller (agent) of transitive sentences and relative clauses. Experiments in
which subjects had to assign the agent role after listening to the sentence showed that,
in Dutch, animacy was a better cue than word order, whereas, in English, the reverse
was the case. MacWhinney, Bates and Kliegl [13] found that in German, too, animacy
was a better cue than word order. Hence, there seems to be coherence between word
order freedom and the role of animacy information in sentence processing in different
languages.

Where word order preferences might help to identify the subject of a sentence,
animacy information provides us with information about the potential control over the
action expressed by the verb, as well as the prominence relation between the
arguments. That is, given the fact that for many verbs it is the subject (which in most
sentences is the first argument of the sentence) that is in control of the action, it is
expected that given an animate and inanimate NP in a sentence, it is more likely that
the animate NP is the subject and the inanimate NP is the object of the sentence. In
other words, the first argument outranks the second argument in control or
prominence, thus in most cases, in animacy. Note, however that in sentence
processing the information becomes available incrementally. Therefore, the animacy
of a possible second NP is not yet available at the moment the first NP is being
processed. Moreover, it might be unclear whether a transitive or intransitive verb
comes in. If animacy information of the initial NP is used as soon as it becomes
available it cannot be used in relation to the animacy of the other argument(s). What
can be taken into account is whether the argument that is being processed is animate
and is potentially in control and prominent.

As we have seen in example (1) it is very well possible that word order preference
is not followed. This also holds for the expectation of the prominence relationship
between the arguments and the control characteristics of the subject. Although not as
common as an animate subject, it is not only possible that the subject of a sentence is
inanimate, it might also be that given an animate and inanimate NP, the inanimate NP
has to be the subject of the sentence and the animate NP the object. It is the verb that
imposes these selection restrictions onto the arguments, as is illustrated in (3a,b).
Verbs such as please take an experiencer (animate) object, while verbs as like take an
experiencer (animate) subject.

3. a. The holiday pleased the boy.
b. The boy liked the holiday.

So far, four possible constraints that play an important role in language processing

follow from the above discussion. The first constraint is based on morphological case-
marking, the second on a general preference of word order, whereas the other two

104

constraints are more directly related to the role of animacy information. In (4) the
self-explanatory constraint CASE is defined.

4. CASE: the subject is nominative case marked, the object is accusative case marked

In (5) the word order constraint PRECEDENCE is defined which is based on a strong
preference for the subject-before-object word order. If this constraint is satisfied, it
leads directly to the interpretation in which the subject precedes the object.

5. PRECEDENCE: the subject (linearly) precedes the object

Note that PRECEDENCE, as it is formulated above, can be considered an instantiation
of a linearity constraint as proposed within the framework of Property Grammars [2].
However, the use of constraints in Property Grammars (PG) radically differs from our
use of constraints. In PG constraints are used to encode syntactic information and
although constraint evaluation takes place on the basis of grammatical as well as
ungrammatical inputs, a grammatical input should not violate any constraints. In our
Optimality Theoretic model of interpretation, the input is the form (being it
grammatical or not) and the output (that is built up incrementally) is the (optimal)
interpretation of that form. The constraints are potentially conflicting, which is one of
the basic characteristics of Optimality Theory [16], and as a consequence optimal
outputs often violate numerous constraints (in order to satisfy stronger ones).

The third constraint, PROMINENCE, concerns the potential control characteristics of
the subject and the prominence relationship between the subject and the object. As it
is defined in (6), it is expected that the subject of a sentence has potential control over
the action expressed in the sentence. Additionally, we assume that in case of a
transitive relationship the subject outranks the object in PROMINENCE. In terms of
animacy, it is expected that the subject is animate, and when a second argument is
present, the constraint is clearly satisfied if the object is inanimate.

6. PROMINENCE: a) the subject is animate and thus has potential control;
b) the subject outranks the object in prominence

The fourth constraint is called SELECTION and reflects the inherent semantic relation
between the verb and the subject or the object. This constraint comes about if a verb
always selects an inanimate NP as the object and/or an animate NP as the subject.

7. SELECTION: the verb selects an animate object, and/or an animate subject

At this point, note that in sentence (3a) where the initial NP is the inanimate subject,
the word order constraint PRECEDENCE is satisfied, but PROMINENCE is violated. This
violation of PROMINENCE is directly related to the satisfaction of SELECTION. In
sentence (1) on the other hand, PRECEDENCE is violated, but PROMINENCE is satisfied.
Here, the satisfaction of PROMINENCE goes hand in hand with the satisfaction of
CAse. The interplay of the different constraints will be further explained in the
following section.

105

3 The Model of Incremental Optimization of Interpretation of
Animacy Information

In this section, the constraints will be ranked so that they can be used in the model of
incremental optimization of interpretation. The ranking of the constraints is
established by principles taken from the theoretical perspective of Optimality Theory
(cf. [16]) and Optimality Theoretic Semantics (cf. [6]).

As already pointed out above, within the framework of Optimality Theory
constraints are violable rules that are potentially conflicting. These constraints are
reflections of linguistic regularities. A constraint is never violated without any reason,
but only in order to satisfy another, stronger constraint. This basic characteristic of
Optimality Theory (OT) originates from its predecessor, Harmonic Grammar, a
linguistic theory that uses the connectionist well-formedness measure Harmony to
model linguistic well-formedness [18].

As the name of our model indicates, we assume that during human sentence
processing, the optimal interpretation of a sentence (form) is being built up
incrementally. Hence, we assume the process of optimization itself to be incremental.
Optimality Theoretic Semantics [6] gives a straightforward tool for analyzing
processing in this way. OT semantics [6] take as a point of departure free generation
of interpretations in combination with the parallel evaluation of violable constraints.
The integration of pragmatic, semantic, and syntactic information in a system of
ranked constraints is proposed to correctly derive the optimal interpretations for
inputs that contain of utterances, i.e., forms in context. Thus, in OT semantics, the
direction of optimization is from form to meaning, that is, it is optimization from the
hearer’s point of view. To use this approach for our purpose of analyzing
experimental results of processing requires an incremental approach to optimization.
That is, the process of optimization of interpretation proceeds while the information
comes in word-by-word, or constituent-by-constituent.

Before incremental optimization of interpretation can be used to analyze the role of
animacy information in sentence processing the four relevant constraints that were
defined above, have to be ranked. We determine the ranking by examining the
optimal output interpretation in case of a conflict between constraints. Such a
situation was illustrated in example (3a) in which an inanimate NP is interpreted as
the subject of the sentence. This indicates that SELECTION must outrank PROMINENCE,
since the optimal reading will be an animate object reading, despite the fact that this
leads to an inevitable violation of PROMINENCE. If the animate object precedes the
inanimate subject, there is not only a conflict between SELECTION and PROMINENCE,
but also between SELECTION and PRECEDENCE. This is illustrated by the Dutch
example in (8).

8. De jongen beviel de vakantie.
the boy pleased the holiday
“The holiday pleased the boy”

The optimal reading for the sentence in (8) is the one in which the initial NP is the
object of the sentence. Thus, PRECEDENCE is violated to satisfy SELECTION; hence

106

SELECTION not only outranks PROMINENCE, but also PRECEDENCE. This leaves us
with the issue of ranking PRECEDENCE and PROMINENCE. Because of much processing
evidence that in case of ambiguity, a sentence-initial NP is interpreted as the subject
even if it is inanimate, we assume that PRECEDENCE outranks PROMINENCE. Finally,
we assume that CASE is the strongest of the four constraints. This can be derived from
the fact that we obtain a sometimes pragmatically odd yet optimal interpretation when
SELECTION must be violated in order to satisfy CASE, as in a German sentence such as
Der Zaun hat den Jungen zerbrochen glossed as ‘the fencenom has the boyacc
broken’. In this sentence, despite the fact that transitive break normally selects an
animate subject, the inanimate NP der Zaun ‘the fence’ is interpreted as the subject
because of its nominative case. That is, the sentence can only mean that the fence
broke the boy (see [17] for more evidence on the important role of case in human
sentence processing). In (9) the ranking of the four constraints is given.

9. CASE >> SELECTION >> PRECEDENCE >> PROMINENCE

4 Applying Incremental Optimization of Interpretation to the On-
line Use of Animacy in Dutch Sentence Comprehension

Having established the ranking of the constraints, incremental optimization of
interpretation can be used to evaluate word-by-word sentences used in on-line studies
in which animacy information was manipulated. We will apply incremental
optimization to three reading studies in which event related brain potentials (ERPS)
were measured. ERPs are small changes in spontaneous activity of the brain that
occur in response to certain sensory events. Because of the multidimensionality of the
signal, differences in the effects are related to differences in the nature of the involved
processes [8]. This makes these studies extremely suitable as test cases for the
application of incremental optimization of interpretation.®

In the first two studies animacy information is used to resolve subject-object
ambiguities in Dutch, as was reported by Lamers [9], [10]. Additionally, object
relative clauses taken from a study of Weckerly and Kutas [19] will be evaluated.

Lamers [9], [10] investigated sentences such as given in (10), (11) and (12) in two
ERP studies.

10. De oude vrouw in the straat verzorgde hij ...
The old woman in-the-street took-care-of he ...
“He took care of the old woman in the street ...”

11. Het oude park in the straat ~ verzorgde hij ...
The old park in-the street took-care-of he ...
“He took care of the old park in the street ...”

3 For a similar application of incremental optimization of interpretation to the processing of
sentences in which the distinguishability of two arguments used in a transitive relation was
addressed, the reader is referred to de Hoop & Lamers [7].

107

12. De oude vrouw in the straat verzorgde hem ...
The old woman in the street took-care-of him ...
“The old woman in the street took care of him ...”

Notice that sentence (11) is disambiguated by the animacy information of the initial
NP because of the selection restrictions of the verb. That is, the verb selects an
animate subject and as a consequence, when the verb comes in, the sentence-initial
NP can (no longer) be interpreted as the subject of the sentence. The sentences in (10)
and (12) are clearly disambiguated at the time the case-marked pronoun is
encountered (which is unambiguously nominative in (10) and accusative in (12)).
Lamers reports early and late positivities at the verb for sentence (11) starting with the
inanimate NP in comparison to sentence (10) as well as at the nominative case
marked pronoun in sentence (10) in comparison to the accusative case marked
pronoun in (12). The effects were interpreted as structure building problems, possibly
involving reassignment of syntactic functions and thematic roles. Strikingly, the
effects are similar although different sorts of information are used for disambiguation
(the verbal selection criteria and the case-marking of the pronouns, respectively). We
claim that this similarity can be explained within the incremental optimization model.
The evaluation of these sentences against the set of constraints will show that the
pattern of constraint violations is the same in the two different contexts. In the left
panel of Table 1 a schematic overview is given of the constraint violations pattern of
the optimal interpretation of the incoming words of sentence (10)*. In the right panel
the evaluation of the object-initial sentence (11) is given. As can be seen,
PROMINENCE is violated as soon as the initial inanimate NP becomes available in
order to satisfy the higher ranked constraint PRECEDENCE. In that stage, the optimal
interpretation is the subject-before-object reading. Up to the verb SELECTION cannot
play a role in the parsing process, since no relevant information is available. At the
verb, it becomes clear that the subject has to be animate. Hence, the optimal
interpretation of the initial inanimate NP changes from subject to object. As a
consequence, PRECEDENCE is violated, but PROMINENCE is satisfied. It is at this point
in the sentence that Lamers found the significant ERP effects (early and late
positivities) for sentence (11) compared to (10) (Table 1).

4 In contrast to tableaux normally used to present constraint satisfaction patterns in Optimality
Theory, in this paper a table shows only the pattern of constraint violations of the optimal
interpretation at time t. Obviously, what is the optimal interpretation at time t may vary
through time. For example, the optimal interpretation of the sentence in (12) will be the subject-
initial interpretation until the verb comes in. Then the optimal interpretation switches to the
object-initial interpretation, due to the fact that Selection is ranked above Precedence.

108

Table 1. An overview of the pattern of violations of CASg, SELECTION (SEl), PRECEDENCE
(Prec), and PROMINENCE (PROM) for the sentences from the examples (10) and (11) up to the
verb. In this table as in all the follwing tables an V¥ indicates that at this word the optimal
interpretation satisfies the constraint, whereas an * indicates a violation of the constraint; Pos. =
positivity; the crucial words are in bold; grey columns indicate the point in the sentence in
which ERP differences were reported.

De oude vrouw... verzorgde... | Het oude park... verzorgde...
CASE
SEL v v
PREC v v v *
PrROM v v v v
ERP early ,
late Pos.

Table 2 is a schematic overview of the constraint violations patterns of the crucial
words of sentences (12) (left panel) and (10) (right panel). The ERP effect that is
illustrated was found at the moment the case marked pronoun was encountered.

Table 2. An overview of the pattern of violations of CAsSg, SELECTION (SEl), PRECEDENCE
(PRec), and PROMINENCE (Prom) for the sentences (12) and (10) until the disambiguating case-
marked pronoun.

De oude verzorgde... hem...| Deoude verzorgde... hij...
VIouw... VIouw...
CASE v v
SEL v v v v
PREC v v v v v *
PROM v v v v v v
ERP early, late
Pos

Let us now compare the pattern of constraint violations found at the nominative case
marked pronoun to the pattern observed at the verb of the sentence starting with the
inanimate NP (Table 2 versus Table 1). At the nominative case marked pronoun
information becomes available such that the object-initial interpretation overrules the
subject-initial interpretation, which was optimal until that point. At that time,
PRECEDENCE must be violated (the object precedes the subject), whereas
PROMINENCE is still satisfied, given that a pronoun is more prominent in a discourse
prominence hierarchy than a full NP (cf. [1], [3], [11]). The resulting pattern is
basically the same pattern as the one created at the verb of the inanimate condition
(11). Thus, the similarity of the constraint violation patterns indeed reflects the
similarity in ERP effects reported in the on-line studies. This indicates that the four
constraints of the incremental optimization of interpretation model successfully

109

capture the role of animacy information in subject-object ambiguity resolution in
Dutch.

5 Extension of the Approach to English

Although English has a strict word order, relative clauses can either be subject initial
or object initial. Weckerly and Kutas [19] investigated the influence of the animacy
on the processing of object relative clauses with a local structural ambiguity. The
sentences used in this study differed in the word order of an animate and inanimate
NP, as exemplified in (13) and (14)

13. The novelist that the movie inspired praised the director ...

14. The movie that the novelist praised inspired the director ...

In the initial NP, the subject of the main clause is either animate (as in 13) or
inanimate (as in 14). Hence, there is already a difference in the pattern of constraint
violations at the first argument, as is illustrated in Table 3. Since it concerns a
violation of the lower ranked constraint in order to satisfy PRECEDENCE, it is not
expected that this violation pattern will lead to strong on-line effects. Nevertheless,
Weckerly and Kutas do report an enhanced negative shift for the sentence with an
initial inanimate NP, indicating that the processing of an initial inanimate NP is more
costly than an animate NP.

At the word that it is clear that a relative clause has to be processed, although it is
not yet known whether it concerns a subject or an object relative clause. Since that
refers to the initial NP, the pattern of constraint violations is the same as was found at
the previous word.

As soon as the determiner comes in, it becomes obvious that an object relative
clause is being processed (because the incoming NP must be the subject of the
relative clause). We assume that at this point in the sentence the comprehension
process is mainly concerned with integrating incoming information in the relative
clause, while the main clause information is stored in verbal working memory. Thus,
focusing at the relative clause, at that PRECEDENCE is violated in both sentences.
Because both sentences have the same structure, this violation will not be reflected in
the ERP-waveform. If, however, a comparison would have been possible between
subject relative clauses and object relative clauses we expect this violation to be
reflected as an early and late positivity corroborating the findings of Lamers [9], [10].
Since subject relative sentences were not part of the study of Weckerly and Kutas
[19], such a comparison is unfortunately not possible.

In sentence (13) the object refers to an animate NP, and thus PROMINENCE is
violated (Table 3, left panel). In (14) the object is inanimate and thus, it is still very
well possible that the incoming subject of the relative clause outranks the object in
prominence and control. Since there is a difference in the pattern of constraint

110

violations between the two sentences, differences in ERP waveforms are expected.
However, at the determiner of the incoming subject of the relative clause, no
differences in ERP-waveforms were reported. This might be due to the fact that a
determiner is a high frequent closed class word, which has to be followed by the
semantically more important noun, the subject of the relative clause.

Table 3. An overview of the violations of SELecTION (SEl), PRECEDENCE (PRec), and
ProMINENCE (Prom) for the sentences (13) and (14). We have left out the constraint CASE,
because it does not play a role here. Neg.= negativity; LAN= left anterior negativity.

The novelist that the movie inspired praised | The movie that the novelist praised inspired
SEL v v v v
PREC Vv v v * * * v v v v * * * v
PrROM Vv v v * * * v v * * v v v *
ERP N400 late LAN Neg. Neg.
Pos. late shift shift
Pos.

In sentence (13) the subject of the relative clause is inanimate. Consequently,
PROMINENCE is violated. In (14), however, the subject is animate and outranks the
inanimate object in prominence. The comparison of the two ERP waveforms showed
an N400 for the inanimate NP.5> Weckerly and Kutas explain this N400 in terms of the
violation of the expectancy of an animate noun. Since animacy is clearly involved in
the violation of PROMINENCE, the explanation of Weckerly and Kutas corresponds
with the constraint violation pattern (in accordance with the claims made in [7]).

The subject of the relative clause is followed by the verb. In sentence (13) the verb
inspire comes in, which selects an animate object. Hence, SELECTION is satisfied at
the cost of a violation of PROMINENCE. Praise, in (14), can only be used in sentences
with an animate subject, and thus SELECTION and PROMINENCE can both be satisfied.
A late positivity (P600) was found at the verb that violates SELECTION. Weckerly and
Kutas argue that this positivity is caused by more difficult processing probably
involving problems in thematic role assignment. This explanation corroborates our
discussion above that the so-called experiencer verbs assigning the role of experiencer
to the (necessarily animate) object of the sentence, and not the more frequently used
roles of theme or patient (cf. [9]) inherently combine the satisfaction of SELECTION
with a violation of PROMINENCE.

More puzzling is the ERP-effects found at the verb of the main clause. As can be
seen in Table 3, ERP-effects are found at the verb that does not cause any constraint
violation. This contrasts with the correspondence between ERP-effects and constraint
violations in every other word position of the sentences. A possible explanation for
this discrepancy between the incremental optimization of interpretation analysis and
the ERP-effects might be that the complexity of the structures at issue in this study is
not accounted for by just the three constraints used for our present purposes. The

5 The N400 is normally taken as an indication of problems in the comprehension process of semantic information, possibly
including ease of lexical access and lexical/discourse integration processes (cf.[8],[21]).

111

constraints that were used in the model of incremental optimization are directly
derived from rules and mechanisms of the language faculty. It would be highly
unlikely to assume that the effects found in the ERP-waveforms are only reflections
of language specific processes. As a matter of fact, Weckerly and Kutas explain the
finding of a left anterior negativity in terms of differences in memory load caused by
the difficulties of the preceding object relative clause with the inanimate subject. A
similar reasoning is given for the late positivity, which is interpreted as a reflection of
the complexity of the object relative clause. Further research is necessary to determine
whether the pattern of constraint violations, such as the one found for the sentences
with an inanimate subject (Table 3, left panel) is an indication for high demands on
working memory and general processing complexity.

Nevertheless, we think that finding a correspondence between constraint violations
and ERP-effects on almost every word position indicates that the model of
incremental optimization of interpretation can also successfully be used for the
analysis of the human processing of complex structures.

6 Conclusion

If an argument is processed, animacy information becomes available. In this paper we
have shown that a newly developed model of incremental optimization of
interpretation can analyze the role of animacy information in language
comprehension. In this model four violable constraints were defined, namely Case,
Selection, Precedence, and Prominence. By applying the constraints incrementally in
a word-by-word fashion, patterns of constraint violations come about that largely
correspond to the differences in ERP waveforms found in the relevant ERP studies.

We conclude that the incremental optimization model provides a useful tool in
psycholinguistic research that bridges the gap between theoretical linguistic models
and natural language processing.

References

1. Aissen, J.: Differential Object Marking: Iconicity vs. Economy. Natural Language and
Linguistic Theory 21 (2003) 435-483

2. Blache, P.: Constraints, Linguistic Theories and Natural Language Processing. In:
Christodoulakis, D. (ed.): Lecture Notes in Artificial Intelligence. Springer (2000)

3. Comrie, B.: Language Universals and Linguistic Typology. University of Chicago Press,
Chicago (1989)

4. Frazier, L.: Resolution of Syntactic Category Ambiguities: Eye Movements in Parsing
Lexically Ambiguous Sentences. Journal of Memory and Language 26 (1987) 505

5. Gibson, E.: Linguistic complexity: Locality of syntactic dependencies. Cognition 68 (1998)
1-76

6. Hendriks, P., de Hoop, H.: Optimality Theoretic Semantics. Linguistics and Philosophy 24
(2001) 1-32

112

7. de Hoop, H., Lamers M.: Incremental distinguishability of subject and object. In: Kulikov,
L., Malchukov, A., de Swart, P. (eds.): Case, Valency, and Transitivity. Benjamins,
Amsterdam (to appear)

8. Kutas, M., Van Petten, C.K.: Psycholinguistics electrified. In: Gernsbhacher, M.A. (ed.):
Handbook of psycholinguistics. Academic Press, New York (1994) 83-143

9. Lamers, M.J.A.: Sentence processing: using syntactic, semantic, and thematic information.
PhD dissertation University of Groningen (2001)

10. Lamers M.J.A.: Resolving subject-object ambiguities with and without case: evidence from
ERPs. In: Amberber, M., de Hoop, H. (eds.): Competition and variation in natural
languages: the case for case. Elsevier (to appear)

11.Lee, H.: Parallel Optimization in Case Systems. In: Butt, M., King, T. (eds.): Nominals:
Inside and Out. CSLI, Stanford (2003)

12.MacWhinney, B.: Models of the emergence of language. Annual review of psychology 49
(1998) 199

13. MacWhinney, B., Bates, E., Kliegl, R.: Cue Validity and Sentence Interpretation in
English, German, and Italian. Journal of verbal learning and verbal behavior 23 (1984) 127

14. Mak, W.M., Vonk, W., Schriefers, H.J.. The influence of animacy on relative clause
processing. Journal of Memory and Language 47 (2002) 50-68

15.McDonald J.: Sentence interpretation processes: The influence of conflicting cues. Journal
of Memory and Language 26 (1987) 100-117

16. Prince, A., Smolensky, P.: Optimality: From neural networks to universal grammar.
Science 275 (1997) 1604-1610

17. Schlesewsky, M., Bornkessel, I.: On incremental interpretation: Degrees of meaning
accessed during sentence comprehension. Lingua 114 (2004) 1213-1234

18. Smolensky, P.: Information Processing in Dynamical Systems: Foundations of Harmony
Theory. In: Rumelhart, D.E., McClelland, J. et al.: Parallel Distributed Processing.
Explorations in the microstructure of Cognition, VVol. 1. MIT Press, Cambridge, MA (1986)

19. Weckerly, J., Kutas, M.: An electrophysiological analysis of animacy effects in the
processing of object relative sentences. Psychophysiology 36 (1999) 559-570

20.Zeevat, H.: Freezing and Marking. Manuscript University of Amsterdam, Amsterdam
(2004)

21. Garnsey, S.M. (ed.): Event-related brain potentials in the study of language. Special issue of
Language and Cognitive Processes (1993)

113

An Exploratory Application of Constraint
Optimization in Mozart to Probabilistic Natural
Language Processing

Irene Langkilde-Geary

Brigham Young University, Provo UT 84602, USA,
irenelg@cs.byu.edu

Abstract. This paper describes an exploratory implementation in Mozart
applying constraint optimization to basic subproblems of parsing and
generation. Optimization is performed on the probability of a sentence
using dependency-style syntactic representation, which is computed us-
ing an adaptation of the English Penn Treebank as data. The same
program solves both parsing and generation subproblems, providing the
flexibility of a general architecture combined with practical efficiency. We
show results on a sample sentence that is a classic in natural language
processing.

1 Introduction

Although many people have long recognized that natural language can be quite
naturally characterized using constraints, the question of how to organize a com-
puter system to effectively deal with interdependent constraints in the face of
exponential complexity continues to be an active area of research. This issue of
system architecture has probably been most extensively addressed in the context
of generation, where the problem is quite prominent [1]. In a recent attempt to
generalize across the architectures of 19 representative generator systems, Cahill
et al. proposed a whiteboard as a reference design [2,3]. They argued that a
whiteboard was general enough to subsume the variety of architectures surveyed
and could serve as a standard to facilite the sharing and reuse of processing
resources.

A whiteboard architecture divides processing into knowledge-centric func-
tional modules (such as lexicalization, aggregation, rhetorical structuring, re-
ferring expression generation, ordering, segmentation, and coherence) and mod-
els communication between modules with a single repository of data called a
whiteboard. The data stored in a whiteboard is typed and relational, and added
cumulatively by extending or copying existing data, but not changing or re-
moving anything. A whiteboard thus generalizes further what had previously
been considered the most general architecture for generation, namely a black-
board architecture, in which changes to the data repository are destructive, not
cumulative.

114

Although there does not seem to be much debate on the theoretical adequacy
of a whiteboard as a general-purpose architecture, existing large-scale practi-
cal systems to-date have actually used something simpler (typically a pipeline)
for the sake of efficiency. The new development of concurrent constraint pro-
gramming, however, seems to offer the potential to combine both theoretical
adequacy and practical efficiency in the same system. A concurrent constraint
program (CCP) is a flexible, general, and principled framework for managing
convoluted dependencies and combinatorial complexity such as that which ex-
ists in natural language processing. A concurrent constraint program’s behavior
can be analogized to that of a whiteboard architecture even though the specific
representation and processing details may differ from those proposed by [4].

In this paper we present an exploratory implementation of a finite domain
constraint optimization program in the Mozart programming system to solve
some basic subproblems of both parsing and generation. Our motivation is de-
termining how well this basic program might serve as a suitable foundation for
a whiteboard-like system capable eventually of handling the full range of gener-
ation tasks with reasonable run-time efficiency.

We are interested in using a single program to solve both parsing and gen-
eration problems for more than theoretical or academic reasons. We find that
parsing can often be a subproblem of general-purpose generation. Our ongoing
work in machine translation frequently requires parsing of phrasal fragments that
must be massaged to fit into a larger whole. In other applications of generation
it is often helpful to combine processing of canned text and templates with tradi-
tional generation from abstract representations of meaning [5,6,7]. One potential
way to seamlessly process all three kinds of input is by integrating parsing and
generation.

A whiteboard-style architecture without a predefined processing sequence
could clearly facilitate a tighter integration of the two tasks. A constraint pro-
gram seems to be a natural fit for this problem. If natural language is represented
declaratively as set of variables associated with each word, then parsing and gen-
eration are simply inverse (almost) divisions of variables into “given” versus “to
be solved for”. This declarative framework makes it easy to blur the distinction
between parsing and generation and address hybrid problems with nearly ar-
bitrary combinations of known versus unknown variables, resulting in an NLP
system with wider applicability.

To see how well a CCP might model a whiteboard architecture and solve
hybrid problems we perform experiments with different combinations of given
versus unknown variables. The paper is organized as follows: we first describe how
we formulate our exploratory subproblem of parsing/generation as a concurrent
constraint program (Section 2). Then in Section 3 we discuss how the program
performs on a sample input sentence with different combinations of known and
unknown variables. Finally, Section 4 concludes with a discussion of related work
and future directions.

115

2 Problem Formulation

In our formulation of the problem we use a dependency-style syntax and rep-
resent a sentence as a group of words where each word is associated with a set
of linguistically-motivated features. We define a probability distribution over a
subset of the features, optimizing for the most probable assignment of values
to features given a few hard constraints. We obtain the probabilities from an
adaptation of the English Penn Treebank. Note that our constraint optimization
approach to the problem does not require or involve an explicit grammar (or
lexicon) at all.

2.1 Variables

In this exploratory implementation, we restrict our attention to just a handful
of features per word plus some needed auxiliary variables. Table 1 summarizes
the main features associated with each word. They are node ID, head ID, func-
tional role, group type, direction, relative position, and absolute position. To
keep things simple at this stage and because we don’t yet have a morphological
component implemented, we do not directly use the actual words of the sentence,
only the features listed.

The ID is an arbitrary number associated with a word, and is used together
with the HeadID feature to represent the dependency structure of a sentence.
We define the actual value of the ID to have no linguistic significance, and assume
that it is either given in the input or internally assigned during initialization.
FEach word has exactly one head, except the top word in the sentence. The
number 0 is reserved as the value of the HeadID feature when there is no head.

The role feature represents the functional relationship of a child with re-
spect to its head. We currently distinguish 23 possible values, listed in Table 2.
The roles are derived from the original annotation on the Penn Treebank and/or
motivated by probabilistic modeling needs. In some cases, the role feature corre-
lates with the part-of-speech of a word, for example: determiner and right-punc.
In other cases, it identifies prominent parts of a clause, such as the subject or
the function of an auxiliary verb. The role “role-marker” designates preposi-
tions and complementizers, which we treat as left dependents (not heads) in

[FEATURE [VALUE ‘
ID a word id

HeadID id of head word

Role syntactic function, see Table 2
Group type (GT) clause, np, other

Direction (DIR) +/- from head

Relative position (RP) [tree distance from head
Absolute position (AP)|distance from start of sent

Table 1. Word features

116

constituents typically labelled in constituency grammar as PP and SBAR. The
Top role identifies the top of the sentence as a whole. “Adjunct” serves as a
catch-all miscellaneous role.

Adjunct Determiner LGS-adjunct Polarity Role-marker Top
Aspect Emphatic Modal Pre-determiner Subject Topic
Closely-related Junction-marker Object Predicate Taxis Voice
Dative Left-punc Particle Right-punc To-infinitive

Table 2. Roles

The group-type (gt) feature is a generalization of constituent-style non-
terminal labels associated with the head word of the constituent. We distinguish
just three coarse categories: clause, noun phrase (np), and other—where clauses
include SBAR phrases, and noun phrases include PPs. The direction (dir) fea-
ture indicates whether a child comes to the left or right of its head. It is partially
redundant with the relative position feature, but useful as a generalization of it.
The relative position (rp) indicates that a word is the nth dependent attached
to one side of a head with the sign indicating which side. The value used for n is
actually offset by 1000 to keep the domain positive in the implementation. Fi-
nally, absolute position (ap) designates the linear order of words in a sentence,
with the first word of the sentence assigned position 1.

2.2 Constraints

Besides domain constraints for each variable we use the following non-basic con-
straints that define the relationships between the features of words, the tree
structure of a sentence and the probabilistic score of the sentence as a whole.
Auxiliary feature variables used include NumLeftCs (number of left children),
and NumRightCs. The notation ==> designates a logical implication, and <==>
a logical equivalence. The dot notation A.f refers to feature £ of node A. Node
names “Head” and “Child” refer to confirmed head and child nodes, respectively.

Single Node Constraints

Dir= ’-? <==> RP < 1000
Dir= ’+’ <==> RP >= 1000
HeadID=0 <==> RP=1000
HeadID=0 ==> Dir= ’+’

Head-Child Constraints

Head.ap>Child.ap <==> Child.dir= ’-’
Head.ap<Child.ap <==> Child.dir= ’+’
A.numLeftCs= Number of B nodes for which A.id=B.headID AND B.dir= ’-’.
A.numRightCs= Number of B nodes for which A.id=B.headID AND B.dir= ’+’.

117

Relationship between the number of children on a side and the set of valid
relative position values:

A.id=B.headID AND B.dir= ’-’ ==> B.rp >= 1000-A.numLeftCs
A.id=B.headID AND B.dir= ’+’ ==> B.rp =< 1000+A.numRightCs

Other Definitional Constraints
ForAll AP, AllDistinct(AP)
Rule out impossible heads based on absolute position:

A.dir= ’-> AND A.ap > B.ap ==> A.headID <> B.id}
A.dir= >+’ AND A.ap < B.ap ==> A.headID <> B.id}
|A.ap - B.ap| < A.rp ==> A.headID <> B.id}

Among siblings, relative positions are unique. Also, smaller absolute positions
correspond to smaller relative positions and conversely, larger absolute positions
to larger relative positions:

A.id <> B.id AND A.headID=B.headID ==>
[A.rp <> B.rp AND [[A.rp<B.rp AND A.ap<B.ap] OR
[A.rp>B.rp AND A.ap>B.ap]l]]

No head cycles:
Let NoHeadCycle(Child,A) be defined recursively as Child.id <> A.headID; if
A .headID>0 then NoHeadCycle(Child,A.headID) then NoHeadCycle(Child,Child)

Structural Constraint The structural constraint for a sentence uses both projec-
tivity and probabilistic information to define well-formedness, disallowing structures
likely to be misinterpreted. It can be summarized as follows: for any node A positioned
between a node Child and its head Head, it must be more more likely that Child at-
taches to Head than to A (or otherwise A would likely be misinterpreted as the the
head of Child by a reader), and Head must be an ancestor of A.

More precisely, let IsAncestor (A,Child) be a predicate that returns true if A is an An-
cestor of Child and returns false otherwise. Also let JointHCLikelihood (Head,Child)
be a function that computes the joint probability of Head and Child. Then the con-
straint is:

Let Left=Min(Child.ap, Head.ap), Right=Max(Child.ap, Head.ap) then
Left < A.ap < Right ==>
JointHCLikelihood (Head,Child)> JointHCLikelihood(A,Child) AND
IsAncestor (Head,A)

This well-formedness constraint still needs to be tested against a corpus of actual
sentences, and would likely benefit from some refinements, not to mention extensions
for non-projectivity. The JointHCLikelihood function also needs further refinement.
Currently we just define it over the role and group-type features of both head and
child, which was adequate for the experiment in this paper.

118

Feature Scores and Sentence Cost With each of the features grouptype, posi-
tion direction, relative position, and role of every node we associate a conditional log
probability score. This score is equal to 0 (the log of 1) if the value of the feature is al-
ready given in the input. Otherwise it is equal to logprob(Feature—Parents). “Parents”
in this context refers to statistical parent, which often, but not necessarily always, in-
cludes features associated with the structural head of a node. To comply with Mozart’s
implementation constraints, the log probabilities are converted to negative log likeli-
hoods, multiplied by 10000, rounded, and then converted to integers. These feature
scores are combined to compute a likelihood score for a whole sentence. The score for
the whole sentence is interpreted as a cost to be minimized, and is the main constraint
used to determine the optimal solution for an input.

The potential parent features of each feature fin a node have been provisionally
defined as shown in Table 3. To provide flexibility in the order in which features can be
determined, the parents of a feature are adjusted at runtime according to the relative
order in which they are determined. So the features actually used as parents of f are a
subset of those in the table. Whether a parent feature is used for conditioning depends
on whether the feature is associated with the head of the node or with the node itself.

Feature [Interdependencies ‘
group type head: group type; self: role, position direction, relative position
role head: role; self: group type, position direction, relative position

position direction|self: role, group type
relative position [self: role, group type; head: group type
Table 3. Statistical Feature Dependencies

The features associated with the head are always used if the ID of the head is known
(which it is in the generation task but not the parsing task). The features associated
with the node itself are used only if they are determined before f itself is. The table
is defined symmetrically so that for each parent feature p of f, fis also listed as one
of the parents of p. Thus, this procedure amounts to dynamic variation in the way a
node’s joint probability is decomposed, but since all the possible decompositions are
mathematically equivalent, the node’s score remains consistently defined.

For example, suppose that for a particular node its role feature is given in the
input (as it is in our experiments described later), and that the three other statistical
features are determined in this order: position direction, relative position, and group
type. Then the score for that node is computed as

NodeScore = FeatScore(role) + FeatScore(pd) + FeatScore(rp) + FeatScore(gt)
0 + logprob(pdlrole) + logprob(rp | role, pd, h_gt)
+ logprob (gt | h_gt, role, pd, rp)

2.3 Distribution Strategy and Search Algorithm

In Mozart the distribution strategy is independent from the search strategy. In other
words, the shape of the search space is specified separately from the order in which
subparts of the space are searched. For distribution, we define a procedure that se-
lects from among the variables associated with statistical scores the variable with the

119

greatest number of suspensions. When those are all determined it then selects absolute
position or head id variables based on smallest current domain size. The reason for
this two-stage method is that absolute position and head id can be almost completely
determined from the other features. Delaying them until last reduces the search space
considerably. (Treating them the same as the others results in “out of virtual memory
errors”.)

Distribution on domain values of variables that are associated with probabilistic
scores is done in order of increasing conditional likelihood of the values, given the same
context that is used for calculating feature scores. In other words, the most likely value
is searched first. Values that haven’t been seen in the given context are pruned, as long
as there was at least one seen value for that context. The values of head id variables are
ordered to try first the nearer nodes (in terms of absolute position). Absolute position
is distributed naively.

For search we use the built-in branch-and-bound algorithm provided by the Ex-
plorer program. The solution ordering constraint used to prune the search space is
simply that the total cost of a new solution must be better than or equal to the cost
of the previous best solution.

3 Experiments

We performed our experiments using the classic sentence “Time flies like an arrow.”
The complete solution for this sentence with respect to the features we are using is
shown in Table 4. Note that there is no element of our program that is tied /hardwired
to this particular input.

Tok Role Group Absolute Relative Position ID Head
type position position direction id

time subject np 1 -1 - 4 1
flies top clause 2 0 + 1 0
like role-marker other 3 -2 - 6 3
an determiner other 4 -1 - 5 3
arrow adjunct np 5 1 + 3 1
right-punc other 6 2 + 2 1

Table 4. Solution Sentence

Table 5 summarizes the experiments we performed on the sample sentence as well
as the results. The first four experiments represent subproblems of parsing, and the last
four are subproblems of generation. Each line of the table has a different combination
of given versus unknown variables, organized in order of increasing difficulty within
each type of subproblem.

The time figure is the one reported by Mozart’s Explorer, but excludes garbage
collection and time spent on database queries. (Our implementation includes three
levels of caching for database queries, and the actual real time varied from less than a
second to less than half a minute for the same input depending on the contents of the
cache.) The third column reports the size of the search tree in terms of search nodes.

120

Given VS. Unknown Time Search Tree Size Depth Correct
role, ap, dir, rp VS. head 20ms 12 6 yes
role, ap, dir, rp VS. head, gt| 30ms 28 10 yes
role, ap, dir VS. rp, head, gt(210ms 209 15 yes
role, ap VS. dir, rp, head, gt{320ms 259 17 yes
role, head, dir, rp VS. ap 10ms 3 2 yes
role, head, dir, rp VS. ap, gt| 40ms 21 6 yes
role, head, dir VS. rp, ap, gt|130ms 71 9 yes
role, head VS. dir, rp, ap, gt(420ms 194 11 yes

Table 5. Exploratory Experiments

The Depth column is the depth of the search tree. The last column shows that our
program always arrived at the correct solution. This fact is our most interesting result.

These experiments also help indicate how well the constraint program scales as
the complexity of the problem is increased. From the time and search tree sizes, the
program seems to scale adequately enough to merit further exploration of the CCP
framework, especially since our implementation can quite probably be tuned to improve
these figures.

To give more of the flavor of how our approach works, Table 6 shows the relative
likelihood of the top values in the domains of each of the probabilistic variables given
just the role. The values are listed in order of decreasing likelihood, so the most likely
one is first. A value that does not appear in the table was not among the top seven values
for that feature. The flag points out cases where the first value listed was not the correct
answer for our sample sentence. Note that during runtime the actual conditioning
features used can result in a different relative ordering than what is shown in the table.

4 Future Directions and Related Work

The approach described in this paper is still quite preliminary. Work remains to add
a fuller linguistic representation, analyze the true statistical relationships between fea-
tures, and refine various parts of our formulation. In particular, the propagation in our
current representation is weaker than it could be. An approach using selection con-
straints as in [8] would be better. Our structural well-formedness constraint is also a
prominent and very interesting area for further exploration. We wish to extend it to
handle non-projectivity using probabilistic information. Our distribution and search
strategies could also benefit from further study, as well as (of course) our overall lin-
guistic model in terms of feature/value sets. Finally, an empirical evaluation against a
test corpus of sentences is also needed. However, the initial results are very encourag-
ing: we produce the correct result in roughly real time on a sample sentence using less
than 400 lines of Mozart code (excluding comments).

Note that probabilities are applied in three different ways in our formulation: as
a hard constraint in defining legal dependency structures; as a soft constraint on the
cost of a sentence—used both to find the optimal solution and to prune the search
space; and thirdly, implicitly as part of the search strategy when choosing which value
to try first for probabilistic variables. This goes beyond any other work we know of in
leveraging probabilistic information. The work of [9] is the most closely related in this

121

Feature Word/Role Values Flag
position direction|time/subject -
flies/top '+
like/role-marker|’-’
an/determiner |-’
arrow/adjunct |7, '+’ *
./right-punc -
relative position |time/subject -1, -2, -3, +1, -4, -5, +2
flies/top 0
like /role-marker|-2, -1, -3, -4, -5, -6, -7
an/determiner |-1, -2, -3, -4, -5, -6, -7
arrow/adjunct |-1, +1, -2, +2, -3, +3, -4 *
./right-punc +2, +1, +3, +4, +5, +6, +7
group type time/subject np, other, clause
flies/top clause, np, other
like/role-marker |other, np, clause
an/determiner |other
arrow/adjunct |other, np, clause *
./right-punc other

Table 6. Relative likelihood of probabilistic domain values

aspect: it describes using an A* heuristic for search in a constraint program, although
the implementation does not seem to have been done yet. Also related is the work on
graded constraints in [10].

Since we use the same program to solve subproblems of both parsing and generation,
our work is similar to research on bi-directional grammars. In contrast to that research,
however, our formulation of the problem does not involve an explicit grammar (or
lexicon) at all. Instead it relies on a database of annotated sentences derived from the
English Penn Treebank [11,12]. From this database, our program can readily obtain
frequency information for a variety of syntactic patterns, and use this information
to solve for unknown feature values. The benefit of our approach is avoidance of the
laborious process of developing linguistic resources manually.

A constraint programming formulation of the parsing and generation problem
makes the relationship between the two inverse faces of NLP very clear. It even makes
it possible to blend the two types of problems in ways that are more useful in practice,
making an NLP system overall more versatile than traditional parsers and genera-
tors. Doing so requires a flexible architecture that does not predetermine the order in
which processing is done. Our initial work in this paper gives us hope that concurrent
constraint programming can be the foundation for an efficient architecture with this
flexibility.

5 Acknowledgements

Much thanks goes to the anonymous reviewers who provided many helpful comments.

122

References

ot

10.

11.

12.

Smedt, K.D., Horacek, H., Zock, M.: Architectures for natural language generation.
In: Trends in Natural Language Generation. Springer, Berlin (1996)

Cahill, L., Doran, C., Evans, R., Mellish, C., Paiva, D., Reape, M., Scott, D.,
Tipper, N.: In search of a reference architecture for NLG systems. In: Proc.
EWNLG. (1999)

Cahill, L., Doran, C., Evans, R., Kibble, R., Mellish, C., Paiva, D., Reape, M.,
Scott, D., Tipper, N.: Enabling resource sharing in language generation: an abstract
reference architecture. In: Proc. LREC. (2000)

Cahill, L., Evans, R., Mellish, C., Paiva, D., Reape, M., Scott, D.: The RAGS
reference manual. Technical report, Univ. of Brighton and Univ. of Edinburgh
(2002)

Reiter, E.: NLG vs. templates. In: Proc. ENLGW ’95. (1995)

Busemann, S., Horacek, H.: A flexible shallow approach to text generation. In:
Proc. INLG Workshop. (1998)

Pianta, E., Tovena, L.M.: Mixing representation levels: The hybrid approach to
automatic text generation. In: Proc. of the AISB Workshop on “Reference Archi-
tectures and Data Standards for NLP”. (1999)

Duchier, D.: Configuration of labeled trees under lexicalized constraints and prin-
ciples. Journal of Research on Language and Computation (2003)

Dienes, P., Koller, A., Kuhlmann, M.: Statistical a-star dependency parsing. In:
Prospects and Advances in the Syntax/Semantics Interface. (2003)

Schroder, I.: Natural Language Parsing with Graded Constraints. PhD thesis,
University of Hamburg (2002)

Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus
of english: the Penn treebank. Computational Linguistics 19 (1993)

Marcus, M., Kim, G., Marcinkiewicz, M., MacIntyre, R., Bies, A., Ferguson, M.,
Katz, K., Schasberger, B.: The Penn treebank: Annotating predicate argument
structure. In: ARPA Human Language Technology Workshop. (1994)

123

A Constraint-Based Model for Preposition
Choice in Natural Language Generation

Véronique Moriceau and Patrick Saint-Dizier

Institut de Recherches en Informatique de Toulouse, IRIT,
118 route de Narbonne, 31062 Toulouse Cedex, France.
moriceau@irit.fr,stdizier@irit.fr

Abstract. In this paper, we show how a constraint-based approach in-
fluences the modelling of preposition lexicalization in natural language
generation. We concentrate on the linguistic description, which is the
most challenging. The CSP procedures themselves are then rather straight-
forward. Preposition choice depends on the verb and its requirements, on
the one hand, and the characteristics of the NP the preposition heads,
on the other hand. These dependencies may induce somewhat contradic-
tory expectations. A Constraint-based approach introduces a declarative
model of this complex relation, allowing to identify all the possible lexical
choices which can be predicted from lexical descriptions.

1 Introduction

With the development of WEBCOOP (Benamara et al. 2003), a system that
produces cooperative answers to queries, the production of accurate natural
language (NL) responses becomes essential. This implies great care in the taking
into account of both user parameters (e.g. the terms used in the query) and
linguistic constraints to produce a response which is accurate in its contents and
as fluid and as well-formed as possible from a language point of view.

1.1 WebCoop output forms

The outputs of the WEBCOOP reasoning component are logical formula that
encode conceptual representations of a fine-grained level. These representations
are true decompositional semantics representations; they are language indepen-
dent, allowing thus a quite large freedom to the NL generator, so that it can
take into account a variety of parameters, such as: user prefered terms, homo-
geneity of style, complexity of structures, etc. Representations are a conjunction
of several types of predicates:

— those that type objects or variables (for example, flight(X), city(paris)),
— those that denote relations (such as prepositions: from(loc,X,Y)) and
— those that describe events (visit(E,X,Y)).

124

As an illustration, the output of WEBCOOP that says that all hotels in Cannes
have a swimmingpool is:

hotel(X) Nin(loc, X, cannes) A equipment — of (X,Y") A swimmingpool(Y')
Within such a decompositional approach, preposition choice is, in general, really
difficult to handle. The choice of the preposition in in the above example is
not straightforward. Most prepositions are indeed heavily polysemic, making
lexical choices highly contextual. Elaborating constraints to model lexical choice
performances realized by humans requires a detailed analysis of the parameters
at stake and how they interact. This is the main aim of this contribution.

1.2 Facets of lexicalization

Lexicalisation is the operation that associates a word or an expression to a con-
cept. It is a major parameter in response production (Reiter and Dale, 1997),
(a good synthesis can be found in (Cahill, 1999)). Lexicalisation is often decom-
posed into two different stages: lexical choice, which occurs during content
determination, where the lexical term chosen, which may still be underspecified,
is dependent on reasoning procedures, the knowledge base contents, and gram-
matical constraints; and lexical variation which is the choice of a particular
word or form among possible synonyms or paraphrases. Lexical variation occurs
in the surface realizer, and may have some pragmatic connotations, for example
an implicit evaluation via the language level chosen (e.g. argotic entails low eval-
uation). In this paper, we are mainly concerned with lexical choice. Some simple
forms of lexical variation occur when two or more prepositions have exactly the
same behavior w.r.t. to the lexical description, which is rather unfrequent.

1.3 Scope of the investigation

In this paper, we propose a declarative model that handles the complex relation
verb-preposition-NP and a correlate, the relation deverbal noun-preposition-NP,
which has a quite similar behavior. We concentrate on the linguistic description,
which is by far the most challenging. This modelling and the subsequent NL
performances are obviously heavily dependent on the accuracy and the adequacy
of the linguistic descriptions provided, in particular lexical, including a number
of usage variations like metaphors, which abound in preposition uses. The power
of our model mainly lies in the way linguistic descriptions are organized and
processed, in a way that avoids making too early and definitive choices. Thus,
in our approach, CSP brings a new way (1) to organize and formulate lexical
structures so that they can be adequtely used, and (2) then to state co-occurence
constraints between sets of potential candidates.

We investigate PP constructions which are compositional. We also consider
verb constructions where the verb incorporates the preposition, as, e.g. climb
which incorporates the preposition up by default. This verb requires an explicit
preposition otherwise, as in climb down. We consider that in this type of con-
struction the preposition is both part of the verb (as a particle) and of the head
of the localization NP that follows. We exclude true verb-particle constructions,

125

however not common in Romance languages, but frequent in Germanic languages
(e.g. move up, clear up), and fixed forms (e.g. boil down), which are best treated
as single units.

Our study being carried out on French, most of our examples are in French
with approximate English glosses.

2 The conflictual relation verb-preposition-NP

2.1 A motivational example

Let us first illustrate the problem by a simple example. Linguistic notions in-
volved being quite complex, these will just be presented here, without any deep
analysis and justifications. A more detailed analysis is given gradually in the
next sections.

The formula:
person(jean) A sea(X) A to(loc, jean, X),
which is a simplified form of the Lexical Conceptual Structure (Jackendoff 1990)
used in WEBCOOP, conveys the idea of someone (jean) going to somewhere
(the sea). If we want to construct a proposition out of this formula, then the
expression R = to(loc, jean, X) is selected as the only predicate that can be
realized as a verb. This form is quite abstract, it characterizes a priori any verb
from the class 'movement verb to a certain location’, movement being induced
from the conceptual domain ’loc’. Verbs of this class are, for example: aller,
marcher, se déplacer, monter, descendre, pousser, etc. (go, walk, move, ascend,
descend, push), most of which incorporate manners and/or means. The same
expression, R also originates the production of the preposition required by the
verb for its object, of type fixed localization (Cannesson et al. 2002). The two
arguments required by the verb are a priori quite neutral, typed "human’ for jean
and ’'place’ for sea.

The choice of the preposition depends on the verb, but also on more prag-
matic factors. Let us examine the above example in more depth. Since there are
no explicit manners or means in the formula, let us select a verb which is as
neutral as possible. In the lexicon, a verb such as aller (go) basically requires
a preposition of type ’fixed position’ since aller already incorporates the notion
of movement, but not all such prepositions are acceptable, e.g. a is acceptable
but not pour. In contrast, a verb like partir accepts both. Marcher would rather
select sur, dans, d coté de as fixed positions, characterizing the space in which
movement occurs. This situation is not proper to movement verbs, in (Mari
and Saint-Dizier 2003), we show that the same kind of problems are raised by
prepositions denoting instrumentality.

2.2 Stability over deverbals

Note that, although there is a quite large stability, prepositions acceptable for the
relation verb-preposition-NP are not systematically acceptable for the relation

126

deverbal noun-preposition-NP although the semantics of the phrase is the same.
For example, the preposition pour is not acceptable in * [’avion vole pour Paris
(the aircraft flies to Paris) whereas it is acceptable in le vol pour Paris est
complet (the flight to Paris is full) - the semantics of both phrases conveyed by
the preposition semantic representation being the same.

Conversely, the preposition ¢ (to) is acceptable in le vol va & Paris (the flight
goes to Paris) whereas it is not in * le vol ¢ Paris est complet (the flight to Paris
if full). In fact, the verb aller (go) incorporates a notion of destination which
explains why the preposition pour, denoting a notion of trajectory towards a
goal, is not acceptable because, among other considerations, of the redundancy
it introduces. The preposition a is more neutral in this respect and can be com-
bined with aller. In the case of the relation deverbal noun-preposition-NP, the
preposition used must denote a destination this is why only le vol pour Paris is
acceptable. Here vol simply denotes the event of a flight, it does weakly incor-
porate a notion of trajectory, but this notion needs some further lexicalization,
as also shown in: a climb up the hill.

2.3 Derived uses

In addition, prepositions that indicate a direction, which can be interpreted (as
a kind of metonymy) as denoting an area relatively well delimited in the far, are
also acceptable: aller vers la mer (go towards the sea). We call this phenomenon
semantic coercion. Finally, a number of movement verbs also accept a more
complex object structure, of type trajectory, including source and vias, but this
structure often needs to be fully instantiated.

Note that depending on the object type and on the type of movement induced
by the verb, other fixed position prepositions are possible: monter sur la chaise
(to go on the chair), aller sous le pont (to go under the bridge). The choice
of the most prototypical preposition (which does not exclude others) crucially
depends on geometrical parameters of the object, or on prototypical uses. Finally,
pragmatic factors may interfere (pragmatic coercion). For example if Jean is far
from the sea, a preposition denoting a destination, interpreted as defining an
area, is possible: marcher vers la mer (walk towards the sea), whereas it is not
so appropriate if Jean is close to the sea.

Movement verbs, in particular, are subject to a large number of metaphorical
uses on their object PP: rentrer dans un projet (to enter into a project), passer
sur un probléeme (to pass over a problem), monter dans les sondages (to rise in
polls). In that case, the preposition choice heavily depends on the metaphorical
interpretation of the object. For example, a project as an activity to be in,
similarly to a place, or polls as a ladder to climb. We treat metaphors as a type
coercion operation that changes the type of the object NP into a type appropriate
for the preposition, that translates the meaning of the PP (Moriceau et al. 2003).
In this paper, we consider the result of such type coercion operations, assuming
they are specified in the system, in conjunction with the lexicon.

127

2.4 Cocomposition

A final point in the interaction verb-preposition-NP is the mutual compositional
influence of the verb on the PP and vice-versa, called 'co-composition’ in the gen-
erative lexicon (Pustejovsky 1995). This phenomenon remains compositional in
its essence even if it requires non monotonic treatments of semantic representa-
tions. A case such as aller contre un principe (to go against a principle) preserves
the idea of progression of the verb while contre overrides the fixed position natu-
rally expected as the PP of the verb, to introduce a complex meaning which can
be schematized as Opposition to a fixed, abstract position (here, a principle).
Co-composition is still quite an open research field, essentially linguistic, which
we will not discuss here.

3 Constraint domains

In this section, we present in more depth an analysis of the verb-preposition-NP
complex relation, modelling constraints imposed by each protagonist in terms of
domains of potential realizations. The basic idea is to produce sets of structures
in which each element includes all the parameters necessary for expressing con-
straints and for making appropriate lexicalizations. In section 4, we show how
constraints expressed as equations can be stated, so that a priori all potential ac-
ceptable preposition lexicalizations can be selected. Lexicalization decisions are
thus delayed as much as possible avoiding useless backtracking and also allowing
for the taking into account of long-distance dependencies.

Starting from semantic representations, let us first investigate the domains
associated with each element in the formula, that corresponds to the following
constructs to be determined and lexicalized: the verb (or the deverbal), the
preposition and the NP. In section 4, we show how they interact.

3.1 Verbs

Our description of French verbs (Saint-Dizier 1998) heavily relies on the con-
ceptual categories defined in WordNet. implemented a three level classification
which seems to be sufficiently accurate to deal with preposition choice, as far as
the verb is concerned. For example, for movement verbs, we have the following
hierarchy:

1. ’local movement’ (dance, vibrate)

2. 'movement’: specified arrival, specified departure, trajectory (go)

3. 'medium involved’: land, water, air/space, other types of elements (swim,
skate)

4. 'movement realized by exerting a certain force’: willingly or unwillingly
(push)

5. 'movement with a certain direction’: upwards, downwards, forward, back-
ward, horizontal (rise, ascend, climb)

6. 'movement accompanied’ (carry)

128

7. ’beginning/stopping/resuming/amplifying a movement’ (stop, accelerate)
8. ’activity related to a movement’ (drive).

We have a total of 292 verb classes organized around 17 main families borrowed
from WordNet (e.g. verbs of body care, possession, communication, change, etc.).
Each lower level class is associated with a by-default subcategorization frame
(corresponding to the prototypical verb of the class) that describes the struc-
ture of the verb arguments, in particular the type of the preposition and of the
argument normally expected. Each class also receives a by-default LCS represen-
tation, which can then be adapted to each verb, to capture some sense variations
or specializations. For example, the movement verb with specified arrival sub-
class is represented as follows:

[class: movement with specified arrival

prototypical verb: aller (go)

subcat: [X: NP(human), Y: PP(localization)]

lcs: to(loc, X,Y) 1

As defined in (Cannesson et al. 2001), to is a primitive that potentially covers
a number of surface realizations.

Verbs often occur in different classes, even for a given sense: within a gen-
erative approach like ours, this characterizes the different facets the verb may
take, as well as some of its frequent metaphoric uses. In fact, some very frequent
metaphoric uses may get the status of a specific sense, with its own autonomy.

Verbs that incorporate a preposition by default (e.g. climb, enter) are marked
as such in their subcategorization frame, informally:
enter: [NP, PP(prep: type: ’inside’, incorporated]
resulting, in by-default situations, in the non-surface realization of the preposi-
tion. This phenomenon is implemented as a verb local constraint, and does not
alter our model, since it is a lexical constraint.

From an NL generation point of view, starting from a semantic representation
such as to(loc, jean, X)) we get a set of verb lexicalizations (or equivalent deverbal
nouns) or a more intentional specification such as a verb class. This is obtained
via unification or subsumption of the representations in individual verb lexical
entries or in the semantic representation specified at verb class level with the
semantic representation R. The domain induced is set of tuples verb(A,B,C,D)
that meet the subsumption constraint. Domain is the following:

Domain(verb(R)) = {Uwverb(VClass, RR, scat(Type — Prep, Type — PP),
Lexicalization) A subsumes(RR, R)}

where, in the verb lexical entry, RR is the verb semantic representation in
the formula subsumed by R (subsumption in LCS is defined in (Saint-Dizier
2001)), which originates the construction of the domain. VClass is the verb class,
Type-PP is the type normally expected for the object PP, and scat contains the
subcategorization information. We have, in our example, the abstract form R =
to(loc,Y, X) and the set of verbs of the class 'movement, specified arrival’, asso-
ciated with their subcategorization frame, which is constructed via unification

129

(see above example). The same situation occurs with the corresponding deverbal
nouns.

3.2 Nouns and NPs

The head noun of the NP must meet in some way with the verb subcategorization
frame expectations. The domain of the head noun is its semantic type (and all its
descendent, via subsumption in the domain ontology). Derived types may come
from possible metaphorical and metonymic uses, implemented in our framework
(Moriceau et al. 2003) via type coercion rules.

Type coercion Type coercion rules are modelled globally by means of con-
strained rewriting rules. They implement various forms of metaphors and meto-
nymies. Let X' be the set of such coercion rules o, functions of the verb class and
of the semantic types expected for the object PP:

derived — type = o(verb(V Class, Type — PP)),

and let TC be the transitive closure of this operation on the verb at stake (i.e. the
set of all elements which can be derived). TC is finite and is defined via recursive
enumeration. In our approach, derived types are not so numerous: there is no
recursive application of type coercion, resulting in a quite small and stereotyped
set of derived types.

For example, a frequently encountered metaphorical construction such as
entrer dans un projet (to enter in a project), where project is typed as ’epistemic
artefact’ requires a type coercion rule of the form:

o0;: epistemic artefact = o(verb(enter,localization)).

Coercion rule is here restricted to the subclass of ’enter’ verbs, since the metaphor
is not fully regular for all movement verbs with specified arrival. This means that
an accurate description of metaphors involves a large number of rules if one wants
to avoid overgeneration, a major problem in NL generation.

Then, if R1 is the semantic representation of the noun, the domain of the
NP is therefore a set of triples of the form:

Domain(NP(R1)) = {U noun(R1, head — noun — type, Lexicalization),
noun(_, derived — type, Lexicalization)}

3.3 Prepositions

Most prepositions are highly polysemic and are often involved in a large num-
ber of derived, unexpected or metaphorical uses. Analyzing and representing
the semantics of prepositions and generating appropriate prepositions in natu-
ral language generation is a rather delicate task, but of much importance for
any application that requires even a simple form of understanding. Spatial and
temporal prepositions have received a relatively in-depth study for a number of
languages (e.g. (Verkuyl et al. 1992)). The semantics of the other types of prepo-
sitions describing manner, instrument (Mari and Saint-Dizier 2003), amount or

130

accompaniement remain largely unexplored. In this section, for readability pur-
poses, we introduce some background on preposition semantics, mainly on a
general classification and semantic description we carried out a few years ago
(Cannesson et al. 2002). Work is on French, but a number of elements are stable
over a variety of languages, in particular Romance languages.

Identifying preposition senses Although prepositions have a number of id-
iosyncratic usages (probably much less in French than in English), most senses
are relatively generic and can be characterized using relatively well-known and
consensual abstract labels, as shown in (Cannesson et al. 2002) for French. To il-
lustrate this point, let us consider the case of par. Par has the following 6 senses,
which seem to be all approximately at the same level of abstraction:

— distribution: il gagne 1500 Euros par mois (he earns 1500 Euros per month),

— causality: as in passives but also e.g. in par mauvais temps, je ne ne sors pas
(by bad weather I don’t go out),

— origin: je le sais par des amis (I know it from friends),

— via: je passe par ce chemin (I go via this path),

— tool or means: je voyage par le train (I travel by train),

— ‘approximate’ value: nous marchons par 3500m d’altitude (we hike at an

altitude of 3500m).

In a second stage, we have provided a conceptual representation of these senses,
based on the Lexical Conceptual Structure (LCS, Jackendoff 90), which is based
on a language of primitives, viewed as linguistic macros, which can be interpreted
in various frameworks, such as the Euclidean geometry. The LCS also introduces
a decompositional approach to meaning which allows for the development of an
accurate and abstract theory of lexicalization, in particular for prepositions,
which it represents particularly well.

A general typology for prepositions Here is a first classification proposal
for French prepositions (see also (Cannesson et al. 2002)). We have identified
three levels of decomposition which are quite regular and have an internal sta-
bility: family, facet and modality. Only the two first levels are introduced here.
Labels for semantic classes are intuitive and quite often correspond to thematic
role names (examples are direct translations from French), these are the labels
specified in verb subcategorization frames:

— Localization with facets: source, destination, via/passage, fixed posi-
tion. Destination may be decomposed into destination reached or not (pos-
sibly vague), but this is often contextual. Fixed position can either be vague
(he is about 50 years old) or precise. From an ontological point of view, all of
theses senses can, a priori, apply to spatial, temporal or abstract arguments.

— Quantity with facets: numerical or referencial quantity, frequency
and iterativity, proportion or ratio. Quantity can be either precise (tem-
perature is & degrees above 0) or vague. Frequency and iterativity: he comes
several times per week.

131

— Manner with facets: attitudes, means (instrument or abstract), im-
itation or analogy. Imitation: he walks like a robot; he behaves according
to the law.

— Accompaniement with facets: adjunction, simultaneity of events, in-
clusion, exclusion. Adjunction : flat with terrace / steak with French fries/
tea with milk, exclusion : they all came except Paul.

— Choice and exchange with facets: exchange, choice or alternative,
substitution. Substitution : sign for your child, choice: among all my friends,
he is the funniest one.

— Causality with facets causes, goals and intentions. Cause: the rock fell
under the action of frost.

— Opposition with two ontological distinctions: physical opposition and psy-
chological or epistemic opposition. Opposition: to act contrary to one’s in-
terests.

— Ordering with facets: priority, subordination, hierarchy, ranking, de-
gree of importance. Ranking : at school, she is ahead of me.

— Minor groups: About, in spite of, comparison. The terms given here are
abstract, and cover several prepositions. About: a book about dinosaurs.

Each of the subsenses described above is associated with a number of prepo-
sition senses, clearly distinct from other senses. Here is a brief description of the
Ordering class:

’ Fig. 1 - prepositions of Ordering family ‘

facet prepositions
Priority apres (after), avant (before)
Subordination sous (under), sur (above)

Hierarchy |devant (in front of), derriere (behind)

avant (before), apres (after)
Ranking |devant (in front of), derriere (behind)
Degree of | a coté de, aupres de (close to, near),

importance par rapport a,

pour, vis-a-vis de (compared to)

A general conceptual semantics for prepositions Each preposition facet
or modality has a unique representation. For example, 2 major senses of the
preposition avec (with) are:

— accompaniement, represented as, in the simplified LCS representation we
developed:
with(loc, I, J),
where ’loc’ indicates a physical accompaniement (I go to the movies with
Maria), while 'psy’ instead of ’loc¢” would metaphorically indicate a psycho-
logical accompaniement (Maria investigated the problem with Joana).

132

— instrument, represented as:
by — means — of (manner, I, J)
(they opened the door with a knife). This is, in fact, a generic representation
for most preposition senses introducing instruments, a more refined analysis
can be found in (Mari et al. 2003).

In our framework, we defined 65 primitives encoding 170 preposition senses,
which seem to cover most senses found in standard texts over a number of lan-
guages. Language being essentially generative and creative, this obviously does
not exclude other senses, for which, most probably, a few additional primitives,
or the composition of already defined ones, will be necessary.

Semantic and pragmatic coercion Semantic and pragmatic coercion on the
type of preposition expected by the verb can be modelled as follows. Let T be
the set of such coercion rules 7, functions of the verb class and of the semantic
class of the preposition:

derived — subclass = T(verb(V Class, Type — Prep)),

For example, parler sur le vague (litt. to talk on vagueness) has a PP character-
izing a topic of conversation. The default preposition in French, specified in the
lexical entry of parler is de (about). The preposition sur introduces the idea of
a general discussion, we have then the following pragmatic coercion rule:

"sur’ = T(verb(talk, about’)).

We limit here preposition classes to a precise preposition, to avoid potential
overgeneration.

From a more formal point of view and more generally, let TT be the transi-
tive closure of this operation on the verb at stake (i.e. the set of all subclasses
which can be derived). TT is finite and is defined via recursive enumeration from
coercion rules and lexical descriptions. TT defines the semantic and pragmatic
expansion of the verb-preposition compound.

Back to our example, the preposition is primarily induced by the semantic
representation R2 = to(loc, Y, X). More generally, the domain of potential lexi-
calizations is characterized by a set of triples as follows:

Domain(prep(R2)) = {U (prep(Subclass, Restr N P, RR2, Lexicalization)
Asubsumes(RR2, R2)), prep(derived — subclass, _, _, Lexicalization) }

where, in the lexical entry ’'prep’, Subclass designates the modality or the
facet level as exemplified above, RestrNP are the selectional restrictions imposed
on the NP headed by the preposition, RR2 is the semantic representation which
must be subsumed by R2, and Lexicalization is the surface realization(s) of RR2
(this implements lexical variation, when there is a strict lexical equivalence).
The second set of triples prep is the transitive closure (produced by recursive
enumeration) of all potential type coercions given the verb identified or its class.

133

4 Preposition Lexicalization as a CSP

In the previous section, we show how domains of lexical entries and associated
lexicalizations can be constructed, via unification, subsumption and type, se-
mantic and pragmatic coercion. The challenge is now to express and to manage
the constraints of the triple verb-preposition-NP, so that all possible preposition
lexicalizations can be made explicit, allowing for the generation of the VP.

4.1 Constraints between domains as equations

Let us first recall the 3 domains defined above:

Domain(verb(R)) = {U verb(VClass, RR, scat(Type — Prep, Type — PP),
Lexicalization) A subsumes(RR, R)}

Domain(np(R1)) = {U noun(R1, head — noun — type, Lexicalization),
noun(, derived — type, Lexicalization)}

Domain(prep(R2)) = {U (prep(Subclass, Restr NP, RR2, Lexicalization)
Asubsumes(RR2, R2)), prep(derived — subclass, -, -, Lexicalization) }

From these specifications, it is possible to state constraints under the form
of equations, from which pairs:
(verb lexicalization, preposition lexicalization)
can be produced, assuming the noun has a fixed type, and a limited number of
lexicalizations which cannot a priori be revised. We have the following equations:

1. Type-PP subsumes (a) head-noun-type or (b) an element s in the derived
types via type coercion. In more formal terms:
subsumes(Type — PP, head — noun — type) V. Jo € X,
s = o(Type — PP) A subsumes(Type — PP, s)).
2. RestrNP subsumes head-noun-type or s:
subsumes(Restr — N P, head — noun — type) V subsumes(Restr — NP, s).
3. Type-Prep subsumes (a) Subclass in direct usages or (b) a derived Subclass
via semantic or pragmatic coercion:
subsumes(Type — Prep, SubClass) vV 3t € T,
t = 7(Type — Prep) A subsumes(Type — Prep,t)).

The satisfaction of these equations produces the lexicalization set composed of
pairs (verb, preposition). Lexical choice can operate on these pairs to select one
of these, possibly e.g. on the basis of user preferences. Preposition incorporation
into verbs is also handled at this level.

As explained in the introduction, provided restrictions in various lexical en-
tries are adequately described, and that type, semantic and pragmatic coercion
rules are appropriate, our system does not overgenerate. Overgeneration is solely
due to incomplete or inadequate linguistic descriptions. A priori, our system is
sound and complete and produces all the admissible solutions, w.r.t. lexical spec-
ifications and coercion operations.

134

4.2 A direct illustration

Let us illustrate the satisfaction of these constraints by a simple example:
flight(5564) A to(loc, 5564, Paris) A city(Paris),
where to(loc,5564,Paris) is at the same time R (the semantic representation of
the verb) and R2 (the semantic representation of the preposition); city(Paris) is
R1 (the semantic representation of the noun of the PP).
The three domains are:
Domain(verb(R)) = { verb(movement—verb—to— destination,to(loc, X,Y),
scat(fized — position, fixed— position),aller),
verb(movement —verb—to— destination, to(loc, X,Y),
scat(fized—position, fixed—position), monter),
verb(movement —verb—to— destination, to(loc, X,Y),
scat(fized—position, fired—position),arriver),

A subsumes(to(loc, X,Y), to(loc, 5564, Paris))}

Domain(np(R1)) = { noun(city(Paris), city, Paris)}

Domain(prep(R2)) = { prep(fized—position, fixzed—position,to(loc, X,Y), a),
prep(destination, fized — position,to(loc, X,Y), pour),
prep(destination, fized — position,to(loc, X,Y), en),

A subsumes(to(loc, X,Y),to(loc, 5564, Paris)) }

Let us apply the constraints:

1. subsumes(Type — PP, head — noun — type)
— subsumes(fized — position, city)
2. subsumes(Restr — PP, head — noun — type)
— subsumes(fized — position, city)
3. subsumes(Type — Prep, SubClass)
— subsumes(fized — position, fized — position)

The solution domain is: {(aller,a), (monter,a),(arriver,d), ...} .

With respect to the lexical descriptions, these three solutions are acceptable,
although monter a is les natural for a flight, than, e.g. for a car.

4.3 More complex situations

Our model deals with composition (or co-compositional) forms. It naturally
discards constructions which do not meet the selection and possibly coercion
constraints. For example, let person(jean) A to(loc, jean,Y) A wall(Y) be the
semantic representation of the metaphorical semi-fixed form: Jean part dans le
mur (Jean goes in the wall = john fails (in an enterprise), as a car going in a
wall is going to be broken)).

In this example, partir is a movement verb with destination specified, dans can

135

be acceptable provided the NP has an inside into which the subject can go,
which is not the case for mur (wall).
The three domains are (without type coercion):
Domain(verb(R)) = { verb(movement—verb—to— destination,to(loc, X,Y),
scat(destination, fired — position), partir),
verb(movement —verb—to— destination, to(loc, X,Y),
scat(destination, fixed — position), courir),

A subsumes(to(loc, X,Y),to(loc, jean,Y))}
Domain(np(R1)) = { noun(wall(Y), compact — object, mur)}
Domain(prep(R2)) = { prep(destination, fized — position,to(loc, X,Y),
vers),
prep(destination, fixed — position,to(loc, X,Y"), pour),
prep(destination, fized—position,to(loc, X,Y), a destination de),

A subsumes(from(loc, X,Y),to(loc, jean,Y)) }

Let us now apply the equations between domains:

1. subsumes(T'ype — PP, head — noun — type)

— subsumes(fized — position, object)
2. subsumes(Restr — N P, head — noun — type)

— subsumes(fized — position, object)
3. subsumes(Type — Prep, SubClass)

— subsumes(destination, destination)

The solution domain is:
{(partir, vers), (partir, pour), (partir, & destination de), ...} .
This solution domain does not contain the expected metaphoric solution partir
dans le mur because of the type of wall, which is not an object with an inside.
This is due to the fact that the preposition used dans (in) does not belong to
the preposition class destination.

If we now add the domain engendered by the corresponding type coercion
rule:
'dans’ = 1(verb(partir, destination)),
assuming destination is the type of preposition normally expected by the verb,
the solution domain now includes the form (partir, dans), mur (wall) being cor-
rectly typed as a fixed position. In fact, this metaphor applies to most movement
verbs with specified destination, each of them making more explicit a manner of
going in a wall.

Let us also note that while (partir, vers), (partir, pour) can be combined with
a number of metaphors in abstract domains, (partir, & destination de) essentially
expects an object NP of type physical location.

Finally, this approach allows us to treat the verb-preposition-NP constraints
in a way independent from their syntactic realization. For example, the above
example, with a left extraposition of the PP (due to a stressed focus) and a

136

nested proposition:

C’est pour Paris que part ce vol (this is for Paris that this flight leaves)

is treated in exactly the same way. This allows us to describe lexical choice of the
pair verb-preposition at the highest level of abstraction, independently, a priori,
of its syntactic realizations.

5 Conclusion

In this paper, we presented a model that describes in a declarative way the
complex interactions between the verb, the preposition and the object NP. We
focussed on the lexicalization of the preposition, which is a major difficulty in
language generation.

Based on the notion of domain, we introduced equations that manage these
interactions, and which, after resolution, propose a set of lexicalizations for the
pair verb-preposition. We considered regular cases as well as derived ones, in
particular a number of metaphors, modelled by means of type, semantic and
pragmatic coercion rules.

We proposed in this paper a declarative model which has a priori complete-
ness and soundness properties. These properties, as for e.g. grammars, entirely
depends on the quality of the linguistic descriptions and restrictions, without
which the system is just an empty shell.

In terms of implementation, this work is being integrated into a larger set
of tools for language generation (including, among others: NP, PP, proposition
and syntactic alternation generation). Such a set of tools, based on a decomposi-
tional representation of meaning, is of much interest and importance in language
generation, where there are very few generic tools available. This work will be
used and validated in the WEBCOQOP project, where short statements with a
large number of PPs need to be generated.

Implementations are under study. A simple solution is to manage set inter-
sections, sets being viewed as finite domains. It is possible, furthermore, to define
some of those sets (in particular those related to coercion) a priori, for each verb,
by means, e.g. of partial evaluation techniques. We would like, on top of these
set intersection constraints to be able to introduce linguistic preferences, be they
general or related to a user. However, these types of heuristics can only operate
after construction of the set of admissible lexicalizations. It would be of much
interest to have them interact as early as possible in the resolution process in
order to limit complexity.

At a linguistic level, this study involves only knowledge from lexical descrip-
tions. It is abstract and not committed a priori to any grammatical form. This
means that nothing prevents it from being integrated, with, obviously, some
customization, into a linguistic theory such as HPSG, PP (via the projection
principle), or LFG, and possibly TAGs, since these theories are centered around

137

lexical descriptions.

Acknowledgements. This project is partly supported by the CNRS TCAN
program, we are grateful to its members for their advices. We also thank anony-
mous reviewers which helped improved this work.

References

1. F. Benamara and P. Saint-Dizier. WEBCOOP: a Cooperative Question-Answering
System on the Web. EACL project notes, Budapest, Hungary, April 2003.

2. E.Cannesson, P. Saint-Dizier. Defining and Representing preposition Senses: a pre-
liminary analysis. In ACL02-WSD, Philadelphia, July 2002.

3. L. Cahill. Lexicalisation in applied NLG systems, Research report, ITRI-99-04, 1999.

4. R. Jackendoff. Semantic Structures. MIT Press, 1990.

5. V. Moriceau and P. Saint-Dizier. A Conceptual Treatment of Metaphors for NLP.
ICON, Mysore, India, December 2003.

6. J. Pustejovsky. The Generative Lexicon. MIT Press, 1995.

7. E. Reiter, R. Dale. Building Applied Natural Language Generation Systems, Journal
of Natural Language Engineering, volume 3, number 1, pp:57-87, 1997.

8. P. Saint-Dizier. Alternations and Verb Semantic Classes for French. In Predicatives
Forms for NL and LKB, P.Saint-Dizier (ed), Kluwer Academic, 1998.

9. P. Saint-Dizier and G. Vazquez. A Compositional Framework for Prepositions.
IWCS4, Springer, lecture notes, Tilburg, 2001.

10. H. Verkuyl and J. Zwarts. Time and Space in Conceptual and Logical Semantics:
the notion of Path, Linguitics 30: 483-511, 1992.

11. A. Mari and P. Saint-Dizier. A Conceptual Semantics for Prepositions Denoting
Instrumentality. ACL-SIGSEM Workshop: The Linguistic Dimensions of Preposition
and their Use in Computational Linguistics Formalisms and Applications, Toulouse,
France, 2003.

138

Rapid Software Prototyping of an Arabic
Morphological Analyzer in CLP

Hamza Zidoum

Department of Computer Science, SQU University,
PO BOX 36, Al Khod PC 123, Oman

zidoum@squ.edu.om

Abstract. This paper presents an Arabic Morphological Analyzer and its im-
plementation in ECL'PS® a constraint logic programming language. The Mor-
phological Analyzer (MA) represents a component of an architecture, which
can process unrestricted text from a source such as Internet. The morphological
analyzer uses a constraint-based model to represent the morphological rules for
verbs and nouns, a matching algorithm to isolate the affixes and the root of a
given word-form, and a linguistic knowledge base consisting in lists of mark-
ers. The morphological rules fall into two categories: the regular morphological
rules of the Arabic grammar and the exception rules that represent the language
exceptions. ECL'PS® is particularly suitable for a rapid prototyping of a mor-
phological analyzer for Arabic thanks to its double reasoning: symbolic rea-
soning expresses the logic properties of the problem (linguistic rules) and facili-
tates the implementation of the linguistic knowledge base and heuristics, while
constraint satisfaction reasoning on finite domains uses constraint propagation
to keep the search space manageable while stemming the tokens.

1 Introduction

Morphology is the study of meaningful units in language (morphemes) and how they
combine to form words. Hence, morphological analysis module is inherent to the
architecture of any system that is intended to allow a user to query a collection of
documents, process them, and extract salient information, as for instance, systems that
handle Arabic texts and retrieve information expressed in Arabic language over Inter-
net [11].

In this paper we present the implementation of a prototype Arabic morphological
analyzer intended to be a component of an architecture that can process unrestricted
text, within a Constraint Logic Programming (CLP) framework [12],[13],[14]. CLP is
particularly suitable for the implementation of such a system thanks to its double
reasoning: symbolic reasoning expresses the logic properties of the problem and
facilitates the implementation of a the linguistic knowledge base, and heuristics,
while constraint satisfaction reasoning on finite domains uses constraint propagation
to keep the search space manageable. Constraints present an overwhelming advan-
tage: declarativity. Constraints describe what the solution is and leave the answer to

139

question sow to solve them to the underlying solvers. A typical constraint-based sys-
tem has a two-level architecture consisting of (1) a programming module i.e. sym-
bolic reasoning module that expresses the logic properties of the problem, and (2) the
constraint module provides a computational domain such as reals, booleans, sets,
finite domains, etc... and a reasoning about the properties of the constraints such that
satisfiability, and reduction, algorithms known as solvers. Constraints thus, reduce
the gap between the high level description of a problem and the code implemented.

The objective is to process a text in order to facilitate its usage by a wide range of
further applications e.g.; text summary, translation, etc. The system is intended to
process unrestricted text. Hence, the criteria of robustness and efficiency are critical,
and highly desirable. To fulfill these criteria, we made the following choices:

1. Avoid the use of a dictionary as is it the case of classical morphological analyzers.
Indeed, the coverage of such tool is limited to a given domain and cannot cope
with unrestricted texts from dynamic information sources such as Internet.

2. Deal with unvoweled texts since most Arabic texts available on Internet are written
in modern Arabic that usually doesn’t use diacritical marks.

In order to implement the morphological analyzer, we used the contextual exploration
method [1]. Tt consists of scanning a given linguistic marker and its context (sur-
rounding tokens in a given text) looking for linguistic clues that guide the system to
make the suitable decision. In our case, the method scans an input token and tries to
find the required affixes in order to associate the root-form and the corresponding
morpho-syntactic information.

Arabic is known to be a highly inflexional language; its famous pattern model using
the CV (Consonant, Vowel) analysis has widely been used to build computational
morphological models [2, 3, 4]. During the last decade, an increasing interest has
been noticed to implement Arabic morphological analyzers [5, 6, 7, 8, 9, 10]. Almost
all systems developed, in the industry as well as in the research, make use of a dic-
tionary to perform morphological analysis. For instance, In France, the Xerox Centre
developed an Arabic morphological analyzer [7] using the finite-state technique. The
system uses an Arabic dictionary containing 4930 roots that are combined with pat-
terns (an average of 18 pattern for every root). This system analyses words that may
include full diacritics, partial diacritics, or no diacritics; and if no diacritics are pre-
sent it returns all the possible analyses of the word.

The remaining sections of this paper are organized as follows. Section two describes
the system design and its architecture. Section three is dedicated to the description of
regular rules. The matching algorithm is described in section 4. Finally, section five
concludes the paper with future directions to extend this work.

140

2 System Design and Implementation

Since the intended system is concerned with the morphology of verbs and particles
only, we prefer the part of speech type classification in which an Arabic word can be
a verb, a noun or a particle (Fig.1).

Arabic Word
Noun Verb Particle

Fig.1. A Classification of Arabic words according to the Part of §
speech

One possible way of viewing the structure of a token - among several possible ones -
and a convenient one is:

The main part of the token is the stem (whether noun, verb or particle). It is the inner
part surrounded (possibly) by:

The prefix part positioned before the main part.

The suffix part positioned after the main part.

In the remaining paper, we concentrate on automating verbs morphology and leave
particles, and nouns morphology for further work.

The following example shows the analysis of an Arabic sentence. This is similar to
what the system should do in principle. The analyzed text is verse 186 of the second
chapter of the Holy Qur'an.

P o B T o P
B dEss Ll B36 e il
c eencla

e L ERR T T - |
@L,H{w%’ﬁ,;u;'wgm

Tablel shows a segmentation of each word in the previous verse. The segmenta-
tion follows the affixes and body/stem schemes discussed in this chapter. Notice that
the example shows some nouns for explanation purposes but the system deals with
verbs and particles only. The segmentations process shown in the table is not the
single task the system is designed to do; extracting useful information from these
segments is another important function of the system. These functions do not depend
on and make no use of the diacritical marks appearing in the example.

141

Token | Prefix Body| Root Measure | Suffix
123 12,3
s g s
13 13 13
JETN L gL Jed a,
sl e e Jlad ¢
&= o= o= &
S o o o P
b cud <« dnd
ual L) s cn il
3523 352 52 Aled
gl J gl) g
13 13 13
Oea ey e J=é O,
[T PR RCH] RN O B
o J ¢ ¢
sasds | 5 ds (s o Jad s,
& < ¢ ¢
peld da dl o
05 L 2 2 ded D)

Table 1. Segmentation/Stemming of Words Example

The morphological analyzer finds all word root forms and associates the morpho-
syntactic information to the tokens. Within the text representation, a token includes
the following fields.

1

w

9.

. Name, which contains the name of the token. Every token is assigned a name that

allows the system to identify it.

. Value, which is the word-form as it appears in the text before any processing.
. Root, stores the root of the word that is computed during morphological analysis.
. Category, Tense, Number, Gender and Person are the same fields as the regular-

rules.

. Rule applied, stores the identifier of the rule that has been fired to analyze the

token.

. Sentence, a reference to the object "Sentence" containing the token in the text. This

is a relationship that holds between the token and its corresponding sentence.

. Order, stores the rank of the token in sequence from the beginning of the text. It is

used to compare the sequential order of tokens in the text.

. Positions, correspond to the offset positions of the token in the text. It is used to

highlight a relevant token when displaying the results to the user.
Format, is the associated format (boldface, italics...) applied to a token in the text.

The morphological analyzer (Fig.2) includes two kinds of rules: regular morphologi-

142

cal rules and exception rules that represent the morphological exceptions. Lists of
exceptions contain all the markers that do not fall under the regular rules category.
When analyzing input tokens, the matching algorithm attempts to match between the
affixes of the token with a regular rule. If it does not succeed, it attempts to apply an
exception rule by looking into the exception lists.

Morphological Analyzer

- Text
Exception Regular
Lists Rules l
Text
Candidate representation

Token
Matching
algorithm Token
updated

Fig. 2. The morphological analyzer architecture.

In view of a rapid-prototyping software implementation strategy, only regular rules
specifications have been considered for implementation. After a test phase, the
implementation of the exceptions is underway. We used Constraint Logic
Programming language ECL'PS® [14] for building the Arabic morphological analyzer
to benefit from several advantages. CLP is particularly suited for rapid-prototyping
software implementation because it provides a high-level of abstraction. The reason
lies in the neat separation between the declarative model (how to express the problem
to be solved) and the operational model (how the problem is actually solved). A
typical constraint-based system has a two-level architecture consisting of a
programming module i.e. symbolic reasoning module expresses the logic properties
of the problem and facilitates the implementation of the linguistic knowledge base,
and heuristics; while constraint satisfaction reasoning on (finite) domains uses
constraint propagation to keep the search space manageable [12], [13, [14].

3 Regular rules

Regular Arabic verb, and noun forms have a fixed pattern of the form “pre-
fix+troot+suffix”, thus they can be implemented as automatic procedures since the
identification of affixes is enough to extract the root form and associate the morpho-
syntactic information.

A regular rule models a spelling rule for adding affixes. The structure of regular-rule
consists of nine fields that can be grouped into three classes: i) Name and Class iden-
tify the object in the system, ii) Prefix and Suffix store the prefix and suffix that are

143

attached to a given token iii) Category, Tense, Number, Gender, and Person store the
morpho-syntactic information inferred from a token. For instance, consider the Ara-
bic word "0sES" (in the active mode: ‘they write’) that is composed of the three fol-
lowing morphemes: the root of the verb that is "<i&" (/ktb/, notion of writing), the
prefix "-" that denotes both the present tense and the third person, and the suffix "os"
that denotes the masculine and the plural. The rule that analyses this word is repre-
sented in (fig. 3 (a)). In (fig. 3 (b)) the token is shown before matching, and in (fig. 3
(c)) the token attributes are updated:

Category: verb

(C—

Number:

Positions: (3382, 3388)
Format:

>

Name: T1123 Name: T1123

Class: Token Class: Token
Name: V28 Value: 0558 Value: 055
Class: regular-rule Root: Root: S
Prefix: - Category: Update Category: verb
Suffix: 03 match Tense: the Token | Tepse: present

Number: plural

Tense: present Gender: Gender: masculine
Number: plural Person: Person: third
Gender: masculine Rule-applied: Rule-applied: V28
Person: third Sentence: S052 Sentence: S052
Order: 1123 Order: 1123

Positions: (3382, 3388)
Format:

(@)

Fig. 3. Matching regular rules

The structure of the regular-rule class is detailed below:

(b)

1. Name: identifies uniquely a rule

(T2 VST O]

possible values: verb or noun

~N

. Class: is the class of the object
. Prefix: a sequence of characters at the beginning of a token
. Suffix: a sequence of characters at the end of a token

. Category: the part of speech to which the token belongs to. It can hold two

. Tense: the tense associated to the token in case of a verb
. Number: the cardinality of the token consisting of singular, dual or plural

©

8. Gender: the gender associated to the token consisting of either masculine or

feminine

9. Person: valid only for verbs, it represents either the first, second or third per-

son.

Thus, the rules are represented as predicates, which implement the attributes as dis-

cussed above:

144

regularRule(Pref, Suff, Cat, Tens, Num, Gend, Per, Name,

Class):-
Pref= "y",
Suff= "wn"

Cat = verb,

Tens = present,

Num = plural,

Gend = masculin,

Per = third,

Name = v28,

Class = regular_rule.

4 Matching Algorithm

The extracted tokens from the source text are represented through the following facts
base which distinctive arguments are the value of the token itself and its correspond-
ing root classification inferred by the algorithm

token(name, value, root, cat, tense, number, gender, person,
format, ruleApplied, sentence, order, position).

The aim of token-to-rule matching algorithm implemented in predicate tokenTo-
Rule/1 (shown below) is to fetch the rule that extracts the root of a given token t,
and consequently, associates the morpho-syntax information to the token. The rule is
identified if it matches a given pair of suffix and prefix. Thus, first the affixes are
extracted from the token’s value v through getSuffix/3 and getPrefix/3,
then the matching operation is performed by regularRule/8

tokenToRule(T):-
T=token(_, V, . . _+_s_»_s-_» Rule,_, ,),

tokenToRule (V, Rule, Pref, Suff, 3, 1).

tokenToRule(V, Rule, Pref, Suff, 1, J) :-
1 #< 0,
Rule = null.

tokenToRule(V, Rule, Pref, Suff, 1, J) :-
length(V)-1-J #=< 1,
Rule = null.

tokenToRule(V, Rule, Pref, Suff, I, J):-
getPrefix(T, 1, Pref),
1 #= 1 -1,
1 #= 0,
length(v)-1-J #> 1,
tokenToRule(V, Rule, Pref, Suff, 1, J).

145

tokenToRule(V, Rule, Pref, Suff, I, J):-

J #< 0,
Rule = null.

tokenToRule(V, Rule, Prefix, Suff, 1, J):-
length(V)-1-1 #=< 1,
Rule = null.

tokenToRule(V, Rule, Pref, Suff, I, J):-
getSuffix(Vv, J, Suff),
regularRule(Pref, Suff, Cat, Tens, Num,

Gend, Pers, Name, Clas),

Rulle = Name,
J#=J -1,
tokenToRule(J, Pref, Suff, 1, J).

Note that the length of a prefix for regular rules is at most one character, and the
length of a suffix is limited to three characters. The matching algorithm gives the
priority to the longest affixes first. Hence, the predicate for affix extraction are re-
spectively initialized to 1, and 3 and are gradually decremented as many time as no
rule matches and the root still contains at least 2 characters (constraint length(V)-1-
J>1) due to the fact that for regular words no root is less than two characters long:
getPrefix(Vv, 1, Pref):-
getPrefix1(Vv, 1, []1, Pref).
getPrefix1(V, 0, Pref, Pref).
getPrefix1(V, 1, Pref,):-
11 #= 1-1
getPrefix1([C]Vv1], 11, [C] Pref],).
getSuffix(Vv, 1, Suff):-
reverse(V, V1),
getSuffix(Vvli, 1, []1,Suff).
getSuffix1(V, 0, Suff, Suffl):-
reverse(Suff, Suffl).
getSuffix1(Vv, 1, Suff,):-
11 #= 1-1
getSuffix1([C]Vvi], 11, [C|Suffi],).

5 Conclusion

A morphological analyzer is one of the essential components in any natural language
processing architecture. The morphological analyzer presented in this paper is im-
plemented within CLP framework and is composed of three main components: a
linguistic knowledge base comprising the regular and irregular morphological rules of
the Arabic grammar, a set of linguistic lists of markers containing the exceptions
handled by the irregular rules, and a matching algorithm that matches the tokens to
the rules. The complete implementation of the system is underway. In a first phase,
we have considered only the regular rules for implementation. Defining a strategy to
match the regular and irregular rules and the extension of the linguistic lists of mark-
ers are the future directions of this project.

146

References

1. J-P. Descles, Langages applicatifs, Langues naturelles et Cognition, Hermes, Paris,
1990.

2. A. Arrajihi, The Application of morphology, Dar Al Maarefa Al Jameeya, Alexandria, 1973.
(in Arabic)

3. F. Qabawah, Morphology of nouns and verbs, Al Maaref Edition, ond edition, Beyruth,
1994. (in Arabic)

4. G. A. Kiraz, "Arabic Computational Morphology in the West.", In Proceedings of the 6th
International Conference and Exhibition on Multi-lingual Computing, Cambridge, 1998.

5. B. Saliba and A. Al Dannan, “Automatic Morphological Analysis of Arabic: A study of
Content Word Analysis”, In Proceedings of the Kuwait Computer Conference, Kuwait,
March 3-5, 1989.

6. M. Smets, "Paradigmatic Treatment of Arabic Morphology", In Workshop on Computational

Approaches to Semitic Languages COLING-ACL98, August 16, Montreal, 1998.

. K. Beesley, "Arabic Morphological Analysis on the Internet", In Proceedings of the Interna-
tional Conference on Multi-Lingual Computing (Arabic & English), Cambridge G.B., 17-18
April, 1998.

8. R. Alshalabi and M. Evens, "A Computational Morphology System for Arabic", In Work-

shop on Computational Approaches to Semitic Languages COLING-ACL98, Montreal.

9. R. Zajac, and M. Casper, “The temple Web Translator”, 1997 Available at:
http://www.crl.nmsu.edu/Research/Projects/tide/papers/twt.aaai97.html

10. T. A. El-Sadany, and M. A. Hashish, “An Arabic Morphological System”, In /BM Systems
J., Vol. 28, No. 4, 600-612, 1989.

11. J. Berri, H. Zidoum., Y. Attif, “Web-based Arabic Morphological Analyser”, A. Gelbukh
(Ed): CICLing 2001, pp.389-400, 2001, Springer-Verlag, 2001.

12. K. Marriott and P. Stuckey, “Programming with constraints: An Introduction”, MIT Press,
1998.

13. P. Codognet, and D Diaz, “Compiling Constraints in clp(FD)”, Journal of Logic Program-
ming, 1996:27:1-199.

14. A M Cheadle, W Harvey, A J Sadler, J Schimpf, K Shen and M G Wallace.ECLiPSe: An
Introduction. 1C-Parc, Imperial College London, Technical Report IC-Parc-03-1, 2003.

~

147

A tutorial on CHR Grammar

Henning Christiansen

Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: henning@ruc.dk

Abstract. Constraint Handling Rules (CHR) are a declarative language
for writing constraint solvers which is available as an extension of Prolog
and CHR Grammars (CHRG) provide a grammar formalism added on
top of CHR, analogously to the way Definite Clause Grammars (DCG)
are added on top of Prolog. CHRG inherits the underlying execution
model which immediately provides robust bottom-up parsers that evalu-
ate all possible parses given by an ambiguous grammar in parallel. Com-
pared with DCG, CHRG provides a high degree of flexibility and ex-
pressibility including a sort of context-sensitive rules, a straightforward
implementation of abduction. The system includes different tools for op-
timization inherited from CHR so that most grammars can perform with
a reasonable speed. This tutorial gives a short introduction to CHRG and
its applications, mainly in terms of examples.

1 Introduction

The language of Constraint Handling Rules (CHR) was introduced originally
by Th. Frithwirth [1] as a declarative language for writing constraint solvers
for constraint logic programming, such as finite domain solvers and constraint
programming over real and rational numbers. The language consists of rewrite
rules over constraint stores: If a set if constraints matched by the head of a
given rule is identified in the constraint store, the rule may fire resulting in the
addition of new constraints to the store, possibly removing those matched by
the head (depending of the sort of rule applied); CHR rules may include a guard
to determine whether or not a rule can apply and the procedural semantics is
committed-choice so that no backtracking is possible.

The fundamental assumption underlying the introduction of a grammar no-
tation on top of CHR, is that languages analysis is a process of constraint solving,
involving many different conceptual layers (lexical, morphologic, syntactic, prag-
matic, etc.) possibly executing in parallel. In the following we present the system
of CHR Grammars, or CHRG for short, mainly in terms of examples.

CHRG supports parsing by an encoding of an input string by means of word
boundaries (given by integer numbers) attached to each syntactic node which is
represented as a CHR constraint. Grammar rules are translated in a straightfor-
ward way into CHR rules that identify sequences of tokens by comparing word
boundaries. This encoding makes it possible also to represent context-sensitive

148

rules and a notion of gaps shown in the following. CHRG includes the full power
of the underlying CHR, system so that parsing can integrate with arbitrary con-
straint solvers written in CHR. Abduction in language analysis, for example,
is realized by having grammar rules to cast of “abducibles” into the constraint
store, further processed by integrity constraints written directly as CHR rules.

Applications of CHRG until now have concerned mainly syntactic aspects,
scratching the surface of semantic and contextual analysis; current research is
trying to produce a model in which the pragmatic meaning of sentences are pro-
duced right away as a product of language analysis (i.e., avoiding the construc-
tion of huge parameterized terms representing de-contextualized semantics).

A comprehensive treatment of CHRG is given in [2] that also gives an
overview of related work; the system is available at the CHRG web site [3].
We do not consider the implementation of CHRG here; see [2]. In the following,
we introduce the main features of the system.

2 An introductory example

The following example shows a source text as it is given to the CHRG system
(with a few trivial reminiscences of the underlying CHR system retouched away).

grammar_symbols np/0, verb/0, sentence/0.

np, verb, np ::> sentence.
[peter] ::> np.

[mary] ::> np.

[likes] ::> verb.

As it appears, the notation is inspired by DCG so, for example, terminal strings
are indicated by square bracket. However, the role of head and body (lhs resp.
rhs) is switched in order to indicate the bottom-up nature of the system and
to mimmic the underlying CHR syntax. The arrow ::> indicates a propagation
rule meaning that the rules only add new grammar nodes to the store without
removing anything (analogous to CHR’s notion of the same name). So-called
simplification rules are also available, indicated by <:>, which remove the nodes
matched by the head. A list of tokens can be analyzed by a predicate parse that
translates it into a set of constraints with explicit word boundaries and which
will start the (compiled) grammar rules to apply until no more applications are
possible. Consider for example the following dialogue with the system.

7- parse([peter,likes,mary]).
<0> peter <1> likes <2> mary <3>
np(0,1),

verb(1,2),

np(2,3),

sentence(0,3),

token(0,1,peter),

149

token(1,2,likes),
token(2,3,mary) 7

The systems echoes the string with indication of boundaries for easy evaluation
of the result given as the final constraint store which, in this example, shows all
grammar nodes constructed during parsing. (It is, of course, possible, to suppress
details so that only the most essential information is given as answer).

3 Context-sensitive rules and an example of coordination

The head of a rule may include both a left and right context; the general shape
of a head is as follows

left-context =\ core /- right-context

where the three indicated components are strings of grammar symbols (context
parts may be empty in which case the corresponding marker is left out). The
meaning is that the rule can apply, recognizing the core to be whatever is speci-
fied by the body of that rule, provided the strings of grammar symbols indicated
by the context parts are observed immediately to the left and right of the core.

In the following excerpt of a grammar for simple sentences, each grammar
node has an attribute (analogous to DCG) that gives a symbolic representation
of the sentence analyzed.

We consider simple coordinating sentences such as “Peter likes and Mary
detests spinach” where the incomplete first sentence inherits the object from the
following complete sentence.

sub(A), verb(V), obj(B) ::> sent(s(A,V,B)).
subj(A), verb(V) /- [and], sent(s(_,_,B)) ::> sent(s(A,V,B)).

The first rule is to be understood in the usual way that a complete sub-verb-obj
sequence can be reduced to a sent node. The second rule is an example of a
context-sensitive rule: It applies to a subj-verb sequence only when followed by
terminal symbol “and” and another sent node, and in this case the incomplete
sentence takes its obbject, matched by variable B, from this following sent node.

4 Simplification rules and context parts for
disambiguation

Context parts can be used for a multitude of purposes, in [4], for example,
for resolving ambiguities of the highly compact and syntactically ambiguous
language of hieroglyph inscriptions. Here we show a grammar that uses left
context parts to resolve ambiguities in an otherwise highly ambiguous grammar
arithmetic expressions (computer scientists will recognize the standard follow-
items in the context parts, cf. [5]). This grammar consists of simplification rules
so that any symbol, once matched in a rule application, cannot give rise to other
rule applications.

150

e(E1), [+],e(E2) /- Rc <:> e(plus(E1l,E2))
where Rc = ([’+°];[?)’]; [eof]).

e(E1),[*],e(E2) /- Rc <:> e(times(E1,E2))
where Rc = ([*];[+];[?)’]; [eof]).

e(E1),["],e(E2) /- [X] <:> X \= " | e(exp(E1l,E2)).
0CI, e(E), [’)’] <:> e(B).

[N] <:> integer(N) | e(N).

Notice also that some rules include a guard separated from the body by a vertical
bar, and some auxiliary notation: semicolon in context means different alterna-
tives and where indicates straightforward textual substitution.

5 An application of gaps for a simplified microbiologic
example

Context parts as well as the core of the head of a rule may contain gaps. The
symbol “...” indicates a string of arbitrary length and it can be given extra
arguments to indicate restrictions on the length of acceptable strings, so that
“5...10” can match any string of length between 5 and 10.

Gaps may be useful in analyzing chemical formulas for proteins in order to
predict properties of their physical shape. A loop, for example, may be indicated
by a certain subtring that appears later in reversed form. The following grammar
rule will recognize any such loop where the “gluing” substrings are of length
exactly 6 and the loop itself of length between 10 and 20.

[A1,A2,A3,A4,A5,A6], 10...20, [A6,A5,A4,A3,A2,A1] ::> loop.

In practice, more rules are needed in order to extend the “glue” as far as possible,
and the match should be made between a substring and a reversed version of
complementary symbols (representing opposite electrical charges).

6 Abduction and assumptions

The CHRG notation makes it possible for a grammar rule to work with arbitrary
atomic hypotheses (CHR constraints) in addition to grammar symbols. Curly
brackets can be used in both head and body of a rule to indicate such hypothesis
that should not be confused with grammar symbols. So for example

{h(1)}, [al ::> Db, {h(2}.

indicates that terminal symbol “a” can be recognized to be of category “b”
provided that hypothesis “h(1)” is present in the store, and in which case an

151

additional hypothesis “h(2)” is created. This provides a potentiality for gram-
mars to interact with a semantic (or pragmatic) context! for the given discourse.
The behaviour of the analyzer may depend on the world knowledge recognized so
far (“h(1)”) and may add new world knowledge (“h(2)”). In addition, general
knowledge of the world can be expressed as rules of CHR (that can be mixed
with CHRG), so for example

h(1), h(2) ==> h(3).

indicated that if “h(1), h(2)” is known, then we have also “h(3)”.

The CHRG system is prepared for two kinds of applications of such extra-
grammatical hypotheses, abduction and assumptions in the style of [6]. More
details and examples can be found in [2]; the embedding of abduction in the
system in this straightforward fashion is based on a technical trick observed
in [7].

The newest version of the CHRG system includes facilities to explore all pos-
sible abductive explanations of a given discourse in parallel (which is problematic
in the system as it is described above since it may mix up alternative hypothesis
sets).

7 Perspectives

A constraint-based grammar formalism has been presented which provides a
flexible medium for expressing a variety of linguistic phenomena and which is
based on the computational paradigm of Constraint Handling Rules.

The formalism (and implemented system) seems well suited for experiments
with language analysis that integrates different layers of analysis. However, ex-
perience is still limited to toy examples but the system is freely available on the
word wide web for anyone who may be inspired to make experiments.

Acknowledgements

This research is supported in part by CONTROL project funded by the Dan-
ish Natural Science Research Council, the OntoQuery funded by the Danish
Research Councils, and the IT-University of Copenhagen.

References

1. Frihwirth, T.: Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming 37 (1998) 95-138

2. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic
Programming (2005) To appear.

! Notice that this usage of “context” is unrelated to the syntactic contexts considered
above

152

. Christiansen, H.: CHR Grammar web site; released 2002.
http://www.ruc.dk/ henning/chrg (2002)

. Hecksher, T., Nielsen, S.T.B., Pigeon, A.: A CHRG model of the ancient Egyptian
grammar. Unpublished student project report, Roskilde University, Denmark (2002)
. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, techniques, and tools.
Addison-Wesley (1986)

. Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language.
In Naish, L., ed.: Proceedings of the 14th International Conference on Logic Pro-
gramming, Cambridge, MIT Press (1997) 256-270

. Christiansen, H.: Abductive language interpretation as bottom-up deduction. In
Wintner, S., ed.: Natural Language Understanding and Logic Programming. Vol-
ume 92 of Datalogiske Skrifter., Roskilde, Denmark (2002) 33-47

153

Representing Act-Topic-based Dialogue Phenomena

Hans Dybkjeer" and Laila Dybkjer?

Yprolog Development Center A/S (PDC),
H. J. Holst VVej 3C-5C, 2605 Brgndby, Denmark, dybkjaer@pdc.dk
%Nislab, University of Southern Denmark (SDU),
Campusvej 55, 5230 Odense M, Denmark, laila@nis.sdu.dk

Abstract. We examine phenomena in spoken human computer dialogues and
suggest possible formalisations. The work is a step towards automating spoken
dialogue systems assessment.

Keywords. Spoken dialogue, act-topic, structure analysis, transactions.

1 Introduction

Dialogue smoothness and transaction success rate are important SDS usability evalua-
tion criteria but are costly to measure manually. Automating the measurement process
would be of great benefit to the SDS community.

We suggest a two-step approach to the automatic annotation of act-topics and, even-
tually, of transactions. First, basic, context-independent act-topic annotation is added
to all system and user utterances (Figure 1, left). Basic acts include inform, accept,
reject. Second, basic acts are combined into composite acts and then further com-
bined into transaction segments tagged with success or failure (Figure 1, right).

This paper investigates the second step: what is needed to automate act-topic based
transaction structure annotation of dialogues between users and spoken dialogue sys-
tems (SDSs), such as a frequently asked questions (FAQ) system [Dybkjeer and
Dybkjeer 2004], a flight ticket reservation system [Bernsen et al. 1998], and a train
timetable information system [Aust et al. 1995]. As the formal vehicle for deriving
composite acts we use rewrite rules with unification and supplementary constraints.

.s: .inform {N.employee, N.leave .s: .success {N.student}
-} <- success2
"You can .. choose between: .u: .request {N.student}
"employee® "on leave® ." <- sequenceRequest
.u: .inform {N.student} .u: request {N.student}
"1’m a student" <- request2
.s: .inform {N.menu} .s: inform {N.employee, N.leave ..
"Did you ask for — Main menu?" -u:z inform {N.student}
.u: .inform {N.student} .u: request {N.student}
""Student" <- request2
.s: .inform {V.student, V.su .} .s: inform {N.menu}
"1f you are a student and -u:z inform {N.student}
receive SU, you may .." .s: .inform {V.student, V.su .}

Figure 1: Example dialogue, annotated with acts and topics.

154

2 Dialogues, turns, and moves

A dialogue is a sequence of moves where each move corresponds to one act and a set
of topics for one speaker (Figure 2). An utterance is a sequence of moves of one
speaker. A turn is an utterance that further satisfies that if other moves occur at the
ends, then these moves belong to other speakers. In Figure 2, e.g., the example has one
user utterance that is also a turn, and there are two system moves that may make one or
two utterances and precisely one turn.

dialogue = move* Exanuﬂe:

move = who : act topics ["text'] _s: .pause {}

who = .u | .s .s: .inform {T.more}
act = .identifier "Do you want more?"
topics = { topic* } .u: .accept {}

topic = distinction.identifier “yes"

distinction =T | N | V

Figure 2: Formal structure of a dialogue.

3 Dialogue structure via rewrite rules

Rewrite rules define an acyclic graph which may be seen as the dialogue structure.
Each rule takes a move pattern and produces a new sequence of moves. A pattern is a
list of utterances but may contain variables for who, act, topics, and topic, cf. Figure 3.

rule = rule identifier Example:

move* <- move* rule selectl
H M *
[where condition*] _y: .select Ts_a
end rule <—

move M = who : act topics

who W = varVval

act A = varVval

topics Ts = { topic* } | varval
topic T = varVal

varVal = [Type]var | [Type]val

var = _identifier

val = .identifier

condition = varVal operator varVal
operator = =|!= | in|not-in | <

_X: .inform Ts_a
_y: .accept {}
where
x 1=y
end rule
Result when applied to example (Figure 2):
.s: .pause {}
.u: .select {T.more}
<- selectl

.s: .inform {T.more}
"Do you want more?"
.u: .accept {}
"yes"

Figure 3: Formal structure of rules and their application.

4 Analysing dialogue phenomena

The minimum expressiveness of the above rules would allow for one speaker, one act,
one topic, and no constraints. The table below explains and exemplifies different
needed extensions to the minimum expressiveness based on various dialogue phenom-
ena. Rule references are to Appendix A.

155

Different topics
Allowing several topics enables detection of two moves including the same topic.
See rule segment

Different acts
X: Are you going to Copenhagen?

Allowing different acts instead of only one, enables distinction among certain patterns,
such as a select pattern which may consist of an inform act telling about an option fol-
lowed by an accept act of this option.

See rule select0

Differentiating speakers
s: Are you going to Copenhagen?
U YOS .

To distinguish that moves are by different speakers, an inequality operator is needed.
See rule selectl

More topics in a move
x: Do you want to know about when the money is paid, transfer of money,
or payment in general?
_y: Payment in general. ..
A select rule matching this example must express that speaker y states one of the topics
offered by speaker x. A member operator “T in Ts” is added as a constraint.

See rule select2

More topics in different moves

-inform {T.paymentWhen, T.moneyTransfer, T.paymentGeneral}

"Do you want to know about when the money is paid, transfer of money,

or payment in general?"
.u: .inform {T.paymentGeneral, T.friend}
______ "Payment in general, my friend.” .
Here we need to express that the same topic occurs in two different lists. We do so by
allowing variables to be introduced in the constraints, too, and not only in the pattern.

See rule select2a

Rejecting topics
x: Do you want to know about when the money is paid, transfer of money,
or payment in general?
_y: My employer is bankrupt. .
Symmetrically to selecting a topic a speaker may reject the offered topics by requesting
a new topic, so we add the “T notT-in Ts"operator.

See rule request

Distinguishing names and values

-u: .inform {N.phone} -u: .inform {N.phone}
"Your phone number?" "Your phone number?"

.s: .inform {N.phone} .s: .inform {V.phone}
"Phone number" ""Phone 48204910"

In order to distinguish the analyses of these two examples, we must distinguish topic
names (N) and values (V). By a topic name we understand the mentioning of a topic,
e.g. in terms of a user requesting information about a certain topic. By a topic value we
understand details about a certain topic, e.g. the system informing about a topic name
selected by the user.

See rules select2, answer, successl and success2

156

Patterns across turns not using all the turn moves
0 .u: .inform {V.aalborg, V.tomorrow}

"1 want to go to Aalborg tomorrow."
1 .s: .inform {V.aalborg, V.aarhus}

"Did you say to Aalborg or to Aarhus?"
2 .u: .inform {V.aalborg}

"To Aalborg."
3 .s: .inform {V.tomorrow}
4 _s: .inform {V.aalborg}

"Are you leaving tomorrow for Aalborg?"
5 _u: .accept {}

"Yes."

The dialogue fragment above contains a success in selecting travel destination and date.
The moves 1+2 may be reduced to select {V.aalborg} which potentially enables us to
apply the success1 rule. However, the subsequent utterance is annotated with the moves
in a wrong order for this. There is no inherent reason why the order of moves within an
utterance or turn should be important (at the level of analysis we do), and the equivalent
formulation of move 4 above "Aalborg. Are you leaving tomorrow?" would natu-
rally have made the annotator list the moves in the reverse order.

So we will allow patterns to match moves within turns in any order, leaving unused
moves if the turns are at the ends of the pattern, otherwise dropping the unused moves.

Ontological relations

.s: .inform {N.travel, N.from}
"Where does the travel start?"

.u: .inform {V.place}

______ CCopenhagen L
When annotating each move independently of the context it becomes ambiguous what a
topic value refers to. E.g. the place “Copenhagen” may be departure or destination city.
To be able to automatically relate the question and the reply in such situations we need
to introduce the sub-topic relation T1 < T2.

See rule selectSubl

Meta-communication and multi-level rule applications

In Figure 1 it seems fair to count a success and no failures, and to count one meta-
exchange which is negative for the smoothness. If the two requests had been divided by
several exchanges or even a full transaction on another topic, it is less obvious that the
two requests should be counted as one, leading to one success. Part of a solution to
handling meta-communication involves the division of rules into several sets that are
applied successively. This reflects that naturally one would first do simple rewrites like
detecting request and select, then handle meta-communication, then transactions, and
finally issues like summarising feedback.

SeerulesequenceRequest

Summarising feedback

.s: .inform {V.from, V_.to, V.hour}
"Es gibt die folgende Verbindung: Mit der S-Bahn Abfahrt in Berlin
Hauptbahnhof um fuenfzehn Uhr vierundzwanzig Ankunft in Berlin-Zoo um
fuenfzehn Uhr einundvierzig dort weiter mit .. dort weiter mit Inter-
city sechs fuenf zwei Abfahrt um zwanzig Uhr einundfuenfzig Ankunft in
Darmstadt Hauptbahnhof um einundzwanzig Uhr neun"

157

We call such information summarising feedback. It is fairly common in information and
booking systems. Often systems implementing this have “one call — one task” dialogues,
and a simple measure of transaction success is to call it a success if the system reaches
this state, and otherwise a failure. However, at least on two points this is problematic:

e The user may disagree in the summarisation, claiming something to be wrong.

e It provides no information on dialogue smoothness up until this point.

By instead using rules like those in Appendix A and assuming the reject3 rule is ap-
plied before the successSummary rule, we may get a success/failure annotation that deals
with the above two bullet points (reject3 will block successSummary).

See rule reject3 and successSummary

5 Conclusion

By applying subsequent levels of act-topic rewrite rules we can analyse a set of dia-
logue phenomena occurring in typical SDSs, eventually leading to automatic detection
of non-smoothness and of transaction successes and failures.

Compared to other work, the two key distinguishing features of our analysis are
automation and act-topic structures. Many other papers discuss how to find acts and/or
topics [Heeman et al. 1998, Jurafsky et al. 1997], often based on statistical methods,
but are not concerned with the further structural analysis of the dialogue structure. The
probably most dominant discourse structure theory, RST (Rhetorical Structure Theory,
[Mann and Thomson 1987]), is not aimed at computational analysis.

Much work remains to be done. There are unanalysed issues regarding in particular
smoothness and summarising feedback, common to which is that they concern phe-
nomena distributed over large parts of the dialogue instead of being locally (and con-
tinuously) defined. Other issues also needing further analysis include task dependence
of rules, summaries not including all information, information stated in disguise, and
inexact matches. The rules must be tested on larger sets of dialogues of different type.
An automatic act-topic annotation parser must be made in order to achieve full automa-
tion.

Note that our approach only considers structure. For instance, the correctness of
summarising feedback is not considered.

References

[Aust et al. 1995] Harald Aust, Martin Oerder, Frank Seide, and Volker Stenbiss: The
Philips Automatic Train Timetable Information System. Speech Communication, 17,
249-262, 1995.

[Bernsen et al. 1998] Niels Ole Bernsen, Hans Dybkjer and Laila Dybkjeer: Designing Interac-
tive Speech Systems. From First Ideas to User Testing. Springer Verlag 1998.

[Dybkjer and Dybkjer 2004] Hans Dybkjer and Laila Dybkjeer: Modeling Complex Spoken
Dialog. Computer, IEEE, August 2004, 32-40.

[Heeman et al. 1998] Peter A. Heeman, Donna Byron, and James F. Allen: Identifying Discourse
Markers in Spoken Dialog. AAAI Spring Symposium on Applying Machine Learning and Dis-
course Processing, Stanford, March 1998.

158

[Jurafsky et al. 1997] Daniel Jurafsky, Rebecca Bates, Noah Coccaro, Rachel Martin, Marie
Meteer, Klaus Ries, Elizabeth Shriberg, Andreas Stolcke, Paul Taylor, and Carol van Ess-
Dykema: Automatic Detection of Discourse Structure for Speech Recognition and Under-
standing. Proc. of IEEE Workshop on Speech Recognition and Understanding, 1997, 88-95.

[Mann and Thompson 1987] William C. Mann and Sandra A. Thompson: Rhetorical Structure
Theory: Description and Construction of Text Structures. In Gerard Kempen (ed.): Natural
Language Generation. New results in artificial intelligence, psychology and linguistics.
NATO ASI series E 135, Chapter 7. The Netherlands, Martinus Nijhoff Publishers, 1987.

Appendix A Example rules

rule segment rule selectO rule selectl

_y: .any {T_a} _y: .select {T_a} _y: .select {T_a}
<- <- <-
_x: .any {T_a} _x: .inform {T_a} _x: .inform {T_a}
_y: .any {T_a} _y: .accept {} _y: .accept {}
end rule end rule where
X I=y
end rule

rule select2 rule select2a rule request

_y: .select {T_b} _y: .select {T_c} _y: .request {T_b}
<- <- <-
_x: .inform Ts_a _x: .inform Ts_a _x: .inform Ts_a
_y: .inform {T_b} _y: .inform Ts_b _y: .inform {T_b}
where where where
x I=y _cin _a X I=y
b in _a _cin _b _b not-in _a
end rule X I=y end rule
end rule
rule answer rule successl rule success2

_y: .request {N_b} _y: .success {N_b} _y: .success {N_b}
_x: .inform Vs_a <- <-
<- _x: .select {N_b} _X: .request {N_b}
_y: .inform {N_b} _y: .inform Vs_a _y: .inform Vs_a
_x: .inform {V_b} where where
where _b in Vs_a _b in Vs_a
X 1= vy X 1= vy x 1= vy
end rule end rule end rule
rule request2 from-place < place rule sequenceRequest

_y: .request {V_b} rule selectSubl _y: .request {T_a}
<- _y: .select {N_a} <-
_x: .inform Ts_a <- _y: .request {T_b}
_y: .inform {V_b} _x: .inform {N_a} _y: .request {T_b}
where _y: .inform {T_b} end rule
X I=y where
_b not-in _a ~a< _b
end rule X I= y
end rule
Rule reject3 rule successSummary
_u: .reject {V.toPlace, _y: .success {N.travel}
V.fromPlace, <-

u: .success {V.departureTime}

u: .success {V.fromPlace}

u: .success {V.toPlace}

s: .inform {V.toPlace,
V.fromPlace,
V._departureTime}

V._departureTime}
<=
_s: .inform {V.toPlace,
V.fromPlace,
V._departureTime}
_u: .reject
end rule end rule

Multi-dimensional Type Theory:
Rules, Categories, and Combinators for
Syntax and Semantics

Jorgen Villadsen

Computer Science, Roskilde University

Building 42.1, DK-4000 Roskilde, Denmark

jv@ruc.dk

Abstract. We investigate the possibility of modelling the syntax and
semantics of natural language by constraints, or rules, imposed by the
multi-dimensional type theory Nabla. The only multiplicity we explicitly
consider is two, namely one dimension for the syntax and one dimension
for the semantics, but the general perspective is important. For example,
issues of pragmatics could be handled as additional dimensions.

One of the main problems addressed is the rather complicated repertoire
of operations that exists besides the notion of categories in traditional
Montague grammar. For the syntax we use a categorial grammar along
the lines of Lambek. For the semantics we use so-called lexical and logical
combinators inspired by work in natural logic. Nabla provides a concise
interpretation and a sequent calculus as the basis for implementations.

Lambek originally presented his type logic as a calculus of syntactic types.
Semantic interpretation of categorial deductions along the lines of the Curry-Howard
correspondence was put on the categorial agenda in J. van Benthem (1983) The seman-
tics of variety in categorial grammar, Report 83-29*, Simon Fraser University, Canada.
This contribution made it clear how the categorial type logics realize Montagues Uni-
versal Grammar program — in fact, how they improve on Montagues own execution of
that program in offering an integrated account of the composition of linguistic meaning
and form. Montagues adoption of a categorial syntax does not go far beyond notation:
he was not interested in offering a principled theory of allowable ‘syntactic operations’
going with the category formalism.

* Revised version in [1]

M. Moortgat (1997) Categorial Type Logics, in J. van Benthem & A. ter Meulen (eds.)
Handbook of Logic and Language, Elsevier.

Full paper in Computing Research Repository http://arXiv.org (Computation and
Language). This research was partly sponsored by the IT University of Copenhagen
and the CONTROL project: CONstraint based Tools for RObust Language processing
http://control.ruc.dk

160

1 Introduction

We investigate the possibility of modelling the syntax and semantics of natural
language by constraints, or rules, imposed by the multi-dimensional type theory
Nabla [14]. The only multiplicity we explicitly consider here is two, namely one
dimension for the syntax and one dimension for the semantics, but we find the
general perspective to be important. For example, issues of pragmatics could
be handled as additional dimensions by taking into account direct references to
language users and, possibly, other elements of the situation in which expressions
are used. We note that it is possible to combine many dimensions into a single
dimension using Cartesian products. Hence there is no theoretical difference
between a one-dimensional type theory and a multi-dimensional type theory.
However, we think that in practice the gain can be substantial.

Nabla is a linguistic system based on categorial grammars [1] and with so-
called lexical and logical combinators [15] inspired by work in natural logic [12].
The original goal was to provide a framework in which to do reasoning involving
propositional attitudes like knowledge and beliefs [16,17].

2 The Rules

We define a multi-dimensional type theory with the two dimensions: syntax and
semantics. We use a kind of the so-called Lambek calculus with the two type
constructors / and \, which are right- and left-looking functors [7,8,10].

We assume a set of basic types 7y, where o € 7 is interpreted as truth values.
The set of types 7 is the smallest set of expressions containing 7y such that if
A, B €T then A/B,B\AcT.

A structure consists of a vocabulary and a set of bases S = (V, B), where V
is finite and B(A) # 0 for all A € Ty.

We define three auxiliary functions on types (the first for the syntactic di-
mension and the second for the semantic dimension; symbol = is used for such
“mathematical” definitions, in contrast with = for literal definitions):

[A]=VH AeT

[A] =B(A), AeTy
|A/B| = |B\A| = |B] — | A]

Al = [A] x [4]

By V' we mean the set of (non-empty) sequences of elements from V (such se-
quences correspond to strings and for the sake of simplicity we call them strings).
The universe is (J 4.7 |A| (which depends only on the structure S).
With respect to S we extend a basic type interpretation [A] C |A4| (A € Tp)
to a type interpretation [A] C |A| (A € T) as follows (the concatenation of the
strings « and 2’ is written = a’):

[A/B] ={ (z,y) | forall 2’,y', if (z',y’) € [B] then (z"z',yy’) € [4] }
[B\A] = { (z,y) | forall2’,y, if (2, y') € [B] then (2" z,yy’) € [4] }

161

We use a so-called sequent calculus [11] with an explicit semantic dimension
and an implicit syntactic dimension. The implicit syntactic dimension means that
the antecedents form a sequence rather than a set and that the syntactic compo-
nent for the succedent is the concatenation of the strings for the antecedents. It
should be observed that all rules work unrestricted on the semantic component
from the premises to the conclusion. We refer to the resulting sequent calculus
as the Nabla calculus.

We use I' (and A) for sequences of categories Ay ... A, (n > 0). The rules
have sequents of the form I" > A. The sequent means that if aq,...,a, are
strings of categories Aq,..., A,, respectively, then the string that consists of
the concatenation of the strings aq,...,a, is a string of category A. Hence the
sequent A > A is valid for any category A.

Rules are displayed starting with the conclusion and the premises indented
below. There are two rules for / (a left and a right rule) and two rules for \ too.
The left rules specify how to introduce a / or a \ at the left side of the sequent
symbol =, and vice versa for the right rules (observe that the introduction is in
the conclusion and not in the premises). The reason why we display the rules in
this way is that sequents tend to get very long, often as long as a whole line, and
hence the more usual tree format would be problematic. Also the conclusion is
usually longer than each of the premises.

We note that only the right rule of A (where o ~) o' is A-conversion) is
possible, since only variables are allowed on the left side of the sequent symbol.

z: A > x: A =

A= oA a~ya A
A= a: A

Al = Blx—a]: B Cut
I' = a:A

Alz: Al - 3:B

Al z: B\A] » Az — (2 8)]: C \L
I = pg:B
Alz: A] = v:C

I' = Mya:B\A \R
y:B I' = a: A

Alz: A/B I'l = Alz— (2 0)]:C /L
I' = (:B

Az Al = ~:C

I' = \ya:A/B /R
I'y:B > a:A

162

3 The Categories

As basic categories for the lexicon we have N, G, S and the top category e
corresponding to the whole argument (do not confuse the basic category N with
the constant N for ‘Nick’ and so on). Roughly we have that N corresponds to
“names” (proper nouns), G corresponds to “groups” (common nouns) and S to
“sentences” (discourses). Consider the following lexical category assignments:

John Nick Gloria Victoria : N

run dance smile : N\S

find love : (N\S)/N

man woman thief unicorn : G

popular quick : G/G

be : (N\S)/N

be : (N\S)/(G/G)

a every : (S/(N\S))/G ((S/N)\S)/G
not : (N\S)/(IN\S)

nix : S/S

and or : S\(S/S)

and or : (N\SO\((N\S)/(N\S)) (G/G\(G/G)/(G/G))

ok : §
also : S\(S/9)
so : S\(e/9)

4 The Combinators

We introduce the following so-called logical combinators [13]:

Q = Mxy(z =) Equality
N = a(—a) Negation
C = Xab(a A b) Conjunction
D = \ab(a V b) Disjunction

O = MuIz(tz A ux) Overlap
I = MuVz(tr = ux) Inclusion
T=T Triviality

P = \ab(a = b) Preservation

After having introduced the logical combinators we introduce the so-called lexical
combinators. There is one or more combinator for each token in the vocabulary,
for example the combinator John for the token John, be and be’ for be and so
on (tokens and combinators are always spelled exactly the same way except for
the ’ (possibly repeated) at the end).

163

In order to display the lexicon more compactly we introduce two place-holders
(or “holes”) for combinators and constants, respectively. () is place-holder for
logical combinators (if any) and o is place-holder for (ordinary and predicate)
constant (if any); the combinators and constants to be inserted are shown after
the | as in the following lexicon:

John Nick Gloria Victoria = N GV

run dance smile = Az(oxz) |

find love = JAyz(oxy) | F L

man woman thief unicorn = JAz(ox) | M W T U
popular quick = Mz(Q(oz)(tzx)) | C | P Q

be = Ayz(Oay) | Q

be' = Aa(fAy(Owy)r)
a every = Mu(QOtu) |
not = Mz(Q(tz)) | N
nix = Aa(Qa) | N
and or = Xab(Qab) | C D

and’ or' = Muz(O(tz)(uz)) | C D
ok = O | T

also = Xab(Qab) | C

so = Xab(Qab) | P

O‘J
R D S

| Q
O 1

5 Examples: Syntax and Semantics

Consider the tiny argument (where / indicates that the argument is correct):

John is a popular man. J/
John is popular.

The lexical category assignments to tokens give us the following string / formula
association using the sequent calculus:

John be a popular man so John be popular

~ so (a (popular man) \z(be x John)) (be’ popular John)

~ P (0 Xz(C (Pz) (Mz)) \x(QJx)) (C (PJ) (QJJ))

~ PJAMJ= PJ
It is really an impressive undertaking, since not only does the order of the combi-
nators not match the order of the tokens, but there is also no immediate clue in

the string on how to get the structure of the formula right (“the parentheses”).
As expected the resulting formula is valid.

164

6

Conclusions and Future Work

The multi-dimensional type theory Nabla provides a concise interpretation and
a sequent calculus as the basis for implementations. Of course other calculi are
possible for the same interpretation. The plans for future work include:

— Investigations of further type constructions for a larger natural language

coverage, cf. the treatment of propositional attitudes in [16,17] which also
replaces the classical logic with a paraconsistent logic.

— Implementations using constraint solving technologies, cf. recent work on

glue semantics [3], XDG (Extensible Dependency Grammar) [5], CHRG
(Constraint Handling Rules Grammar) [2], and categorial grammars [4,6,9].

References

1.

2.

10.
11.
12.
13.
14.
15.

16.

17.

W. Buszkowski, W. Marciszewski, and J. van Benthem, editors. Categorial Gram-
mar. John Benjamins Publishing Company, 1988.

H. Christiansen. Logical grammars based on constraint handling rules. In P. J.
Stuckey, editor, 18th International Conference on Logic Programming, page 481.
Springer-Verlag, 2002. LNCS 2401.

M. Dalrymple, editor. Semantics and Syntaz in Lexical Functional Grammar: The
Resource Logic Approach. MIT Press, 1999.

P. de Groote. Towards abstract categorial grammars. In 39th Annual Meeting of
the Association for Computational Linguistics, pages 148-155, 2001.

R. Debusmann, D. Duchier, A. Koller, M. Kuhlmann, G. Smolka, and S. Thater.
A relational syntax-semantics interface based on dependency grammar. In 20th
International Conference on Computational Linguistics, 2004.

M. Kuhlmann. Towards a constraint parser for categorial type logics. Master’s
thesis, Division of Informatics, University of Edinburgh, 2002.

J. Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:154-170, 1958. Reprinted in [1].

M. Moortgat. Categorial Investigations — Logical and Linguistic Aspects of the
Lambek Calculus. Foris Publications, 1988.

R. Moot. Grail: An interactive parser for categorial grammars. In R. Delmonte,
editor, VEXTAL, pages 255-261. Venice International University, 1999.

G. Morrill. Type Logical Grammar. Kluwer Academic Publishers, 1994.

D. Prawitz. Natural Deduction. Almqvist & Wiksell, 1965.

V. Sadnchez. Studies on Natural Logic and Categorial Grammar. PhD thesis, Uni-
versity of Amsterdam, 1991.

S. Stenlund. Combinators, A-terms and Proof Theory. D. Reidel, 1972.

J. Villadsen. Nabla: A Linguistic System based on Multi-dimensional Type Theory.
PhD thesis, Department of Computer Science, Technical University of Denmark,
1995.

J. Villadsen. Using lexical and logical combinators in natural language semantics.
Consciousness Research Abstracts, pages 51-52, 1997.

J. Villadsen. Combinators for paraconsistent attitudes. In P. de Groote et al.,
editors, Logical Aspects of Computational Linguistics, pages 261-278. Springer-
Verlag, 2001. LNCS 2099.

J. Villadsen. Paraconsistent assertions. In J. Denzinger et al., editors, Multiagent
System Technologies. Springer-Verlag, 2004. To appear in LNCS 3187, 15 pages.

165

