
Constraint Solving and
Language Processing

2nd International Workshop, CSLP 2005

Sitges, Spain, 5 October 2005

Proceedings

Edited by

Henning Christiansen

Jørgen Villadsen

Preface

This volume contains the proceedings of CSLP 2005, the Second International
Workshop on Constraint Solving and Language Processing which takes place in
Sitges, Spain, on 5 October, 2005. CSLP 2005 is affiliated with ICLP’05, 21st In-
ternational Conference on Logic Programming, also co-located with CP’05, 11th
International Conference on Principles and Practice of Constraint Programming.
From a historical perspective and for attracting attention among interested re-
searchers, this forum is perfect for CSLP, and we would like to thank the or-
ganizers of ICLP, especially its workshop chair Hai-Feng Guo, for hosting the
workshop.

We are honoured to present our invited speaker, Jerry R. Hobbs, whose
research has been an influent and important source of inspiration for all other
researchers in the field for around three decades.

Constraint Solving (CS), in particular Constraint Logic Programming (CLP),
is a promising platform, perhaps the most promising present platform, for bring-
ing forward the state of the art in language processing. The data subjected to
processing via constraint solving may include written and spoken language, for-
mal and semiformal language, and even general input data to multimodal and
pervasive systems.

CLP and CS have been applied in projects for shallow and deep analysis and
generation of language, and to different sorts of languages. The view of grammar
expressed as a set of conditions simultaneously constraining and thus defining
the set of possible utterances has influenced formal linguistic theory for more
than a decade. CLP and CS provide flexibility of expression and potential for
interleaving the different phases of language processing, including handling of
pragmatic and semantic information.

This volume contains papers accepted for the workshop based on an open call,
and each paper has been reviewed by two or three members of the program
committee. As editors, we would also like to thank the other members of the or-
ganization committee, Philippe Blache, Veronica Dahl, and Gerald Penn, whose
involvement has been important for the establishment of the forum around the
CSLP workshops. We hope that the present volume together with the collection
of revised papers from the 1st CSLP, published as Lecture Notes in Artificial
Intelligence, vol. 3438, can provide inspire future research in this promising field.

We want to thank the program committee listed below, the invited speaker,
and all researchers who submitted papers to the workshop and all participants
in the CSLP workshops 2004 and 2005. The workshop is supported by the CON-
TROL project, CONstraint based Tools for RObust Language processing, funded
by the Danish Natural Science Research Council, and Computer Science Section
at Roskilde University, Denmark.

Roskilde, September 2005 Henning Christiansen
Jørgen Villadsen

Organizing Committee

Philippe Blache
Henning Christiansen
Veronica Dahl
Gerald Penn

Program Committee

Philippe Blache, Aix-en-Provence, France
Henning Christiansen, Roskilde, Denmark (Chair)
Veronica Dahl, Simon Fraser University, Canada
Denys Duchier, Lille, France
John Gallagher, Roskilde, Denmark
Claire Gardent, LORIA, France
Michael Johnston, ATT, USA
Shalom Lappin, London, UK
Bernd Meyer, Monash, Australia
Jørgen Fischer Nilsson, Technical University of Denmark
Gerald Penn, Toronto, Canada
Kiril Simov, Bulgarian Academy of Science
Peter Skadhauge, Copenhagen Business School, Denmark
Jørgen Villadsen, Roskilde, Denmark

Contents

Invited Talk

Syntax, Metonymy, and Intention
Jerry R. Hobbs . 1

Contributed Papers

Extracting Selected Phrases through Constraint Satisfaction
Veronica Dahl and Philippe Blache . 3

DyALog: a Tabular Logic Programming based environment for NLP
Éric Villemonte de la Clergerie . 18

Lexicalised Configuration Grammars
Robert Grabowski, Marco Kuhlmann, and Mathias Möhl 34

N:M Mapping in XDG — The Case for Upgrading Groups
Jorge Marques Pelizzoni and Maria das Graças Volpe Nunes 50

Syntax, Metonymy, and Intention

Jerry R. Hobbs

Information Sciences Institute
University of Southern California

Marina del Rey, California
USA

Abstract. Metonymy is referring to one entity by describing a func-
tionally related entity. When this is formalized in an “Interpretation as
Abduction” framework, we see that it is a very powerful mechanism for
solving a number of problems that have hitherto been viewed as syntac-
tic. In these cases, the coercion function that mediates the metonymy
comes from material that is explicit in the sentence. For example, in
“John smokes an occasional cigarette”, it is the smoking, rather than
the explicit argument of “occasional” (the cigarette), that is occasional.
There is a coercion from the cigarette to the smoking event, where the
coercion relation is provided by the “smokes” predication itself. Other
phenomena analyzed in this manner are extraposed modifiers, container
nouns, the collective-distributive ambiguity for some plural noun phrases,
small clauses in disguise such as “This country needs literate citizens”,
the assertion of grammatically subordinated material, and monotone de-
creasing quantifiers.

It will also be shown how material in lexical decompositions can be used
as coercion relations to make sense of a sentence like “John opened the
door again” where he was not the person who opened it in the first place.

Then the intentional and cognitive “wrappers” around the content of a
sentence will be introduced; essentially, an explanation of the occurrence
of an utterance of a string of words w by a speaker i to a hearer u is
that i has the goal of u “cognizing” the eventuality e, where w is a string
of words that conveys or describes e. Then it is shown how epistemic
and speech act conditionals and metalinguistic negation can be viewed
as examples of metonymy, where the “goal” and “cognize” predicates are
used as the coercion functions.

It will also be shown how explicit representation of implication relations
used in interpreting metaphors can be used as coercion relations to shield
metaphorical statements against being false. For example, “ ‘John is an
elephant’ describes John’s being large” can be coerced into “ ‘John is
large’ describes John’s being large”, using the implication relation be-
tween “elephant” and “large” as the coercion relation, so that what is
asserted by “John is an elephant” is precisely that John is large – pre-
sumably a true statement.

A common, uniform framework for syntax, semantics, and pragmatics,
where knowledge and the content of texts are expressed in first-order
logic, in which abduction is used as the inference mechanism, and in

1

which interpretation is viewed as global optimization and constraint sat-
isfaction, facilitates the investigation of phenomena that lie in the frontier
regions where syntax, semantics and pragmatics meet.

2

Extracting Selected Phrases through Constraint
Satisfaction

Veronica Dahl1 and Philippe Blache2

1 Simon Fraser University
Vancouver, Canada
veronica@cs.sfu.ca

2 LPL, Université de Provence
Aix-en-Provence, France
pb@lpl.univ-aix.fr

Abstract. We present in this paper a CHR based parsing method-
ology for parsing Property Grammars. This approach constitutes a
flexible parsing technology in which the notions of derivation and
hierarchy give way to the more flexible notion of constraint sat-
isfaction between categories. It becomes then possible to describe
the syntactic characteristics of a category in terms of satisfied and
violated constraints.
Different applications can take advantage of such flexibility, in par-
ticular in the case where information comes from part of the input
and requires the identification of selected phrases such as NP, PP,
etc. Our method presents two main advantages: first, there is no
need to build an entire syntactic structure, only the selected phrases
can be extracted. Moreover, such extraction can be done even from
incomplete or erroneous text: indication of possible kinds of error
or incompleteness can be given together with the proposed analysis
for the phrases being sought.

1 Introduction

Extracting selected phrases from written or spoken text is an important step for
many useful applications of language processing. For instance, concept extraction
or text summarization can benefit from a preliminary identification of all noun
phrases or verbs, to be further processed, e.g. through consulting a concept
hierarchy; question answering can focus on noun phrases or verbs at least for
the replies to be given; command oriented systems might focus on verb phrases;
temporal systems, on time adverbial phrases, etc.

Ideally we want to be able to extract concepts from text produced in real
life conversation, which typically is incomplete, often not perfectly grammatical,
and sometimes erroneous. Imperfections can result from normal human error in
actual speech, or be introduced by machines, as in the case of text produced
from speech recognition systems, which are renowned for their error-proneness.

3

Flexible parsing techniques offer great advantages in this perspective. Among
possible solutions, constraint-based approaches allow us to use the same parsing
mechanism (constraint satisfaction) whether the grammar is incomplete, het-
erogeneous, etc. Moreover, provided that no extra mechanisms than satisfaction
are used, constraints can be relaxed in accordance to user-defined criteria. In
particular, this can be done selectively (for some sentences but not others). For
instance, we may want to express that a noun requires a determiner inside a
noun phrase, unless we are dealing with a generic statement, as in “Lions sleep”.
To this effect, we can test the conditions relevant to genericity in the body of
the rule that relaxes the constraint imposing a determiner, so that only upon
them being satisfied will the constraint be relaxed.

Property-based linguistic models (see [Bès99a,Bès99b], [Blache05]) view lin-
guistic constraints as properties between sets of categories, rather than in the
more traditional terms of properties on hierarchical representations of completely
parsed sentences. This view has several advantages, such as allowing for mistakes
to be detected and pointed out rather than blocking the analysis altogether, and
facilitates dynamic processing of text produced on the fly, as needed for the
growing number of applications involving speech.

In this paper we refine a methodology for Property Grammars (cf. [Blache05])
first proposed in [Dahl04b] which relies exclusively on constraints. It controls
the parse through head-driven analysis, provides a direct interpretation of this
formalism while preserving all its theoretical properties at the implementation
level, and can focus on specific phrases- in the case of our toy implementation,
noun phrases- as mandated by a user’s modular and easy to change command. As
the implementation language, we use a specialized grammatical formalism called
CHRG (Constraint Handling Rule Grammars) described in [Christiansen01] on
top of CHR [Frühwirth98].

2 Representing syntax with constraints

The basic idea of Property Grammars is to represent different kinds of syntactic
information separately. In this approach, syntactic structure is not expressed in
terms of hierarchy, but only by means of relations between categories. We de-
scribe in this section how to represent such relations in terms of constraints and
take advantage of this in the perspective of a direct constraint-based implemen-
tation.

2.1 Background: Property Grammars

In our approach, syntactic properties rely on relations that do not have specific
topological constraints (they can for example be crossed). Categories are de-
scribed by means of such relations. As a consequence, the notion of constituency
is no longer crucial for the description process: a category is specified by a set of
properties rather than by a set of constituents. The fact that several categories
belong to a network of relations indicates that they characterize an upper-level

4

category. A syntactic category is then described by a set of properties which
represent relations between other categories (lexical or syntactic).

In this approach, the goal is to make explicit all the different relations that
can exist. We distinguish in this perspective the following types of information:

– linear precedence, which is an order relation between categories,
– subcategorization, which indicates coocurrence relations between categories

or sets of categories,
– the impossibility of cooccurrence between categories,
– the impossibility for a category to be repeated,
– the minimal set of obligatory constituents (usually one single constituent)

which is the head,
– semantic relations between categories, in terms of dependency.

These different kinds of information correspond to different properties, re-
spectively: linearity, requirement, exclusion, unicity, obligation, dependency. Such
information can always be expressed in terms of relations between categories, as
shown in the following examples:

– Linear precedence: Det ≺ N (a determiner precedes the noun)
– Dependency: AP � N (an adjectival phrase depends on the noun)
– Requirement: V[inf] ⇒ to (an infinitive comes with to)
– Exclusion: seems �⇔ ThatClause[subj] (the verb seems cannot have That

clause subjects)

All syntactic categories are characterized by a set of relations that forms
a connected graph. The syntactic description of a language consists of all the
different relations that can be expressed between categories. A relation (also
called a property) can be conceived as a constraint on the set of categories. A
grammar is then a set of constraints and satisfiability becomes the core of the
parsing process (see [Blache01]). What is interesting in this approach is that
no implicit information, for example under the form of a specific mechanism,
is needed. In particular, there is no need to build a structure before being able
to verify its properties as it is the case with classical generative approaches
(although for convenience given what researchers are used to, we do provide a
tree as well as a side effect of parsing). Moreover, using satisfiability alone has
important consequences in the conception of the syntactic structure. Evaluating
a constraint system for a given set of categories allows us to specify precisely the
set of properties that are verified. In the same way, in the case of ill-formed input,
such evaluation identifies precisely the set of satisfied and violated constraints.
Such a result is then of deep interest in the sense that it identifies precisely all
the specificities of an input. In Property Grammars this information constitutes
the output of a parse, which is but the status of the constraint system after
evaluation.

5

2.2 The parsing schema

The basic mechanism in constraint satisfaction problems is to find, for a given set
of variables, an assignment that satisfies the constraint system. In the problem
addressed here, the variables are taken from the set of categories. An assign-
ment is given from an input (i.e. the sentence to be parsed). Starting from the
set of lexical categories corresponding to the words of the sentence, all possible
assignments (i.e. subsets of categories) are evaluated. When a syntactic cate-
gory is characterized, it is added to the set of categories to be evaluated. This
approach is basically incremental in the sense that any subset of categories can
be evaluated. This means that an assignment A can be completed by adding
other categories. When syntactic categories are inferred after the first step of
the process, it is then possible to complete the first assignments (made with
lexical categories) with new syntactic ones.

We have seen that in Property Grammars, a category is described by a set
of constraints. But reciprocally, it is possible to identify a category from a given
property. This is typically the case with properties expressing relationships be-
tween categories, such as linearity, requirement, obligation and dependency. Eval-
uating such properties makes it possible to infer that the syntactic category to
which the property is attached is being characterized. We have referred to these
properties under the collective name of selection constraints.

The role of selection constraints is central to our approach. The reason such
constraints allow us to select the characterized category is that they are local
to this category. Moreover, in some cases they have a global scope over the cat-
egory : their satisfiability value (i.e. satisfied or violated) cannot change for a
given category whatever the subset of constituents. As soon as the constraint
can be evaluated, this value is permanent. For example, when a linearity or a
dependency constraint is satisfied, adding new constituents to the category can-
not change this fact. Other kinds of constraints have to be re-evaluated at each
stage. For instance, when adding a new category, we need to verify that unicity
and exclusion are still satisfied. In all that follows, we call the latter filtering
constraints. Contrary to selection constraints, one cannot infer the materializa-
tion of a syntactic category from their evaluation. They play a filtering role in
the sense that they rule out some construction. Yet another type of constraint,
which we call recoverable constraints can succeed by the incorporation of one
more category into a given phrase for which, without this added category, the
constraint failed.

Let us examine what the consequences are on constraint evaluation. As ex-
plained above, the principle consists in completing original assignments with
new categories when they are inferred. Insofar as the evaluation of selection con-
straints (as soon as this evaluation can be performed) is valid through a complete
assignment, whatever its constituents, it is not necessary to re-calculate it. In
other words, when an assignment A is made by completing another assignment
A′, the set of selection constraints of A′ is inherited by A. We describe in the next
section the different types of properties and their consequence for new assign-

6

ments in more detail, with respect to a specific instance of the general parsing
schema we present here.

In the following, we note selection and filtering constraints as Rselect(C,XP)
and Rfilter(C,XP) in which C is the constraint and XP the syntactic category
to which the constraint is associated. For some assignment A, a constraint is rele-
vant (or can be evaluated) when the categories of A are a subset of the categories
involved in C. We note the fact that A can be evaluated for some constraint as
follows: A/Rselect(C,XP). We note the set of filtering and selection constraints
for a given category XP by R(C,XP) = Rselect(C,XP)∪Rfilter(C,XP). Finally,
we note the state of the constraint system Σ for an assignment A after evaluation
by SAT (A,Σ). Each category is indexed by its boundaries, noted c(i,j).

Let K be the set of categories, noted ci, let i, j, k some indexes such that i < j < k:

1. A ← {ci, ..., cj}
2. if A/Rselect(C,XP)
3. instantiate XP(i,j)

4. Σ =
⋃

R(C,XP)
5. Char(A) ← SAT (A,Σ)
6. while SAT (A,Σ) acceptable
7. A ← A ∪ {ck}
8. Σ =

⋃
R(C,XP)

9. Char(A) ← SAT (A,Σ)
10. k ← k + 1

In this algorithm schema, the mechanism consists in evaluating the charac-
terization of all sequences of categories. The specificity of selection constraints
is used as a control device: when a selection constraint is satisfied, the described
category XP is instantiated and the related set of constraints Σ is activated.
It is interesting to notice that a syntactic category can be projected by any se-
lection constraint, independently from any constituency information (especially
the head). Each new assignment, built by adding new juxtaposed categories to
the initial set, is then evaluated. Such a completion of the initial assignment is
possible when the satisfiability of Σ for this new assignment is acceptable (cf. line
7). This notion implements the parser flexibility. When we need to build only
grammatical structures, acceptability is reduced to satisfiability. But for more
flexible parsing needs (e.g. spoken language), constraints can be relaxed. The
set of constraints to be relaxed, their number, etc. is indicated at this point.
Finally, the general process is repeated until no new category can be added.

This parsing schema proposes a general framework in which constraints can
be integrated. Each property is implemented by a constraint solver. The mech-
anism consists in building a characterization for each possible assignment (i.e.
any subset of categories). The particularity of selection constraints plays an im-
portant role in this schema. In a classical bottom-up technique, the mechanism
consists in finding a handle which links a set of categories with a non-terminal.

7

Such a relation in our approach is established between a set of properties and a
category. In contrast with phrase-structure techniques, the notion of constituency
does not play any particular role. As soon as a selection constraint is evaluated,
the corresponding syntactic category is added to the set of categories and all
the constraints participating in its description are activated. Concretely, all the
selection constraints can be evaluated with no need to know the upper-level
category, in contrast to filtering constraints which have to be activated.

Different strategies can be applied according to the needs of the parse. A
restricted application stipulates that all constraints have to be satisfied. In this
case, only grammatical characterization are built, all ill-formed structures are
ruled out. For more flexible applications, typically in the case of parsing spoken
language material, constraints have to be relaxed. In this case, characterizations
can contain violated constraints. We next describe how CFGs are used in our
approach to achieve direct interpretation in these kinds of flexible applications.

3 Direct interpretation in CHR

Our methodology for Property Grammar parsing has been designed to provide
direct interpretation of Property Grammar rules. This is an interesting contri-
bution with respect to Property Grammars themselves, but also a novel and
important proof-of-concept that can lead the way for any constraint-based pars-
ing formalism which relates categories contextually through their properties. To
the best of our knowledge, our methodology is the first one that permits an ex-
pression of such parsing constraints which is directly and efficiently executable.
Thus, we can say that our approach represents for grammars based on contex-
tual properties what DCGs represent for context-free grammars, in the sense
that they are as directly executable descriptive formalisms as DCGs3.

In this section we describe the different components of our methodology : the
notion of extended categories, which includes not only traditional information
such as category names and features, but also the category’s characterization
in terms of satisfied and unsatisfied constraints; the modular notation through
which a user defines the properties of a given grammar, the single rule through
which parsing proceeds, and the analysis of property inheritance which is used
in our system.

3.1 Extended Categories

Extended categories are of the form: cat(Name, Features, Graph, Sat, Unsat)
where Name is the category name, Features a list of features associated with the
category (which may be used to check some of the properties between categories),
Graph is a parse tree which is obtained as a side effect of parsing (which is built
3 Of course, DCGs do permit context sensitive parsing as well, but the context sensi-

tivity cannot be directly expressed through symbol contiguity, it has to be indirectly
expressed in extra arguments or through other extra devices such as linear implica-
tion.

8

even in those cases of incorrect input), and Sat and Unsat are respectively, the
list of satisfied and unsatisfied properties that the immediate daughters of Name
inside the Graph verify between them. In the case of single word categories, the
Sat and Unsat lists will be empty. These categories are created automatically
from user’s lexical definitions, which are done in terms of CHRG. For instance,
a user’s entry:

[the] ::> cat(det, [singular, masculin]).(1)

compiles into:

[the] ::> cat(det, [singular, masculin], det(the), [], []).(2)

Because these are CHRG rules (i.e., grammar rules, as opposed to plain CHR
rules), word boundaries are carried invisibly. If needed, we can retrieve them in
a grammar rule by adding :(Start,End) after the category, which will unify
Start to the starting point of the category, and End to its end point, or we can
write a plain CHR rule that looks at cat/5 not as a grammar rule, but as the
CHR constraint it compiles into, in which case Start and End can be retrieved
as the two first arguments of the corresponding constraint, cat/7.

3.2 User defined properties

Our system allows the user to enter the specific linear precedence, dependency,
requirement, exclusion, constituency and unicity properties that apply to the
grammar being defined, through simple primitive predicates which are respec-
tively prec/3,dep/3,req/3, exclude/3, cons/2, and one/2. Figure 3.2 ex-
emplifies for a simplified noun phrase.

Linear precedence Dependence Constituency

prec(det,n,sn). dep(det,n,sn). cons(sn,[det,adj,sa,n]).

prec(det,sa,sn). dep(n,sa,sn). cons(sa,adj]).

prec(n,sa,sn).

Unicity Exclusion Requirement Phrases

one(det,sn). exclude(sa,sup,sn). req(n,det,sn). xp(sn).

xp(sa).

Fig. 1. User defined properties

It is to be noted that while the user’s definition of constituency is not rigor-
ously needed (since, as we have seen, when selection properties are verified, the
determination of constituency follows as a side effect), having it explicitly de-
fined results in improved efficiency. Likewise, phrase definitions can be inferred
from any of the other properties, but defining them explicitly makes the sys-
tem easier and more readable. The user’s definitions of properties will be called
from system predicates which verify each of these properties on a given set of
categories, as we shall see next.

9

3.3 A single rule for inferring all new categories

Conceptually, little more than a single rule is enough for a string’s complete
bottom-up parse from contiguous constituents. This rule combines two consecu-
tive categories (one of which is of type XP or obligatory) into a third, by testing
each of the properties on the pair and creating the new property lists through
property inheritance (cf. next section). Its form is described in Fig. 2.

cat(X,Y,L,TL,RL,SL,UL), cat(Y,Z,R,TR,RR,SR,UR) ==>

(k or xp(R,XP) -> (Ext=L, TE=TR, RE=RR, Sat0=SR, Unsat0=UR);

(k or xp(L,XP) -> (Ext=R, TE=TL, RE=RL, Sat0=SL, Unsat0=UL); fail)),

!, ok in(XP,Ext),

sat properties(L,TL,RL,R,TR,RR,XP,Sat0,Unsat0,T,Sat,Unsat)

| cat(X,Z,XP,TE,T,Sat,Unsat).

Fig. 2. New Category Inference

This rule tests that one of the two categories (left or right) is a kernel (a
phrase head) and the other one of its extension (i.e., complement or adjunct),
and then assigns the corresponding features. It then successively tests each of the
PG properties among those categories, incrementally building as it goes along
the lists of satisfied and unsatisfied properties. Finally, it infers a new category of
type XP spanning both these categories, with the finally obtained Sat and Unsat
lists as its characterization. In practice, this rule unfolds into two symmetric
parts, to accommodate the situation in which the XP category appears before
the category Cat which is to be incorporated into it.

Constituents with discontinuities must also be allowed, for completeness. In
this case we consider two categories where the end node of the first does not
coincide with the start node of the second. Our current research does not yet
include discontinuous constituents, for which further linguistic constraints for
avoiding combinatorial explosion need to be incorporated.

The parser here described includes as well a sophisticated analysis of types
of properties which helps determine how the properties that have been found to
hold (fail) in a given phrase are inherited or not by the new phrase comprising
that phrase plus a category being incorporated into it. Knowing whether a given
property needs to be simply inherited (in which case it just remains as is in
the new list of properties) or affects previously recognized properties, and how,
allows us an efficient way to move from one list of properties to the next. This
analysis is beyond the scope of the present paper. Complete details can be found
in [Dahl04b]. The same work proposes a detailed analysis on how to refine the
notion of characterization. For our purposes here, let us just say that the user
can declare certain properties as relaxed, which results in sentences containing
errors related to those properties to be accepted nevertheless, while indication of
their failure is given in the output (in the form of a list of unsatisfied properties).

10

4 Extracting selected phrases as a side effect of parsing

One of the interests of our approach lies in its flexibility. The kind of parsing
techniques presented above makes it possible to parse substructures as well as
subpart of the input. This functionality is useful to deal with part of the input for
which no information can be built. It is for example the case with possibly long
lists of juxtaposed NP, frequent in spoken languages but for which no specific
syntactic relation can be given. But it is also interesting for some applications
in which the entire syntactic structure or, in other words, the description of all
possible syntactic categories is necessary. This is the case for question-answering,
information extraction, or terminological applications based on NP recognition.
In these systems, the knowledge of the argument structure, or the precise de-
scription of the relations between the different categories is not necessary. We
basically need to know what are the NPs of the input and, if possible, their
contents. Several techniques can be applied for this (see [Osborne99], [Tjong00])
that usually rely on the specification of patterns defining base NPs. In such ap-
proaches, it is difficult or even impossible to identify the kind of relations that
links the different constituents of the NP. In other words, it is not possible to
choose the granularity level. In PG, this possibility exists, simply by stipulat-
ing the constraints that have to be satisfied among the entire constraint system
that forms the grammar. This means that any category can be extracted. More-
over, the description granularity of the extracted category can also be chosen,
according to the needs.

4.1 Implementation details

Concretely, all irrelevant information is simply not taken into account. For ex-
ample, the categories that do not participate to a NP are ignored. The only
special mechanism needed to skip them is a filtering set of predicates which en-
sures that every category different from NP is deleted from the constraint store
upon the parse having finished, as first proposed in [Christiansen05a]. For the
case of noun phrases, we need to define a constraint we will call cleanup, which
we will call after the analysis of any phrase, and, for every category X different
from an NP, a simpagation rule of the form:

cat(X, , , ,), !cleanup <:> true.(3)

The exclamation mark combined with the rewrite symbol shown indicate
sympagation in CHRG: once the parse is completed and cleanup is put in the
store, the above rule removes from the store the matching category, and the
constraint cleanup remains for further use, in order to remove all categories
different from np.

The generation of such rules can be automated from a user’s command to
declare what phrases to focus on, e.g.:

: −focus(np).(4)

11

Similarly, we can include a mechanism for only leaving the outermost NPs
in the case of embedded ones. This option can be specified by the user through
the command

: −outermost(np).(5)

It is also possible to imagine an easy reuse from a language to another, simply
by adapting the properties. In the case of basic NPs, very close properties are
used for French and English.

4.2 Experiment

We did some experiments in applying this technique to a French medical cor-
pus. The following example illustrates the identification of some noun phrases,
extracted together with their syntactic characterizations. In these examples, the
output contains the type of the phrase (in this experiment, the noun phrase), its
morphosyntactic properties, its constituents and its characterization. This last
part of the output, as explained in the second section, is formed by the set of
satisfied and violated properties.

The example (6) illustrates the case of a simple NP, formed with a deter-
miner and a noun. Its characterization shows for example the satisfaction of a
precedence constraint between the determiner and the noun, some uniqueness
relations for these constituents as well as a mandatory cooccurrency between the
determiner and the noun.

Input les cellules (the cells)

Output
cat(np,[plu,masc], sn(det(les),n(cellules)),
[prec(det,n), dep(det,n), unicity(det), unicity(n),
exige(n,det), exclude(name,det), exclude(name,n)],[])

(6)

The second example, presented in (7), shows the integration of an embedded
AP. In this example, the AP (composed with a single adjective) has been identi-
fied separately. The characterization of the NP works exactly in the same way as
before (as explained in the presentation of the algorithm). In this example too,
all constraints belonging to the characterization are satisfied: precedence, exclu-
sion, unicity, etc. One can also remark the stipulation of a dependency relation
between the AP and the noun, that illustrates the capacity of the technique to
identify syntactico-semantic relations.

Input les meilleures stratégies (the best strategies)

Output

cat(np,[plu,masc], np(det(les), ap(adj(meilleures)),
n(stratégies)), [dep(ap,n), unicity(n),
exclude(name,n), exclude(name,ap), exclude(ap,sup),
prec(det,n), dep(det,n), unicity(det), exige(n,det),
exclude(name,det)],[])

(7)

The example (8) presents the case of a complex NP. More precisely, this is
the case of an ill-formed input, due to a wrong POS-tagging: in this case, the last

12

adjectives of the list have been tagged as noun instead of adjectives. However,
the NP has been recognized, due to the possibility of relaxing constraints. In
this case, the uniqueness constraint applied to the noun has been violated. This
constraint belongs to the second part of the characterization in a separate list
of violated properties.

Input
les cellules endothéliales immunotoxines peptides proapoptotiques
(the endothelials ... cells)

Output

cat(np,[sing,masc],sn(det(les), n(cellules),
ap(adj(endothéliales)), n(immunotoxines), n(peptides),
n(proapoptotiques)), [prec(det,n), dep(det,n),
exige(n,det), exclude(name,det), exclude(name,n),
dep(sa,n), exclude(name,sa), exclude(sa,sup)],
[unicity(n)])

(8)

4.3 Towards semantics

Using such a symbolic robust approach to XP extraction makes it possible to
consider integrating semantic information. This is a great advantage in compar-
ison to other methods. Some dependencies can be included in the description so
that the extraction can come with different kinds of information, for example
concerning the argument structure or the roles of the possible arguments.

We develop in the following the example of NP extraction, illustrating how
such task is implemented in order to identify NPs together with their main mod-
ifiers. Basically, the kind of information that is needed in applications mentioned
above concerns the noun itself plus its different modifications. This means its
quantification (if any) and its classical direct modifiers. In the system described
here, the semantic structure of a NP is described by its head (the noun itself),
its specifier (the determiner) and two possible modifiers (AP and PP).

sem

2
6664

head N

spec Det

mod AP

comp PP

3
7775

(9)

Building such structure from a PG parser is direct. A minimal set of prop-
erties has to be checked in order to identify the NP and build the structure. In
order to simplify the description and improve the efficiency of the system, we do
not take into account relative clauses here. Moreover, also in a simplification per-
spective, we do not build embedded phrases. The only authorized one is the NP
itself. In the end, we obtain a description of the NP which is more complete than
the classical definition of a ”base NP” (see [Osborne99]) and moreover makes it
possible to directly identify the relations inside the NP. The properties are then
the following:

Constituency Const = {N, Det, Adv, Adj, Prep, NP}
Linearity Det ≺ Adv; Det ≺ N; Adv ≺ Adj; Adj ≺ N; N ≺ Prep; Prep ≺ NP

Requirement Adv ⇒ Adj; NP ⇒ Prep

13

In PG, the entire representation of an objects (see [Blache05]) contains on the
one hand its properties, and on the other hand, its local information represented
in terms of features. The final description of the NP we use in the perspective
of the NP extraction system is then:

NP

form

2
6664

head N

spec Det

mod Adj

comp Prep

3
7775

properties

8>><
>>:

Const =
n

Det,N,Adj,Prep, Adv, NP
o

Det ≺ Adv; Det ≺ N; Adv ≺ Adj; etc.

Adv ⇒ Adj; NP ⇒ Prep

9>>=
>>;

(10)

The extraction mechanism consists then in satisfying the set of constraints
defined in the property part of the NP object. When, a sequence of words from
the input satisfies this set of constraints, the corresponding structure (called
form) is built. By means of unification, the respective arguments of the structure
will be instantiated with the desired values.

5 Discussion, Conclusion

In our approach, as we have seen, syntactic categories are inferred from the
evaluation of properties, without any need of constituency information.

This aspect has important consequences on the role of constraints in the
parsing process. One of the problems with constraint-based approaches is that
constraints are usually expressed over high-level objects or structures. This is
the case for example in HPSG, in which complex feature-structures must first
be built before constraints can be evaluated. Similarly, Optimality Theory also
generates a set of structures (or candidate structures) and then uses constraints
to filter this set. In our approach, any constraint can be evaluated at any time
for any set of categories. Such evaluation, as explained above, dynamically adds
new information: the satisfaction of a selection constraint instantiates the syn-
tactic category it describes. But this instantiation is conceived almost as a side
effect of evaluation: satisfying constraints does not rely on the knowledge of the
upper-level category. In other words, the hierarchical information is no longer
preponderant in the parsing process. This means that one can evaluate subsets
of constraints, for example in the case of applications that only need NP recogni-
tion. In this approach, the conception of the relationship between grammar and
language becomes very different from that of the generative paradigm. In the
latter, a language is conceived as being generated by a grammar. In Property
Grammars, a grammar is only used as a characterization device of the language
properties.

As a consequence, instead of restricting the role of parsing to the evaluation
of the input’s grammaticality, we can propose a more flexible vision, in which a

14

parser’s output is the description of all the properties of the input. Concretely,
such a description consists in the state of the constraint system after evaluation–
in other words, the set of satisfied and violated constraints. We call such state
a characterization of the input. In some cases, a characterization only contains
satisfied constraints, but it can also be the case that some constraints can be
violated, especially when parsing real life corpora. In most cases, such violations
do not have consequences on the acceptability of the input.

One other formalism that shares the aims and some of the features of Prop-
erty Grammars are Dependency Grammars (cf. [Tesnière59] and on this point
[Mel’čuk88]), a purely equational system in which the notion of generation, or
derivation between an abstract structure and a given string, is also absent. How-
ever, whereas in Dependency Grammars, as their name indicates, the property
of dependence plays a fundamental role, in the framework we are considering it
is but one of the many properties contributing to a category’s characterization.
Perhaps the work that most relates to ours is Morawietz’s [Morawietz00], which
implements deductive parsing [Shieber95] in CHR, and proposes different types
of parsing strategies (including one for Property Grammars) as specializations of
a general bottom-up parser. Efficiency however is not addressed beyond a gen-
eral discussion of possible improvements, so while theoretically interesting, this
methodology is in practice unusable due to combinatorial explosion. Moreover,
it produces all properties that apply for each pair of categories without keeping
track of how these categories are formed in terms of their subcategories, so there
is no easy way to make sense of the output in terms of a complete analysis of a
given input string.

The idea of throwing away the traditional, hierarchical parsing scheme in
favour of a view of parsing which involves properties on categories rather than
rewriting schemes first materialized in the 5P formalism (cf. [Bès99a,Bès99b]).
Preliminary work re. the advisability of a direct implementation of such an ap-
proach had yielded pessimistic results : [Blache95] showed that the mechanism of
verification of a constraint system for syntactic analysis could be very expensive,
given that the satisfiability of the system had to be verified in each stage. In the
present work, however, we have moved beyond that obstacle by our analysis of
property inheritance, which removes the need to recalculate all properties at each
stage, allowing us to inherit at each stage most of the previous stage’s properties,
while calculating only the minimally necessary new properties and updating the
previous properties along the lines of our property inheritance analysis. Thus,
our work has validated the model of property-centered parsing with respect to
efficiency, while preserving the level of generality of this theory. In addition, a
direct interpretation guarantees a better evolution of the initial system: it can
better adjust to changes in the theory and to experimental stages.

We hope to have convincingly argued that direct renditions of flexible, con-
straint based parsing formalisms can be made to run efficiently while preserving
a one to one correspondence between the conceptual and the representational
levels, including for such non traditional formalisms as Property Grammars, in

15

which category inference does not depend on hierarchical or even constituency
notions.

The representations allowed by our methodology, while extremely close to
the computer-independent, conceptual representations of these formalisms, are
directly executable, and moreover non-deterministic. This is satisfying with re-
spect to logic programming’s original aims of declarativeness and higher level
expressiveness. Together with the advantages of this approach, we are able to
even produce hierarchical depictions of the parse history of any category, in-
cluding “incorrect” or incomplete ones. This is not important in itself, but is
provided as an easy side effect, in the interest of historic comfort : we are all
used to thinking in terms of parse trees or graphs, so showing a parse record in
graph form may prove convenient to some users.

It is interesting to note that the parsing methodology we describe here has
been generalised into a concept formation system which provides a cognitive
sciences view of problem solving [Dahl04c].

Acknowledgements

This research was made possible by V. Dahl’s NSERC Discovery and Equipment
grants and P. Blache’s CNRS-SdI grant. Thanks are due to Baohua Gu for his
help with testing and debugging the parser.

References

[Abdennadher98] Abdennadher S. and Schütz H. (1998) “CHR: A flexible query lan-
guage”, in proceedings of Int. Conference on Flexible Query Answering Systems,
volume 1495 of LNCS, Springer-Verlag.

[Barranco05] Barranco-Mendoza. A. (2005) Stochastic and Heuristic Modelling for
Analysis of the Growth of Pre-Invasive Lesions and for a Multidisciplinary Ap-
proach to Early Cancer Diagnosis, PhD Dissertation, Simon Fraser University.

[Bès99a] Bès G & P. Blache (1999) “Propriétés et analyse d’un langage”, in proceedings
of TALN’99.

[Bès99b] Bès G., (1999) “La phrase verbale noyau en francais”. In Recherches sur le
francais parlé, GARS, 15, 273-358.

[Blache95] Blache P. & N. Hathout (1995) “Constraint Logic Programming for Natural
Language Processing”,in proceedings of NLULP’95.

[Blache01] Blache P. & J.-M. Balfourier (2001) “Property Grammars: a Flexible
Constraint-Based Approach to Parsing”, in proceedings of IWPT-2001.

[Blache05] Blache P. (2005), “Property Grammars: A Fully Constraint-Based Theory”,
in H. Christiansen & al. (eds), Constraint Solving and NLP, Lecture Notes in
Computer Science, Springer.

[Christiansen01] Christiansen, H. (2001) “CHR as grammar formalism, a first report”,
Sixth Annual Workshop of the ERCIM Working Group on Constraints.

[Christiansen02a] Christiansen, H. (2002) CHR Grammar web site,
http://www.ruc.dk/˜henning/chrg

16

[Christiansen02b] Christiansen, H. (2002) “Logical Grammars Based on Constraint
Handling Rules”, in Proc. 18th International Conference on Logic Programming,
Stuckey, P. (ed.) Lecture Notes in Computer Science, 2401, Springer-Verlang, p.
481 .

[Christiansen02c] Christiansen, H. “Abductive Language Interpretation as Bottom-up
Deduction”, in Proc. NLULP 2002, Natural Language Understanding and Logic
Programming, Wintner, S. (ed.), Copenhagen, Denmark, pp. 33–47.

[Christiansen05a] Christiansen, H. (2005) “CHR Grammars” in the International Jour-
nal on Theory and Practice of Logic Programming, special issue on Constraint
Handling Rules, pp. 227-248.

[Christiansen05b] Christiansen, H. and Dahl, V. (2005) “HYPROLOG: a new logic
programming language with assumptions and abduction”, in Proceedings ICLP’05
(International Conference on Logic Programming, Sitges, Spain.

[Dahl97] Dahl, V., Tarau, P. and Li, R. (1997) “Assumption Grammars for Natural
Language Processing”. in Lee Naish (ed.) Proc. Fourteenth International Confer-
ence on Logic Programming, MIT Press, 1997.

[Dahl04a] Dahl V. “Treating Long-Distance Dependencies through Constraint Reason-
ing” (2004) in proceedings of First International Workshop on Constraint Solving
for Language Processing(CSLP’04).

[Dahl04b] Dahl, V. and Blache, P. (2004) “Directly Executable Constraint Based
Grammars”, in Proc. Journees Francophones de Programmation en Logique avec
Contraintes, Angers, France, 149–166.

[Dahl04c] Dahl V. and Voll K. (2004) “Concept Formation Rules: an executable cogni-
tive model of knowledge construction”, in proceedings of First International Work-
shop on Natural Language Understanding and Cognitive Sciences, INSTICC Press.

[Dahl04d] Dahl, V. and Tarau, P. (2004) “Assumptive Logic Programming”, in Proc.
ASAI 2004, Cordoba, Argentina.

[Dalrymple91] Dalrymple, M., Shieber, S., and Pereira, F. (1991) “Ellipsis and Higher-
Order Unification”, In Linguistics and Philosophy, 14(4), 399–452

[Frühwirth98] Frühwirth T. (1998) “Theory and Practice of Constraint Handling
Rules”, in Journal of Logic Programming, 37:1-3.

[Maruyama90] Maruyama H. (1990), “Structural Disambiguation with Constraint
Propagation”, in proceedings of

[Mel’čuk88] Igor Mel’čuk (1988) “Dependency Syntax”, SUNY Press.
[Morawietz00] Morawietz F. (2000) “Chart parsing as contraint propagation”, in pro-

ceedings of COLING-00.
[Pollard94] Pollard C. & I. Sag (1994), Head-driven Phrase Structure Grammars, CSLI,

Chicago University Press.
[Osborne99] M. Osborne (1999) “MDL-based DCG Induction for NP Identification”,

in proceedings ov CoNLL-99
[Prince93] Prince A. & Smolensky P. (1993), Optimality Theory: Constraint Interac-

tion in Generative Grammars, Technical Report RUCCS TR-2, Rutgers Center for
Cognitive Science.

[Shieber95] Shieber S., Y. Schabes & F. Pereira (1995) “Principles and implementation
of deductive parsing”, in Journal of Logic Programming, 24(1-2):3-36.

[Tesnière59] Tesnière L. (1959) El/’ements de syntaxe structurale, Klincksieck.
[Tjong00] Tjong Kim Sang E., W. Daelemans, H. Déjean, R. Koeling, Y. Krymolowski,

V. Punyakanok & D. Roth (2000) “Applying System Combination to Base Noun
Phrase Identification”, in proceedings of COLING-00.

17

DyALog: a Tabular Logic Programming based

environment for NLP

Éric Villemonte de la Clergerie

INRIA - Rocquencourt - B.P. 105
78153 Le Chesnay Cedex, FRANCE
Eric.De_La_Clergerie@inria.fr

Abstract. We describe DyALog, an environment aimed to compile
and run tabular-based parsers for various unification-based formalisms
used for Natural Language Processing. Besides providing the full power
of logic, DyALog has been enriched with many features to facilitate
grammar development and to improve parsing efficiency and robustness.
DyALog has also been designed from scratch to provide a very low level
integration of tabulation, leading to an original abstract machine.

1 Introduction

Historically, Logic Programming has been first developed to process Natural
Language, in particular for Parsing. However, at some point, a divergence has
occurred with the development of specific Parsing techniques on one side and
the development of a complete programming language (Prolog and variants) on
the other side.

From the point of view of the Parsing community, the main drawback of
most Prolog-like implementations is their inability to handle large amounts of
ambiguities as found in human languages. One can also regret the lack of ade-
quate data structures for designing grammars. In particular, Feature Structures
[1], typed or not, have become ubiquitous for most unification-based grammat-
ical formalisms, like LFGs and HPSGs. The last point worth mentioning is the
lack of simple mechanisms for tuning parsers, for instance to change the parsing
strategies or to increase robustness. However, we have to say that many parsers
also miss such flexibility.

Still, despite these limitations, Logic Programming remains an interesting
paradigm for parsing because of declarativity, important to design and maintain
large grammars, because of unification (for handling underspecification), and
because of its power as a programming language.

Originally developed to bring to Logic Programming the notion of computa-
tion sharing through the integration at a low level of the tabulation techniques
found in chart parsers [2], the DyALog system has then evolved towards the
creation of efficient parsers for unification-based grammars. While preserving
the power of logic programming, it has been extended both internally and at the
syntactic level to facilitate the design of grammars for various formalisms and to
facilitate the tuning of the resulting parsers in order to increase their efficiency.

18

The last ten years have seen the emergence of Prolog systems enriched with
tabulation (or tabling or memoizing) functionalities, with for instance XSB [3]
and B-Prolog. Still, these systems, in contrast to DyALog, are not specifically
oriented towards NLP, do not always implement a full tabular system, and gen-
erally do not integrate tabular techniques at a very low level. In particular, one
may mention that DyALog has replaced the usual copying mechanism of most
Prolog systems by an original structure-sharing mechanism, in order to handle
the tabulation of large and deep terms as found, for instance, in HPSG gram-
mars. The indexing mechanism, an essential component for efficiently retrieving
tabulated terms, has also been extended beyond the usual scheme based on the
predicate name and the nature of the leftmost argument. These choices have led
to the development of a virtual machine specific to DyALog.

Section 2 presents some syntactic extensions present in DyALog and useful
to design grammars. Several grammatical formalisms covered by DyALog are
briefly presented in Section 3. The two following sections (Sections 4 and 5)
present several functionalities useful to exploit DyALog-based parsers and to
increase their efficiency. Section 6 presents the main lines of the architecture of
DyALog. Section 7 provides some elements of information about some programs
and parsers developed with DyALog, in particular in terms of performance.

2 Easing grammar writing

Computational linguists make heavy use of two important data structures, namely
Feature Structures and Finite Sets, that have counterparts in most program-
ming languages but not in Prolog. The syntax of DyALog programs has been
extended to cover these structures, backed up by efficient implementations.

2.1 Feature Structures

Feature Structures [FS] are records with named fields, called features. They allow
a more compact and easy writing of terms because there is no need to mention
missing features and because feature ordering is irrelevant. A main distinction
may be made between open FSs vs closed FSs. Any feature may occur in an open
FS while a closed FS is associated to a type that allows a fixed and finite set of
features. DyALog only implements closed Typed Feature Structures [TFS] as
illustrated below with, first, a declaration of the features allowed for type “np”,
and then, a FS built on this type.

:−features ([np] , [gen,num, pers , restr ,wh]) .
lexicon(’Sabine ’ , np{ gen => fem, num => sing ,

restr => plushum, wh => (−) }).

TFSs are implemented as standard terms, with, for each type τ (seen as a
term functor), a fixed rank associated to each feature allowed for τ . In conse-
quence, there is no overhead for using these TFSs, both in terms of space and

19

time. It may be noted that DyALog provides a notion of namespace on func-
tors and that FS types are embedded in their own private namespace, to avoid
conflicts with other functors.

Following [1], TFSs may be extended by type inheritance, i.e., types may have
subtypes and the unification of two TFSs of type τ1 and τ2 may result in a new
TFS of type τ3, the most general subtype of both τ1 and τ2. A type hierarchy is
used to introduce types and to specify subtype relations. Such a hierarchy also
lists the features introduced by each type and, possibly, the most general type
allowed for a feature in the context of a given type. Features introduced by a
type are inherited by all its subtypes, but a subtype may further instantiate the
most general type attached to an inherited feature. Such a type hierarchy, as
understood by DyALog, is provided below, with the keyword sub (resp. intro)
used to introduce subtypes (resp. features). The notion of inheritance hierarchy
has been slightly extended with the keyword escape, used to map a type to some
of the builtin types of DyALog, namely symbol, integer, char and compound.

bot sub [string, list ,cat,synsem].
string escape symbol.
cat sub [s,np,vp,det,n].

s sub [] . np sub [] . vp sub [] .
det sub [] . n sub [] .

synsem sub [frase,lexeme]
intro [cat:cat].

frase sub [root] intro [args: list].
root sub [] intro [cat:s].

lexeme sub [] intro [orth:string].
list sub [ne_list,e_list].

ne_list sub [] intro [hd:bot,tl : list].
e_list sub [] .

A type hierarchy actually holds a lot of default information, that may be used
to write TFSs in even more compact ways. For instance, a most general term may
be associated by default to each type by recursively applying the type constraints
on its allowed features. For a given feature f , there is also a most general type
introducing f and therefore a default most general term. The unification of two
TFSs has now to find their most general subtype, add the newly introduced
features, and perform type instantiations on features re-introduced by subtypes.
Given a type hierarchy, a small auxiliary program (written in DyALog and Perl)
is used to compile all pertinent information into a C library that may then be
dynamically loaded by any DyALog binary. In particular, the C library includes
a specialized unification function for each pair of unifiable types. The same holds
for the subsumption operation. It also includes the code for building the default
maximal terms for each type.

The “compilation” of a type hierarchy greatly reduces the time overhead due
to unifications and creations of new TFSs. TFSs built on maximal types (i.e.,
types without subtypes) are represented by standard terms as above described,
with no overhead. TFSs built on non-maximal terms are internally represented
by dereferencable terms [dterms] (see Section 6.6) τ(X, v1, . . . , vN) where the
extra argument X is used to chain subtype instantiation. One may therefore
have to follow a chain of such variables to find the current instantiation of a
term, hence inducing some slight overhead, both in time and space.

20

However, in most systems implementing TFSs, a main cause of inefficiency
comes from the fact that new terms have to be built during unification, in par-
ticular for newly introduced features, and that most of these costly creations
become useless because of the high rate of unification failures. DyALog avoids
this problem by being based on structure sharing (see Section 6.4) instead of
structure copying as most systems.

2.2 Finite Sets

Finite Sets [FSets] terms are finite collections of atomic values and are generally
used to encode the many collections of such values found in Computational
Linguistics, for instance the mood values for verbs. In DyALog, the list of
atomic values associated with a functor must first be declared, as shown below.

:−finite_set (mode, [ind , subj , inf]) .
tag_lexicon(aime, ’∗AIMER∗ ’ , v, v{ mode => mode[ind , subj] , num => sing }).

FSet terms are implemented as dterms of the form f(X, BV1, . . . , BVn) where
BVi denotes a bit vector. Unification is very efficiently performed by applying
a logical AND instruction between corresponding bit vectors. A FSet term may
be maximally instantiated to a single constant.

FSet terms are very useful to handle, in an efficient way, ambiguities on
atomic values, but also, like closed Feature Terms, to avoid typos when develop-
ing a large grammar. Indeed, the use of a non-allowed value in a given set (like
the use of a non-allowed feature) raises an error at compilation time.

2.3 Miscellaneous extensions

The syntax of DyALog also provides some other minor extensions. The first one
is the notion of immediate unification :: which (while slightly evil) is very useful
to handle the duplication of complex terms, especially dterms, as found, for
instance, in HPSG-like grammars. A term p(X::f(Y),X) is actually equivalent to
either p(f(Y),f(Y)) or more precisely to p(X,X),X=f(Y), except that the binding
of X to f(Y) is performed when reading the terms.

Inspired by HPSG, the following example combines the use of immediate
unification with the use of default notations for TFSs made possible by type
hierarchies. In this example, the variable NP is immediately bound to the most
general term t that may introduce a feature cat and t will also be propagated
to the first occurrence of NP in the clause head.

hpsg(root{} : : args => ne_list{ hd => NP,
tl => (hd => VP : : t l => e_list{}) })

−−> hpsg(NP : : cat => np{}) , hpsg(VP : : cat => vp{}).
% next is compact form for lemma(lexeme{orth=>le , cat=>det{}}).
lemma(orth => le : : cat => det{}).

The second extension is mostly used to get a (pseudo) flavor of higher order
terms, with Hilog terms like p(a,b)(1,2), internally represented by apply(p(a,b),1,2).
The Hilog notation is very convenient when one has to handle several sets of argu-
ments (see Section 3.4) or to express semantic formula, such as P^X^Y^P(X,Y).

21

3 Grammatical Formalisms

DyALog covers most standard functionalities of Prolog systems1, including
usual builtins and the ability to bind ’C’ functions. However, the main rich-
ness of DyALog comes from its coverage of several grammatical formalisms,
besides the commonly available Definite Clauses Grammars [DCGs].

3.1 DCGs

The implementation of DCGs [4] is standard and provides most of the expected
functionalities, including the possibility, shared by all other formalisms, to escape
to logical predicates, through the use of the curly operator {Goal}. Still, DCGs
have been slightly extended with the possibility to use the operators +> and <+
for guiding the direction of parsing. For instance, “a −−> b <+ c +> d +>e.”
will start recognizing c, then recognize d, e on the right of c and then b on the
left of c. DCGs have also been extended by the various generic functionalities
listed in Sections 4 and 5.

3.2 BMGs

Bound Movement Grammars [BMG] are a variant of extraposition grammars
and are implemented as an extension of DCGs. The basic idea of BMGs is that
constituents may be temporarily pushed on some stack to be discharged in some
other place to fill a trace. Island constraints may be used to block the displace-
ment of constituents inside some non-terminals. As illustrated by the following
example, the directives “bmg_stack”, “bmg_pushable”, and “bmg_island” are
respectively used to define stacks (here we have 3 stacks for handling topicaliza-
tion, relatives, and interrogatives), non-terminals allowed on stacks, and island
operators. The clause on line 8 may be used to push a topicalized constituent pp
on the slash stack to discharge it in a verbal group (line 9) but not in a subject
nominal group because of the island barrier isl_slash (line 6).

:−bmg_stacks([slash , rel ,wh]) .
2 :−bmg_pushable(np, [wh, rel]) .
:−bmg_pushable([v,pp] , [slash]) .

4 :−bmg_island(isl_relwh , [rel ,wh]) .

6 s −−> isl_slash np, vp.
s −−> comp, s .

8comp slash pp −−> i s l pp.
vp −−>v,np,pp.

3.3 Feature TAGs and TIGs

Tree Adjoining Grammars [TAG] [5] are actually the main grammatical formal-
ism explored with DyALog. A TAG is formed by a set of elementary initial
and auxiliary parse trees that may be combined to form complete derived parse

1 excluding a full implementation of the cut operator, replaced by a more restricted
and local notion of if-then-else construction.

22

trees using substitutions and adjunctions. A substitution replaces a leaf node
labeled by a non-terminal N by an initial elementary tree α whose root label is
N . An adjunction inserts an auxiliary elementary tree β with root label N on
some internal node ν labeled by N , attaching the subtree rooted below ν on the
distinguished foot node of β. Feature TAGs extend TAGs by decorating nodes
by pairs of top and bottom arguments, usually expressed by Feature Structures.

Partly for efficiency reasons, and partly for linguistic reasons, TAGs are usu-
ally lexicalized, i.e., with at least one lexical leaf in each tree. However DyALog

can handle both lexicalized and non-lexicalized trees, nevertheless exploiting lex-
icalization when possible (see Section 5). In a non-mandatory way, grammars can
be organized following the XTAG model [6], where (a) each tree has an anchor
node, (b) trees are grouped into families sharing common linguistic properties
(such as a sub-categorization frame), (c) word-forms refers to lemmas, and (d)
lemmas indicate which families they may anchor. A lemma may add additional
constraints on the lexical values or on the arguments of the nodes of the an-
chored trees. For instance, the following example shows how the auxiliary tree
vvp1, belonging to the family vvp, which is anchored by modal verbs such as
“POUVOIR” (to be able). This lemma adds the additional constraints that the
node VP should be an infinitive.

tag_tree{ name => vvp1, family => vvp,
tree=> auxtree bot=VP: :vp{}

at vp(<> v, id=vp_ and bot=VP at ∗vp) }.
tag_lemma(’POUVOIR’ ,v,

tag_anchor{ name=>vvp,
equations=>[bot = vp{ mode=>inf } at vp_]}).

tag_lexicon(peut, ’POUVOIR’ , v, v{ mode => ind, num=> sing }).

VP

vvp1

<>V VP �

Anchoring by family represented by atomic values is too rigid in practice,
for at least two reasons. First, in the context of large coverage grammars with
several thousand trees, several hundred families, and several tens of thousands
of lemmas, one has to be sure that the same name is used in a correct way in
both the grammar and the lexicon. A modification of the grammar (addition,
modification or deletion of families) has to be reflected by many changes in the
lexicon. Secondly, a tree may be common to several families, hence potentially
leading to the duplication of trees.

To overcome this rigidity, DyALog allows the use of feature structures called
hypertags in the place of atomic family names. The features of an hypertag cor-
respond to a small set of linguistic properties that are easily identified and stabi-
lized. The hypertag Hτ attached to a tree τ specifies which syntactic properties
are handled by τ while the hypertag Hl attached to a lemma l specifies the syn-
tactic properties of l. The anchoring of τ by l is only possible if the hypertags
Hτ and Hl do unify.

Tree Insertion Grammars [TIGs] [7] are a restriction of TAGs where the
auxiliary trees only insert material on the left or on the right sides of adjunction
nodes, but not simultaneously on both sides. This property implies that the
foot nodes are either the leftmost or the rightmost leaves of auxiliary trees. The
interest of TIGs (without Features) is that they are actually strongly equivalent

23

to CFGs and parsable in O(n3) instead of O(n6) for TAGs. Furthermore, TAGs
for human languages (at least for French and close languages) are essentially
TIGs. Actually, DyALog can handle hybrid Feature TAG/TIG grammars and
analyze a TAG grammar to identify its TIG left and right auxiliary trees.

3.4 Feature RCGs

Range Concatenation Grammars [8] form a very wide and powerful class of gram-
mars that may however still be parsed in polynomial time. In particular, Mildly
Context-Sensitive Formalisms, including TAGs, can be encoded through RCGs.
RCGs clauses are similar to DCGs clauses with the main difference that the
arguments of non-terminals actually specify ranges over the input string. These
arguments are either terminal values or variables, possibly satisfying concate-
nation constraints, expressed with the operator @. DyALog extends RCGs by
allowing a second set of logical arguments, besides the first set of range argu-
ments, relying on Hilog terms. For instance, the following RCG recognizes the
language anbncn, using an extra logical argument for counting and returning n.

s(N) (X@Y@ Z)−−> a(N) (X,Y,Z). a(0) ("","","") −−> true.
a(M) ("a" @X,"b" @Y,"c" @ Z)−−> a(N) (X,Y,Z) , {M is N+1}. axiom(s(N)).

4 Writing factorized grammars

Large coverage grammars, and particularly lexicalized (or lexicalizable) ones
tend to be very large, with for instance several thousand trees for wide coverage
TAGs, raising maintenance problems and parsing efficiency issues. Actually, the
size of such large grammars mostly arises from redundancies. For instance, in a
TAG, most verb-anchored trees provide a subject node decorated by agreement
conditions with the verb, with various realizations and positions.

DyALog implements several factorization operators, generic in the sense
that they can be used for most grammatical formalisms. For DCGs and BMGs,
they apply on literals or sequences of literals. For TAGs and TIGs, they apply
on nodes or, more generally, on sequences of sibling nodes.

The first operators are the well-known disjunction, optionality (with x? ≡

x; ε), and Kleene star operators. The Kleene star operator may be completed
by explicit minimal and maximal bounds, and by aggregation predicates (for
instance, to build a list of arguments through the loop).

As syntactic sugar for optionality combined to Prolog escaping, and for a
finer control of optionality, the notion of guards (for TAGs) may be used to
state conditions on the presence or absence of a node (or of a node sequence). An
expression (G+, x; G

−
) means that the guard G+ (resp. G

−
) should be satisfied

for x to be present (resp. absent). A guard G is a Boolean expression on equations
between FS paths and is equivalent to a finite set of substitutions ΣG.

Less known but well motivated in [9] to handle local free word ordering,
the interleaving (or shuffling) of two sequences (ai)i=1···n##(bj)j=1···m returns

24

all sequences containing all ai and bj in any order that preserves the original
orderings (i.e., ai < ai+1 and bj < bj+1).

All these operators do not increase the expressive power or the worst-case
complexity of the underlying formalism. Indeed, they can obviously be expanded
and removed by adding new non-terminals and new trees to the grammar. For
instance, a tree τ [t1; t2] with some occurrence of a disjunction (t1; t2) may be
replaced by the trees τ [t1] and τ [t2]. A tree τ [(G+, t; G

−
)] may be replaced by

the set of all trees τ [t1]σ+ and τ [ε]σ
−

with σ+ ∈ ΣG+
and σ

−
∈ ΣG

−

. However,
the number of added productions may be exponential in the number of operators
in a given production.

These operators are implemented without expansion, ensuring good perfor-
mances and more natural parsing outputs (with no added non-terminals in the
derivation forests, Section 5.1). Care has been taken of several issues related
to logical variables (for instance to have shared or fresh variables between each
iteration of the Kleene star operator) and interactions between operators (in
particular between the interleaving and Kleene star operators).

DyALog also provides an intersection operator “&” which does change the
expressive power of the underlying formalism but does not increase its worst-case
complexity. For instance, the non-CFG language anbncn is recognized with the
production “s −−> ’AnBnC∗’ & ’A∗BnCn’”. This intersection operator looks
promising to handle some non-linear phenomena that can be expressed by the
conjunction of several properties on a same segment of the input string.

5 Tuning Parsers

As input, DyALog parsers take either lists, as usual for Prolog systems, or,
more efficiently, ambiguous word lattice (or DAGs) coded by ’C’/3 facts, as
shown below for the sentence “ [unknown word] watches [unknown words] with a
telescope”.

’C’(0,_,1). ’C’(1,watches,2). ’C’(2,_,2). ’C’(2,with,3). ’C’(3,a,4). ’C’(4,telescope,5).

The reading of terminals (in TAGs and DCGs) and the anchoring of trees
may be customized, to be able, for instance, to make a call to a lexicon or
check hypertags. Terminals and anchors may also be used for grammar filter-
ing: the grammar is compiled offline but only part of the compiled grammar is
activated depending on the words of the input lattice. It should be noted that
non-lexicalized productions are allowed and are systematically activated.

Default loading conditions are associated to each kind of productions, but it
is also possible to specify its own, as shown below:

’$loader ’(phrase([qui] ,_,_) , (np−−> np, [qui] , srel)). % ’$loader ’(Cond,Clause).

A common complaint against deep parsers is their lack of robustness and
their inability to return information when failing a parse. In a way, this is partly
a wrong issue concerning DyALog parsers, because it is immediate to switch
from full to partial parsing, by generalizing the topmost query over the position
variables L and R.

25

?−recorded(’N’ (R)) , L=0, tag_phrase(s ,L,R) . % Full parsing
?− tag_phrase(s ,L,R) ; tag_phrase(np,L,R) . % Partial Parsing

Because the computations are tabulated (see Section 5.3), partial parsing
may be completed by a post parsing call to a merging and filtering predicate
over partial parses to retrieve the best sets of partial parses covering the input.

Finally, it is worth noting that DyALog provides various levels of tabulation
for predicates and, in a lesser measure, for non-terminals. By default, literals are
(strongly) tabulated but the following specifications can also be used, and may
be much more efficient in some occasions.2 predicate or non-terminal declared
as std_prolog or rec_prolog are not tabulated, on the condition that all its
descendants are not or only weakly tabulated.3 A light_tabular predicate is
weakly tabulated, in the sense that it can be computed without entering a loop,
in itself or one of its descendants4. A prolog predicate is not tabulated, except
indirectly through the possible tabulation of one of its descendants.

5.1 Shared Derivation Forests

All DyALog parsers can return, using the option -forest, the ambiguous set
of derivation trees under the form of a compact shared derivation forest [10]. As
illustrated below for a TAG derivation of sentence “Yves loves Sabine”, a shared
forest is equivalent to a CFG, where the “non terminals” correspond to grammat-
ical operations (for instance, substitutions, adjunctions and anchoring for TAGs)
completed by their span and by feature instantiation, while the “productions”
indicate the possible derivations for the elements intervening in an operation.

s{inv=> −, mode=> ind}(0 ,3) 1 <−− [subject]2 [<>]3 [object]4
np{gen=> masc, num=> sing }(0 ,1) 2 <−− [<>]5
tag_anchor(loves ,1 ,2 ,tn1) 3 <−−
np{gen=> fem, num=> sing }(2 ,3) 4 <−− [<>]6
tag_anchor(Yves,0 ,1 ,np) 5 <−−
tag_anchor(Sabine,2 ,3 ,np) 6 <−−

Ambiguity is represented by disjunctions inside the productions of the forest
and sharing by the reuse of “non terminals”, as shown below (where a preposi-
tional attachment 5 can be either performed on the verb or on the object):

s{}(0,7) 1 <−− ([subject]2 [<>]3 [object]4 [vp]5
| [subject]2 [<>]3 [object]6)

The (non mandatory) labels such as subject and object come from labels
attached to the non-terminals occurring in the grammar productions. Originally
introduced for TAGs, the idea has been extended for all formalisms, using “tagop”
to define its own labeling operator, as shown below for DCGs.
2 Unfortunately, the DyALog compiler does not (yet) perform an automatic analysis

to select the best choice.
3 std_prolog predicates must be defined by a single clause and can be internally

compiled by a ’C’-like function.
4 The consequence is that there is no need to setup a costly mechanism to propagate

answers trough loop points until reaching a fix-point.

26

:−tagop(’ : ’) . s −−> subject :np, verb :v, object :np.

Labels are very useful to decode forests by decorating them, for instance, with
function labels. They are also helpful to setup post-parsing forest traversals to
disambiguate them or to extract information (see Section 5.3).

Forest are extracted by following typed back-pointers attached to tabulated
objects. The derivation of some objects may even disappear or be inlined in the
derivation of an other object (for instance, for the derivations of the pseudo non-
terminal introduced for Kleene stars). Labels are stored inside the back-pointers.

For readability, transformations may be applied to the grammar representa-
tion of shared derivation forest to get more graphical representations, with, in
particular, a dependency based one for TAGs.5

5.2 Parsing strategies

Modulation [11] on non-terminals and their arguments may be used to specify
which information should be exploited during the top-down prediction phase, the
rest being checked during the bottom-up answer propagation phase. For instance,
the declaration dcg_mode(np/2,+(−,−),+,−) states (with the + marks) that
only the terminal name np and its left position (in the input string) should be
used for prediction, the right position and its two arguments being checked on the
propagated answers. Using modulation, it is possible to get various customized
parsing strategies ranging from a pure top-down one (full prediction) to a pure
bottom-up one (no prediction).

The bidirectional parsing strategy mentioned for DCGs has been used as a
base, through grammar rewriting, for head-driven parsing [12]. Left-Corner based
parsing strategies are also possible for DCGs, taking into account the modulation
information for computing the left-corner relation. LC parsing strategies were
originally proposed for CFGs, and while interesting, their transposition to DCGs
shows that some efforts have still to be done to increase their efficiency.6.

We are also investigating the use of guiding techniques to speed up parsing.
The basic idea is to compute some over-generating approximation of the original
grammar, parse the input string with it, and use the information of the resulting
shared forest to guide the predictions of the original grammar. For instance, we
have tried approximating Feature TAG grammars by TIGs without Features.
One could also approximate DCGs or TAGs by simpler CFGs, or even regular
approximations.

5.3 Advanced Tabular-based parsing

DyALog inherits from its logic programming lineage the ability to easily de-
sign parser interpreters with just a few tens of clauses. For instance, such parser

5 They can be tried on line at http://atoll.inria.fr/parserdemo.
6 Essentially, the efficiency of LC strategies for CFGs relies on the use of very efficient

look-up tables for the LC relation. For indexing reasons, it is difficult to get the same
efficiency for logical terms.

27

interpreters were originally developed for TAGs and RCGs before moving to a
tighter and more efficient integration in the DyALog compiler. The main ad-
vantage of DyALog parser interpreters, compared to similar interpreters on top
of other Prolog systems, comes from their inheritance of the tabular properties
of DyALog. Their main disadvantage, compared to a compiler integration, is
the difficulty to extract a shared derivation forest that is not polluted by the
predicates of the interpreter.

Tabulation is generally used to achieve computation sharing but it is actu-
ally interesting to take benefit of it to go beyond traditional parsing techniques.
In particular, DyALog includes predicates to look up for a tabulated object
(recorded(O)), to wait for an answer to be tabulated (’$answers’(G) where G
can even be a variable) 7 , or to follow back-pointers. That means that it is
possible to design dynamic parsing strategies by examining tabulated objects
and tabulated derivations (using back-pointers). For instance, we are exploring
the handling of coordinations, by waiting for derivations reaching a coordination
word w like ’and’, and duplicating (with ellipses) these derivation on the right
of w. Parsing corrections based on tabulated objects can also be performed. An-
other experiment that is under way is to build semantic forms, just after parsing,
by retrieving derivations and transforming them with DyALog predicates.

6 Architecture

6.1 Tabular-based model

DyALog is based on a tabular model, illustrated on Figure 1, with a table of
objects and an agenda. Until the agenda is empty, an object is selected, following
a fair policy, and combined with tabulated objects to build new objects. Unless
subsumed by already tabulated objects, these new objects are tabulated and
scheduled in the agenda.

6.2 Compiling

Grammars are compiled with a bootstrapped compiler. The compilation is based
on theoretical results about automata, in particular Logical Push-Down Au-
tomata (for DCGs) and 2-Stack Automata (for TAGs) [13, 14]. Basically, the
transitions of an automaton encode the steps of a parsing strategy for a given
grammar. Dynamic Programming [DP] interpretations specify how the automata
derivations can be broken into elementary pieces that may be tabulated and com-
bined together to retrieve all derivations. Exploiting these DP interpretations,
and given a grammar, the compiler builds the various transitions during a first
phase and then, in a second phase, identifies the skeletons of the objects that

7 If considering the ask/tell paradigm of Concurrent Constraint Solving, this meta-
predicate ’$answers’/1 is actually very similar to an ask request to the set of answers,
seen as a constraint store. Tabulation may then be seen as “telling” answers. In
practice, it is indeed possible to use a concurrent programming style with DyALog.

28

2

AGENDA

Selection

Application

Object
Admission

Subsumption insertion

Application
Retrieval

Subsomption
Retrieval

5

4

1

3 OBJECTS

Fig. 1. DyALog evaluation loop

may be tabulated and prepares the code allowing the combination of these ob-
jects. The third phase emits the instructions for a mini-assembler, specific to
DyALog, which is then expanded to a true assembler.

6.3 Abstract Machine

Besides the above-mentioned table and agenda, the abstract machine for DyA-

Log includes a heap for allocating terms and objects, and 3 stacks. The Control
Stack is used to keep trace of alternatives and continuations and the Trail Stack
to keep trace of various information to be undone on backtracking (including
variable bindings). The third Layer Stack is used for structure sharing.

6.4 Structure Sharing

Almost all WAM-based systems use structure copying to handle the renaming
of clauses before using them. While interesting for a statically known restricted
set of clauses, copying become less interesting over an arbitrary number of po-
tentially deep tabulated objects. Instead, DyALog exploits a structure-sharing
mechanism based on layers [15] where renaming is handled with a very low cost.
As illustrated on Figure 2, each tabulated object includes an ordered sequence of
layers, each layer holding a set of bindings represented by Virtual Copy Arrays
[VCAs] for fast accesses. A binding X/tδ on layer k means that X on layer k is ac-
tually bound to term tk+δ. When an object is activated, its layers are pushed on
the Layer Stack, this simple operation being sufficient to handle renaming. The
temporary bindings created during unification are pushed on the Trail Stack and
dereferencing has to consult, in order, both the Trail and Layer stacks. When a
new object is tabulated, the pertinent layers and temporary binding are merged,
with a minimum of copy, to form a new set of layers.

Each distinct term is uniquely represented in the heap, allowing us to speed
up the unification and subsumption operations. For instance, the unification

29

1

2

3
X:a

X:f(X)+1
Y:
Z:m(X)+2

X:r(X)+2

X:

A

4

<A> p(X,Y,Z)_1 = p(f(r(a)),Y_1,m(X_3))

Seed

Env

Loading

LS

LAYER

TS

X
BINDING: X_1−> t_l

next:

BINDING: X_4−> t_l
next:Object

Fig. 2. Layer Sharing

of two ground terms, atomic or not, is just a pointer comparison. When two
identical terms with variables are unified, the terms are not traversed and the
unification is only tried on their variables.

The structure-sharing model used by DyALog, based on the loading and
saving of binding environments, is potentially interesting for tabular constraint
solving: a saved environment would be a saved constraint store and the saving
operation would correspond to the existential closure of a store w.r.t. a set of
variables. This closure may however be computationally costly.

6.5 Indexing

One of the main critical issues for tabulation-based systems is the cost for retriev-
ing pertinent tabulated objects, that should be low enough to justify tabulation
over re-computations. The simple indexing scheme used by most Prolog system
is not powerful enough, when the table is very large and hold complex objects.
Instead, DyALog indexes the predicate and all its arguments down to some
bounded depth, using a trie of hash tables on all these indexing keys [16]. The
current implementation is relatively efficient, except in the context of deep terms
where the most discriminating arguments are too deep to be indexed. Following
current proposals made for HPSG implementations (quick check filtering) [17],
we plan to complete objects by a small set of indexing keys, identified through
the parsing of corpora as being the most discriminative ones (i.e., causing a
maximum of unification failures).

6.6 Derefencable terms

To handle TFSs that may instantiated to some sub-type, a more generic notion
of Dereferencable-Terms (dterms) was introduced. Dterms are specially flagged
terms which a special handling of their first argument. If the first argument t1
of a dterm t = f(t1, a1, . . . , an) is not a variable, t1 is itself dereferenced and
used in place of t. An unification involving a dterm t may call a specialized
unification procedure depending on the functor of t and this unification may
instantiate the first argument of t. Non-maximal TFSs and FSet terms are im-
plemented as dterms. DyALog also implements infinite terms as dterms built

30

on functor $LOOP/3. Dterms look like a promising entry point for a future and
more complete handling of typing constraints.

7 Experiments

Besides using DyALog to handle itself, we have also used DyALog for small
to medium size DCGs and TAGs grammars. DyALog was also used to develop
a robust Portuguese parser, based on a first head-driven bi-bidirectional DCGs
for non recursive chunks, and completed by a BMG [12].

More recently, DyALog has been used to develop a Meta Grammar Com-
piler mgcomp [18]. The idea of Meta-Grammar [MG] [19] is to factorize linguistic
information through a multiple inheritance hierarchy of small elementary classes,
each of them grouping elementary constraints between nodes (precedence, dom-
inance, equality, . . .) and on node decorations. A class may also state that it
provides or requires some functionality (for instance, the notion of subject). The
first task of of the MG compiler is to cross classes in order to neutralize these
required and provided functionalities. Its second task is to check the satisfiabil-
ity of the constraints accumulated by the neutral classes. Its third task is to use
the constraints of the surviving neutral classes to emit minimal TAG trees. The
first and second tasks rely on the computation of transition closures for which
the weak tabulation mechanism of DyALog proved to be efficient. It may be
noted that these 2 tasks correspond to typical constraint solving tasks, namely
solving and generating. For handling a larger typology of constraints, it could
be interesting to combine or extend DyALog with a true constraint solver.

By combining the possibilities of description factorization provided by MGs
and by DyALog, we were able to quickly develop, for French, a highly factorized
TAG Grammar of only 133 trees, with only 27 trees anchored by verbs, roughly
corresponding to several thousand non-factorized trees. The resulting hybrid
TAG/TIG parser was compiled with a left-to-right top-down parsing strategy,
modulated not to use the node decorations for predictions.

The parser may be used to try either full or partial parsing, with, in the latter
case, the selection of the best covering of the input sentence by partial parses.
The coverage rate for full parsing is excellent (over 93%) on the test suites that
we have used during the development of the grammar (with 334 sentences for
EUROTRA and 1661 for TSNLP), with a lexicon of more than 400000 word
forms. The parser has also been tried on a heterogeneous corpus of almost 40000
sentences in the context of a parsing evaluation campaign. We achieved a cover-
age rate around 42% for full parsing. We are still waiting for the full results of
this campaign, but we have computed a preliminary F-measure of 0.71 for recog-
nizing elementary chunks on a reference subset of around 2517 sentences. With
a slightly modified and less generating grammar, we very recently achieved a
41% coverage for full parsing on a journalistic corpus of around 330K sentences.
Fig. 3 shows the reasonable time distribution we got (on a P4 at 3.2Ghz) w.r.t.
the number of edges of the input lattice (with an excellent approximation of 1.17
edges per word) and with a timeout of 50 s.

31

#edges
0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

0

1

2

3

4

5

6

7

8

9

10

Avg Time (s)

Fig. 3. Time distribution over MD 00-09 (timeout=50s)

8 Conclusion and evolutions

We see DyALog as a multi-purpose system. It could provide an interesting en-
vironment for educational purpose, because it is easy to quickly develop small to
medium scale grammars for various formalisms, to test distinct parsing strate-
gies, and to avoid looping and most combinatorial problems thanks to tabulation.
DyALog is also interesting for researchers wishing to explore new grammati-
cal formalisms or new parsing strategies, either through the fast development
of meta-interpreters or through extensions of the compiler. The concurrent-like
programming style provided by DyALog looks like a promising way to handle
complex linguistic phenomena, such as coordination and error repairs. Finally,
DyALog is now mature enough and powerful enough to handle wide-coverage
grammars for practical tasks, particularly when using factorized grammars.

DyALog should be soon extended with Thread Automata [20], for encoding,
in an uniform way, parsing strategies for an even wider range of Mildly Context-
Sensitive formalisms, including local Multi-Component TAGs. It should also be
extended to properly handle probabilities, either as a post-parsing task on the
shared forests for disambiguating them, or during parsing to schedule in priority
the highest probability computation paths.

DyALog and most of the tools and grammars mentioned in this paper are
freely available on http://atoll.inria.fr under the “Catalog” entry.

References

1. Carpenter, B.: The Logic of Typed Feature Structures with Applications to Unifica-
tion Grammars, Logic Programs and Constraint Resolution. Cambridge University

32

Press (1992)
2. Earley, S.: An efficient context-free parsing algorithm. In: Communications ACM

13(2). ACM (1970) 94–102
3. Sagona, K., Swift, T., Warren, D.: XSB as an efficient deductive database engine.

In: Proc. of SIGMOD’94. (1994)
4. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis -

a survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13 (1980) 231–278

5. Joshi, A.K.: An introduction to tree adjoining grammars. In Manaster-Ramer,
A., ed.: Mathematics of Language. John Benjamins Publishing Co., Amster-
dam/Philadelphia (1987) 87–115

6. Doran, C., Egedi, D., Hockey, B.A., Srinivas, B., Zaidel, M.: XTAG system — a
wide coverage grammar for English. In: Proc. of the 15th International Conference
on Computational Linguistics (COLING’94), Kyoto, Japan (1994) 922–928

7. Schabes, Y., Waters, R.C.: Tree insertion grammar: a cubic-time, parsable formal-
ism that lexicalizes context-free grammar without changing the trees produced.
Fuzzy Sets Syst. 76 (1995) 309–317

8. Boullier, P.: Range Concatenation Grammars. In: New Developments in Parsing
Technology. H. bunt, j. carroll, and g. satta edn. Volume 23 of Text, Speech and
Language Technology. Kluwer Academic Publishers (2004) 269–289

9. Nederhof, M.J., Satta, G., Shieber, S.: Partially ordered multiset context-free gram-
mars and free-word-order parsing. In: In 8th International Workshop on Parsing
Technologies (IWPT’03). (2003) 171–182

10. Billot, S., Lang, B.: The structure of shared forests in ambiguous parsing. In:
Proc. of the 27 Annual Meeting of the Association for Computational Linguistics.
(1989)

11. Barthélemy, F., Villemonte de la Clergerie, É.: Information flow in tabular in-
terpretations for generalized push-down automata. Theoretical Computer Science
199 (1998) 167–198

12. Rocio, V.J., Lopes, G.P., Villemonte de la Clergerie, É.: Tabulation for multi-
purpose parsing. Grammars 4 (2001) 41–65

13. Éric Villemonte de la Clergerie, Alonso Pardo, M.: A tabular interpretation of a
class of 2-stack automata. In: Proc. of ACL/COLING’98. (1998)

14. Alonso, M.A., Villemonte de la Clergerie, E., Diaz, V.J., Vilares, M. (In:)
15. Villemonte de la Clergerie, É.: Layer sharing : an improved structure–sharing

framework. In: Proc. of POPL’93. (1993) 345–356
16. Villemonte de la Clergerie, É.: Automates à Piles et Programmation Dynamique.

DyALog : Une application à la programmation en Logique. PhD thesis, Université
Paris 7 (1993)

17. Ciortuz, L.: 10. In: On two classes of Feature Paths in Large Scale Unification
Grammars. Volume 23 of Text, Speech and Language Technology. Kluwer Aca-
demic Publishers (2004) 203–228

18. Thomasset, F., Villemonte de la Clergerie, E.: Comment obtenir plus des méta-
grammaires. In: Proceedings of TALN’05, Dourdan, France, ATALA (2005)

19. Candito, M.H.: Organisation modulaire et paramétrable de grammaires électron-
iques lexicalisées. PhD thesis, Université Paris 7 (1999)

20. Villemonte de la Clergerie, E.: Parsing mildly context-sensitive languages with
thread automata. In: Proc. of COLING’02. (2002)

33

Lexicalised Configuration Grammars

Robert Grabowski, Marco Kuhlmann, and Mathias Möhl

Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract. This paper introduces Lexicalised Configuration Grammars
(lcgs), a new declarative framework for natural language syntax. lcg is
powerful enough to encode a large number of existing grammar formalisms,
facilitating their comparison from the perspective of graph configuration.
Once a formalism has been encoded as an lcg, the framework offers
various means to increase its expressivity in a controlled manner; trading
expressive power for computational complexity, this makes it possible to
model syntactic phenomena in novel ways. Parsing algorithms for lcgs
lend themselves to a combination of chart-based and constraint-based
processing techniques, allowing both to bring in their strengths.

1 Introduction

Formal accounts of natural language syntax may differ in their understanding of
grammar. In generative frameworks, grammars are systems of derivation rules;
well-formed expressions correspond to successful derivations in these systems. In
descriptive frameworks, grammars are complex constraints on syntactic structures;
well-formed structures are those that satisfy a grammar. This paper presents
Lexicalised Configuration Grammars (lcgs), a new descriptive framework for
the syntactic analysis of natural language.

Structures and constraints lcg does not replace existing grammar formalisms;
it offers a formal landscape into which these formalisms can be embedded to
study them and their relations from a different angle: as description languages
for syntactic structures. To be expressed as an lcg, a grammar formalism needs
to be characterised by two choices: (1) What structures does it describe? and
(2) What constraints does it use to describe them? To illustrate this, we will
show how context-free grammars (cfgs) fits into lcg.

Following McCawley [1], cfgs can be seen as description languages for ordered,
labelled trees (Choice 1). More precisely, let G = (Σ, Π,R, π) be a cfg with Σ
and Π being the alphabets of terminal and non-terminal symbols, respectively,
R the set of rules, and π ∈ Π the start symbol. A node u satisfies G if either
(a) u is a leaf node and is labelled with a terminal symbol, or (b) u is an inner
node with successors u1, . . . , uk (in that order), R contains a rule α → β1 · · ·βk

(where α ∈ Π and βi ∈ Σ ∪ Π), u is labelled with α, and each successor ui of u
is labelled with βi; that is, the order of the successors of u is compatible with
the order specified by the rule (Choice 2). An ordered, labelled tree satisfies G if
its root node is labelled with π, its frontier is s, and all of its nodes satisfy G.

34

Global and local constraints The choice of a class of reference structures for an
lcg grammar formalism (Choice 1) imposes a global constraint on the formalism’s
expressivity. For example, by committing itself to ordered, labelled trees, no
grammar specified in the lcg version of cfg can possibly account for syntactic
structures with discontinuous configurations, and no possible choice for the
constraint language (Choice 2) can change that. Similarly, in previous work [2],
we have identified a class of discontinuous structures that is ‘just right’ for a
descriptive view on Lexicalised Tree Adjoining Grammar (ltag) [3]. Adopting
this class commits an lcg formalism to subsets of those syntactic structures that
are obtainable by an ltag.

The choice of the class of reference structures is the only non-lexical constraint
expressible in lcg. This sets lcg formalisms apart from other formalisms em-
ploying constraints to restrict syntactic configurations, like the id/lp format of
Generalised Phrase Structure Grammar [4] or Constraint Dependency Grammar
(cdg) [5]. Both of these formalisms allow for the statement of non-lexical con-
straints at the level of individual grammars (order constraints in id/lp grammars,
all constraints in cdg). In contrast, global constraints in lcg can be imposed
only by the choice of reference structures (Choice 1), which is a choice made
at the level of the formalism. All remaining constraints are local : they apply to
a word and the words in its immediate syntactic neighbourhood. In this sense,
lcg is a lexicalised framework. The next section discusses the notion of locality
employed in lcg and the role of lexical constraints in more detail.

Valencies and lexical constraints Locality is modelled through the concept of
valency. The valency of a word w specifies the possible types of a word w (accepted
types) and the number and types of other words that w must connect with to form
a complete expression (required types). The concept of valency is universal among
lexicalised grammar formalisms; it is implemented by non-terminal symbols in
lexicalised cfg, syntactic roles in dependency grammar, and slashed categories
in categorial grammar. When we say that lexical constraints apply to words
and their immediate syntactic neighbourhoods, we mean that constraints in the
lexical entry for a word w are relations over the words permitted by the valency
of w. These words can be referred to by the accepted and required types of w.

We illustrate the idea behind lexical constraints by finalising our encoding
of cfg as an lcg formalism. Assuming that we chose ordered, labelled trees as
the reference class of structures (Choice 1), rules in a (lexicalised) cfg can be
rewritten as lcg lexical entries using a single binary constraint relation ≺ to
express linear precedence (Choice 2). For example, the rule α → β1wβ2β3 (where
α, βi ∈ Π and w ∈ Σ) would correspond to the lexical entry

〈{α}, {β1, β2, β3} ; β1 ≺ ι ∧ ι ≺ β2 ∧ β2 ≺ β3 〉 .

The first component of this entry specifies the types accepted by w, the second
component specifies the required types; thus, in a tree satisfying this entry, the
node labelled with w must have a predecessor of type α and successors of types
β1, β2, β3. The third component of the entry contains the lexical constraints on

35

the valency; for the example entry, the node labelled with w (denoted by ι here)
and its successors (referred to by their types) must be ordered as prescribed by
the right hand side of the context-free rule. Note that this semantics exactly
corresponds to McCawley’s conception of cfg.

Increasing the expressivity Given that the lcg framework is stratified with
respect to the choice of the class of reference structures and the choice of the
lexical constraint languages, there are two obvious ways how the expressivity of
an lcg formalism can be increased:

– choose a more permissive class of structures (for example, the ltag structures
mentioned above instead of the ordered, labelled trees employed for the
encoding of cfg);

– choose other constraint languages (for example, languages with structural
constraints other than precedence, like isolation or adjacency [6], or languages
allowing for non-structural constraints such as agreement).

It turns out that lcg facilitates a rather detailed analysis of the implications that
these two changes have in terms of the generative capacity and the processing
complexity of the resulting formalisms.

One of the main reasons why one might want to experiment with expressivity
alternations is that for most traditional grammar formalisms, there is a small
number of ‘killer phenomena’ for which it seems necessary to locally extend the
expressiveness of the formalisms by just the right amount. In the case of English
for example, while most syntactic configurations disallow discontinuities, a few
(such as in wh-movement) require them. It seems desireable to be able to express
context-free and non-context-free phenomena in the same formalism, investing
extra formal and computational resources only in cases where they really are
required. We claim that lcg is suitable for such endeavours.

Another reason why we think that lcg is an interesting framework for
modelling natural language is that it is able to handle linguistic phenomena that
have proven to be particularly hard for other frameworks. As an example, we
cite the permutation of nominal arguments in the German verb cluster known as
scrambling. If we accept the linguistic analysis put forward by Becker et al. [7],
the question whether a formalism can model scrambling boils down to asking
whether it can generate the indexed language

SCR = {π(n[0], . . . , n[k])v[0] · · · v[k] | k ≥ 0 and π a permutation } ,

where the indices (written as superscripts) match up verbs (vs) with their noun
arguments (ns). It has been shown [7] that no formalism in the class of Linear
Context-Free Rewriting Systems1 that produces a verb v[i] and the requirement
for its matching noun argument n[i] in the same derivation step can generate
SCR. In Section 3.3, we will present an lcg that does.

1 The class of Linear Context-Free Rewriting Systems includes, among other formalisms,
Combinatory Categorial Grammar, ltag, and local Multi-Component tags.

36

Structure We start our exposition by introducing labelled drawings as the universal
reference class of structures for lcgs (Section 2). Section 3 presents the stratified
framework for constraint languages over drawings and gives some illustrative
examples. In Section 4, we prove some limitative complexity results for lcg.
Section 5 then addresses the issue of parsing lcgs and shows how the standard
polynomial complexities for parsing can be obtained by appropriate restrictions
on the structures and constraint languages. The paper concludes with an outlook
on future work in Section 6.

2 Labelled drawings

We introduce lcgs as description languages for (labelled) drawings [2], a class of
relational structures representing two essential syntactic dimensions: derivation
structure and word order. Derivation structure captures the idea that a natural
language expression can be composed of smaller expressions; word order concerns
the possible linearisations of syntactic material. This section presents the basic
terminology for drawings and cites some previous results.

2.1 Relational structures

A relational structure consists of a non-empty, finite set V of nodes and a number
of relations on V . In this paper, we are mostly concerned with binary relations
on the nodes. We use the standard terminology and notations available for
binary relations. In particular, R+ refers to the transitive closure, R∗ to the
reflexive-transitive closure of R. The notation Ru stands for the relational image
of u under R: the set of all v such that (u, v) ∈ R. Since relational structures
with binary relations can also be seen as multigraphs, all the standard graph
terminology can be applied to them.

Two types of relational structures are particularly important for the represen-
tation of syntactic configurations: trees and total orders. A relational structure
(V ; �) is a forest iff � is acyclic and every node in V has an indegree of at most
one. Nodes with indegree zero are called roots. A tree is a forest with exactly one
root. For a node v, we call the set �∗v the yield of v. A total order is a relational
structure (V ;≺) in which ≺ is transitive and for all v1, v2 ∈ V , exactly one of
the following three conditions holds: v1 ≺ v2, v1 = v2, or v2 ≺ v1. Given a total
order, the interval between two nodes v1 and v2 is the set of all v such that
v1 v v2. A set is convex iff it is an interval. The cover of a set V ′, C(V ′), is
the smallest interval containing V ′. A gap in a set V ′ is a maximal, non-empty
interval in C(V ′) − V ′; the number of gaps in V ′ is the gap degree of V ′.

2.2 Drawings

Drawings are forests whose nodes are totally ordered.

Definition 1. A drawing is a relational structure (V ; �,≺) in which (V ; �) forms
a forest and (V ;≺) forms a total order. If the forest structure underlying a drawing
forms a tree, the drawing is called arborescent.

37

Note that drawings are not the same as ordered trees: in an ordered tree, only
sibling nodes are ordered; in drawings, the order is total for all of the nodes.

The notions of cover, gap and gap degree can be applied to nodes in a drawing
by identifying a node v with its yield �∗v; for example, the gap degree of a node v
is the gap degree of �∗v. The gap degree of a drawing is the maximum among
the gap degrees of its nodes. We write Dg for the class of all drawings whose gap
degree does not exceed g. The drawings in D0 are called projective. Fig. 1 shows
three drawings of the same forest structure but with different gap degrees.

a b c d fe

0

0

0 0

0

0

a b c e f d

0

0

0

1

1

0

a b e c f d

0

2

1

1

0

0

Fig. 1. Drawings in D0 (projective drawings; left), D1 −D0 (gap degree 1; middle) and
D2 −D1 (gap degree 2; right). An integer at a node states that node’s gap degree.

The notion of gap degree yields a scale along which the non-projectivity of a
drawing can be quantified. Orthogonal to that, there are linguistically relevant
qualitative restrictions on non-projectivity. One of these is well-nestedness, which
constrains the possible relations between gaps [2].

Definition 2. Let D be a drawing. Two disjoint trees T1 and T2 in D interleave
iff there are nodes l1, r1 ∈ T1 and l2, r2 ∈ T2 such that l1 ≺ l2 ≺ r1 ≺ r2. The
drawing D is called well-nested iff it does not contain any interleaving trees.

We use the notation Dwn to refer to the class of all well-nested drawings. In Fig. 1,
the first and the second drawing are well-nested; the third drawing contains two
pairs of interleaving trees, rooted at b, e and c, e, respectively.

2.3 Labelled drawings

A labelled drawing is a drawing equipped with two total functions: one from
its nodes to an alphabet Σ of node labels and a second one from its edges to
an alphabet Π of edge labels. Since it will always be clear from the context
whether we mean the node labelling or the edge labelling function, we will use
the symbol � for both: for any node v, �(v) refers to the node label associated
to v; for any edge (u, v), �(u, v) refers to the associated edge label. We write
DΣ,Π for the class of labelled drawings obtained by decorating drawings from
class D with node labels from Σ and edge labels from Π.

In labelled drawings, labelled successor relations can be defined as follows:

�π := { (u, v) ∈ V × V | u � v and �(u, v) = π } .

38

To reduce the complexity of our presentation, we assume the existence of a special
edge label ι called ‘self’, distinct from all other labels, and define �ι := Id.

The projection of a labelled drawing D, proj (D), is the string obtained by
concatenating the node labels of the drawing in the order of their corresponding
nodes; this is in analogy to the notion of the frontier of an ordered labelled tree.

3 Lexical constraint languages

The choice of a particular class of drawings imposes a global constraint on the
syntactic structures allowed by an lcg formalism. In this section, we formalise
the mechanism of lexical (local) constraints. As we illustrated in the introduction,
the lexical entry for a given word w specifies the type of w and the types of
the words connected to w, and imposes additional structural restrictions using
constraints from a lexical constraint language. In our formal model, words will
correspond to node labels, and types of nodes will correspond to edge labels. A
lexical constraint between two types π1, π2 in the entry of a word �(u) will be
interpreted on the nodes reachable from u by the labelled successor relations
named by π1 and π2.

3.1 Syntax and semantics

Syntax The syntax of a lexical constraint language is defined relative to an
alphabet R of relation symbols and an alphabet Π of edge labels. The alphabet R,
together with a function ar that assigns every symbol R ∈ R a non-negative
arity ar(R), forms the signature of the language. We will leave the arity function
implicit, and use the letter R to refer to signatures.

Definition 3. Let R be a signature, and let Π be an alphabet of edge labels. A
lexical constraint language with signature R over Π, written LR(Π), consists of
formulae φ of the following form:

φ ::= t | R(π1, . . . , πk) | φ1 ∧ φ2 , where R ∈ R, ar(R) = k, and πi ∈ Π

We write LR for the class of all lexical constraint languages with signature R.

The literal t is read as ‘true’. We call literals of the form R(π1, . . . , πk) relational
constraints. Binary relational constraints will be written using infix notation, so
the notation π1 R π2 will stand for R(π1, π2).

Semantics The satisfaction relation associated to a lexical constraint language
LR(Π) is a ternary relation between a formula φ, a drawing D ∈ DΣ,Π and a
node u in that drawing. For formulae of the form t and φ1 ∧ φ2, the definition of
the satisfaction relation is the same for all lexical constraint languages:

D, u |= t always
D, u |= φ1 ∧ φ2 iff D, u |= φ1 and D, u |= φ2

39

Satisfiability of relational constraints must be defined individually for a specific
language. However, there are two restrictions on the possible definitions; these
restrictions define lexical constraint languages in the wider sense of the term:
a definition of the satisfiability relation D, u |= R(π1, . . . , πk) may only refer to
the labelled successor relations {�π1

, . . . , �πk
},2 and the question whether the

defining condition applies must be decidable in time polynomial in the number of
nodes in D. lcg does not impose any further restrictions; it allows for defining
arbitrary constraint languages for labelled drawings, as long as the constraints
meet the above criteria.

3.2 Theories and grammars

Within lcg, we distinguish between theories and grammars. Formally, an lcg
theory is a pair of a class of (unlabelled) drawings and a class of lexical constraint
languages. An lcg theory corresponds to a ‘grammar formalism’ in the usual
sense of the word. An lcg grammar adopts a theory and instantiates it by
choosing concrete alphabets for the node and edge labels, and a lexicon.

Definition 4. Let T = (D,LR) be a theory. A grammar of type T is a triple
GT = (Σ, Π,Lex) such that Σ is an alphabet of node labels, Π is an alphabet of
edge labels, and Lex is a lexicon of type Σ → P(LER(Π)).

An lcg lexicon is a mapping from node labels to sets of lexical entries. The
type of a lexical entry depends on the signature of its constraint language and
the alphabet of edge labels that the lexical constraints may refer to.

Definition 5. A lexical entry describes a node in a drawing. It is a triple

〈I, Ω ; φ〉 ∈ B(Π) × B(Π) × LR(Π) =: LER(Π) ,

where the bags I and Ω contain edge labels, and φ is a lexical constraint. A node u
in D ∈ DΣ,Π satisfies a lexical entry 〈I,Ω ; φ〉 ∈ LER(Π) iff

for all π ∈ Π, |(�π)−1u| = I(π) and |(�π)u| = Ω(π) , and D, u |= φ .

The satisfaction property of a node can be lifted to the whole drawing:

Definition 6. A node u ∈ D ∈ DΣ,Π satisfies a lexicon Lex ∈ Σ → P(LER(Π))
iff there is a lexical entry 〈I,Ω ; φ〉 ∈ Lex(�(u)) such that u satisfies 〈I, Ω ; φ〉. D
satisfies a grammar G of type T , written D |= G, iff every node u ∈ D satisfies
the lexicon of the grammar.

3.3 Sample languages

To provide an intuition for the formal concepts defined in the previous two
sections, we will now translate three grammar formalisms into lcg theories. We
start by adapting our previous encoding of lcfg to the new formal concepts.
2 The definition may refer to arbitrary unlabelled relations in D.

40

Lexicalised Context-Free Grammars As already mentioned in the intro-
duction, lexicalised context-free rules like α → β1wβ2β3 can be seen as local
well-formedness conditions on node-labelled, ordered trees (see Fig. 2). To express
these conditions in the formal framework defined above, we first need to choose
a class of drawings suitable as models for lcfgs. Since the yields of each non-
terminal are continuous, a proper choice is D0, the class of projective drawings.
Second, we need to choose a signature for the lexical constraint language that we
want to use. As we already mentioned in the introduction, the only structural
constraint relevant to lcfgs is linear order. Therefore, it suffices to have a single
relational constraint ≺ that imposes an order on the immediate successors of a
node; since the language is interpreted on projective drawings, this order induces
an order on the subtrees.

D, u |= π1 ≺ π2 iff �π1
u × �π2

u ⊆ ≺

Fig. 2 shows a node-labelled tree, the corresponding lexical entry for the word w,
and a (partial) drawing satisfying the entry. Note that (instances of) non-terminals
in the lcfg rule correspond to edge labels in lcg. If α was a start symbol of the
underlying grammar, the first component of the corresponding lcg entry would
have to be the empty set; such entries can only be satisfied at root nodes.

�

w�� �� ��

��

�

��

a w b c

��

w : 〈{α}, {β1, β2, β3} ; β1 ≺ ι ∧ ι ≺ β2 ∧ β2 ≺ β3 〉

Fig. 2. Encoding Lexicalised Context Free Grammars

Lexicalised Unordered Context-Free Grammar Since nothing forces us to
impose order constraints on all types, we can write grammars corresponding to
lcfgs with arbitrary permutations of the right hand sides of the rules. If we
abandon the order constraints completely, we get the theory (D0, ∅), which is
equivalent to the class of (lexicalised) unordered context-free grammars.

The scrambling language The following grammar derives drawings whose
projections form the scrambling language presented in the introduction. The
underlying theory uses the unrestricted class of drawings and a constraint language
with two literals ≺ (linear precedence) and �� (adjacency), whose semantics are

41

specified in Fig. 3. The grammar is GSCR := ({n, v}, {n, v},Lex), where the
lexicon Lex contains the entry 〈{n}, ∅ ; t〉 for n and the following entries for v:

〈∅, {n, v} ; n ≺ ι ∧ ι ≺ v ∧ ι �� v〉 , 〈{v}, {n, v} ; n ≺ ι ∧ ι ≺ v ∧ ι �� v〉 ,

and 〈{v}, {n} ; n ≺ ι〉 .

The precedence constraints place each v in between its n-successor and its v-
successor. The adjacency constraint prevents material from entering between a v
and its v-successor. Therefore, all nodes labelled with n must be placed to the
left of all nodes labelled with v, and while the vs are ordered, the ns can appear
in any permutation. (Fig. 3 shows a sample drawing licensed by GSCR.)

D, u |= π1 ≺ π2 iff (�π1
◦ �∗)u × (�π2

◦ �∗)u ⊆ ≺
D, u |= π1 �� π2 iff (�π1

◦ �∗ ∪ �π2
◦ �∗)u is convex

n

v
n

n

n n n n vv

n

v v

v

v

Fig. 3. Lexical constraint language and sample drawing for SCR

Linear Specification Language Suhre’s lsl formalism [6] allows to generate
languages with a free word order. It is inspired by id/lp parsing [4], but allows
for local constraints only, which makes it more suitable for translation into lcg.
The yields in lsl are generally discontinuous; therefore, a theory for lsl needs
to adopt the class of unrestricted drawings as its models. To restrict the possible
linearisations, each lsl grammar rule can be annotated with local precedence
and ‘isolation’ (zero-gap) constraints. These constraints can be translated into
constraints from the lexical constraint language LLSL shown in Fig. 4. We define
the following abbreviations:

�π := �π ◦ �∗, �ι := Id, �• := �∗ .

The last clause in the definition of the satisfiability relation in Fig. 4 corresponds
to an isolation constraint applied to the left hand side of an lsl rule.

4 Limitative complexity results

The previous section has demonstrated that the lcg framework is rather expres-
sive. This expressive power does not come without a price. It is clear that all

42

D, u |= π1 < π2 iff 	π1
u × 	π2

u ⊆ ≺
D, u |= π1
 π2 iff 	π1

u × 	π2
u ⊆ ≺ and C(π1

u) ∪ C(π2
u) is convex

D, u |= 〈π〉 iff 	πu is convex

D, u |= 〈•〉 iff 	•u is convex

Fig. 4. Suhre’s Linear Specification Language

string membership problems for lcg are in np: we can simply guess a labelled
drawing and check the lexical constraints in polynomial time. The main result of
the present section is the proof that the general string membership problem for
the most general lcg theory is np-complete.

4.1 The general string membership problem

Definition 7. Let G = (Σ, Π,Lex) be a grammar for the theory (D,LR), and
let s be a string over Σ. The general string membership problem for G and s,
written (G, s), is the problem to decide whether the following set is non-empty:

C(G, s) := {D ∈ DΣ,Π | D |= G and proj(D) = s }
Elements of this set are called configurations of (G, s).

Lemma 1. The general string membership problem for (D,L∅) is NP-hard.

Proof. We will present a polynomial reduction of Hamilton Path to the general
string membership problem for (D,L∅). More specifically, for each input graph
H = (V ;E) to Hamilton Path, we will construct (in time linear in the size
of the input graph) a grammar GH and a string sH such that C(GH , sH) is
non-empty iff H has a Hamilton Path. Let sH be some string over V , and define

ΣH ,ΠH := V

start(v) := { 〈∅, {v′} ; t〉 | v → v′ ∈ H }
inner(v) := { 〈{v}, {v′} ; t〉 | v → v′ ∈ H }

end(v) := { 〈{v}, ∅ ; t〉 | v → v′ ∈ H }
LexH := { v �→ start(v) ∪ inner(v) ∪ end(v) | v ∈ V }

GH := (ΣH ,ΠH ,LexH)

Each Hamilton Path in H forms a linear tree on V . Each such tree can be
configured using GH by choosing, for each node v in H, an entry from either
start(v), end(v), or inner(v), depending on the position of v in the Hamilton
Path. Conversely, in each configuration of (GH , sH), each node has at most
one predecessor and at most one successor qua lexicon. Therefore, each such
configuration is a drawing whose successor relation forms a linear tree, and the
path from the root to the leaf identifies a Hamilton Path in H.

43

To illustrate the encoding used in the proof, we show an example for an input
graph H and a corresponding configuration in Fig. 5. The Hamilton Path in H
is marked by solid edges. The depicted drawing satisfies the following lexicon
LexH . (The lexical entry satisfied at each node is underlined.)

1 �→ {〈∅, {3} ; t〉, 〈∅, {4} ; t〉, 〈{1}, {3} ; t〉, 〈{1}, {4} ; t〉, 〈{1}, ∅ ; t〉}
2 �→ {〈∅, {1} ; t〉, 〈∅, {4} ; t〉, 〈{2}, {1} ; t〉, 〈{2}, {4} ; t〉, 〈{2}, ∅ ; t〉}
3 �→ {〈{3}, ∅ ; t〉}
4 �→ {〈∅, {3} ; t〉, 〈{4}, {3} ; t〉, 〈{4}, ∅ ; t〉}

3

1 2

4

1

3

1 2 3 4

4

Fig. 5. An input graph H for Hamilton Path and a drawing licensing LexH

4.2 The fixed string membership problem

The fixed string membership problem asks the same question as the general
problem, but the grammar is not considered part of the input. This fact invalidates
the reduction that we used in the previous section, as this reduction constructed
a new grammar for every input, while any reduction for the fixed word problem
needs to assume one fixed grammar for every input string. The proof of the
following result is omitted due to space limitations:

Lemma 2. The fixed membership problem for (D,L∅) is polynomial.

It would seem desirable to have a framework in which extending the signature
of the constraint language may only reduce the complexity of the membership
problem, but never increase it. For lcgs, however, this is not necessarily the case:
in an unpublished manuscript, Holzer et. al. show—by a reduction of Tripartite
Matching—that for the Linear Specification Language, even the fixed string
membership problem is np-complete (p.c.); consequently, by the encoding of lsl
presented in Section 3.3, the same result applies to lcgs.

5 Parsing Lexicalised Configuration Grammars

This section presents a general schema for chart-based approaches to parsing
lcgs. Parsing schemata [8] provide us with a declarative specification of concrete

44

parsing algorithms, and allow us to analyse the complexity of these algorithms
on a high level of abstraction, hiding the algorithmic details. The complexity and
even the completeness heavily depend on the class of drawings that the schema
is applied to. Hence we get a detailed picture of how parsers can benefit from the
global constraints that are implicit in a class of drawings and up to what limits
the class can be extended without losing efficiency.

5.1 A general parsing schema

Parsing schemata [8] view parsing algorithms as inference systems. The general
parsing schema for lcg derives parse items representing partial drawings licensed
by a given grammar and sentence. These parse items have the form s : 〈I,Ω〉,
where s is a span (a non-empty subset of the words in the sentence) and I and Ω
are bags of edge labels. Each parse item represents the information that the
grammar licenses a partial drawing covering the words of the input sentence
specified by s; for this drawing to be complete, one still needs to connect its
root nodes using incoming edges labelled with the labels in I and outgoing edges
labelled with the labels in Ω. A parse item in which Ω is empty is fully saturated.
An item s : 〈∅, ∅〉 in which s contains all the words in the sentence is complete.

The lookup rule The parsing schema contains three rules called lookup, group
and plug. The lookup rule creates a new parse item with a singleton span for
a word wi in the input sentence:

〈I,Ω ; φ〉 ∈ Lex (wi)
{i} : 〈I,Ω〉 lookup

The combination rules The group and plug rules derive new parse items from
existing ones. The first rule, group, combines two fully saturated items into a
new fully saturated item. The plug rule saturates a bag of valencies in a parse
item by combining it with another item accepting these valencies on incoming
edges pointing to its root nodes:

s1 : 〈I1, ∅〉 s2 : 〈I2, ∅〉
s1 ⊕ s2 : 〈I1 ∪ I2, ∅〉

group
s1 : 〈I1, Ω � I2〉 s2 : 〈I2, ∅〉

s1 ⊕ s2 : 〈I1, Ω〉 plug

The span of a parse item in the conclusion of the group or plug rule (s1 ⊕ s2) is
the union of the spans in the premises (s1, s2). The ⊕ relation is a subset of the
disjoint union relation. On which pairs of spans it is defined depends on the class
of drawings that the schema is applied to, e.g. for D1 it would only be defined
on pairs of spans whose union has at most one gap.

Chart-based parsing A concrete parsing algorithm using the general schema would
test whether the inferential closure of the three rules contains a complete item.
Computing the inferential closure can be done efficiently by using a chart, indexed

45

by the spans, to record parse items already derived, and by choosing a control
strategy that guarantees that no two items are combined twice.

Alternatively a grammar could be translated into a definite-clause grammar
(dcg): each instance of the lookup rule as well as the group and the plug rule
can be represented by dcg rules. A dcg parser implemented as proposed in [9]
will perform the same operations as the chart parser sketched above.

5.2 Completeness

Before we look at the complexity of parsing lcgs in more detail, we first need
to ensure that the presented parsing schema is sound and complete, i.e., that
all the inferences are valid and that every drawing can be derived with them.
While this is easy to show in the general case, chart-based parsing requires a
crucial invariant on the parsing rules: all spans derived during parsing must
have a uniform representation. More specifically, assume that each span in the
premises of a combination rule has at most g gaps and thus can be represented
using 2(g + 1) integer indices (denoting the start and end positions of the g + 1
intervals that the span consists of). Then the union of two spans must also have
at most g gaps. Under this side condition, the general parsing schema is no longer
complete: there are drawings whose gap degree is bounded by g that cannot be
derived using parse items whose gap degree is bounded by g.

Completeness for well-nested drawings We will now show that for well-nested
drawings (cf. Section 2.2), the general parsing schema is complete even in the
presence of the gap invariant. For the proof of this result, we need the concept of
the gap forest of a well-nested drawing [2].

Definition 8. Let (V ; �,≺) be a well-nested drawing and let v ∈ V be a node
with g gaps. The gap forest for v is defined as the ordered forest gf(v) = (S; �, <):

S := {{v}, G1(v), . . . , Gg(v)} ∪ { �∗w | v � w }
� := transitive reduction of { (s1, s2) ∈ S × S | C(s1) ⊃ s2 }
< := { (s1, s2) ∈ S × S | ∀v1 ∈ s1 : ∀v2 ∈ s2 : v1 ≺ v2 }

The elements of S are called spans.

(The notation Gi(v) refers to the ith gap in the yield of v.) In a gap forest, sibling
spans correspond to disjoint sets whose union has at most g gaps. Sibling spans
belonging to the same convex region are called span groups.

Lemma 3. Let G be an lcg grammar and let D be a well-nested arborescent
drawing on nodes V with gap degree at most g. Then D |= G implies the existence
of a derivation of a parse item V : 〈I, ∅〉 that only involves parse items whose
gap degree is bounded by g.

46

Proof. Let G be a grammar and let D be a well-nested arborescent drawing on V
such that D |= G. If V = {u}, then 〈∅, ∅ ; φ〉 ∈ Lex (�(u)). In this case, the parse
item {u} : 〈∅, ∅〉 can be derived by one application of the lookup rule. Now
assume that D consists of a root node u with children vi, 1 ≤ i ≤ k, where each
child vi is the root of an arborescent drawing Di. Then

〈∅, P ; φ〉 ∈ Lex (�(u)), where P = ∪1≤i≤k {πi | 〈{πi}, Ωi ; φi〉 ∈ Lex (�(vi)) } .

By induction, we may assume that each of the drawings Di was derived using parse
items with gap degree at most g only; in particular, each complete drawing Di

corresponds to such a parse item. The drawing D then can be derived using the
two combination rules, successively combining the parse items for the drawings Di

and the item for the root node u (obtainable by the lookup rule).
The interesting part of the proof is to show that the combining operations

can be linearised in such a way that the gap degree of the intermediate parse
items is bounded by g. We will now present such a linearisation, based on a
post-order traversal of the gap forest for the node u: In a horizontal phase of the
traversal, we combine all parse items corresponding to a gap group from left to
right, ignoring any gap nodes. There are at most g such nodes in the complete
gap forest; therefore, this phase of the traversal maintains the gap invariant. In a
vertical phase, we combine the parse items from the preceding horizontal phase
with the item corresponding to the parent node in the gap forest in order of their
gap degree. Since the gap degree of the final item is bounded by g, this strategy
maintains the gap invariant.

5.3 Complexity analysis

We now determine the complexity bounds of an implementation of our schema.

Space complexity To bound the number of parse items stored in the chart, we
look at the number of possible values for the variables of a parse item s : 〈I,Ω〉.
As both I and Ω may represent arbitrary multisets over the edge labels, the
number of parse items may be exponential in the size of the grammar. In the
case that the drawings under consideration are unrestricted (so that a span s
can be an arbitrary set), the number of parse items is also exponential in the
length of the input sentence. However, in cases where Lemma 3 applies, spans
can be represented by k = 2(g + 1) integers (cf. Section 5.2). Thus, there will be
at most O(nk) different parse items in the chart.

Time complexity Since the chart-based architecture guarantees that no two parse
items are combined twice, the space complexity can be used to bound the time
complexity. Of course, if the number of parse items is exponential, the runtime
of any algorithm faithfully implementing the general parsing schema will be
exponential as well. In what follows, we will ignore the size of the grammar and
focus on well-nested drawings with bounded gap degree. How many possibilities
of combinations are there for parse items? Counted over the runtime of the
complete algorithm, every parse item needs to be combined with every other
item, so the time needed for these combinations is O(nk) · O(nk) = O(n2k).

47

A refined analysis This O(n2k) time estimate is too pessimistic still. To see this,
notice that in both of the combination rules, k indices used to represent the spans
only occur in the premises: since both the spans in the premises and the span in
the conclusion can be represented using k indices each, 2k − k cannot ‘make it’
into the conclusion. As the union operation on spans does not ‘forget’ about any
material, the value of k/2 of these indices are determined by other indices in the
premises. Thus, a better upper bound for the time complexity for the algorithm
is O(n2k−k/2). Remembering that k = 2(g + 1), we get

Lemma 4. Let D be a class of well-nested drawings whose gap degree is bounded
by g, and let LR be a lexical constraint language. Then the general string mem-
bership problem for (D,LR) has complexity O(2|G|n3g+3).

For context-free grammars (g = 0), this lemma gives the familiar O(n3) parsing
result; for tags (g = 1), we get a parser that takes time O(n6). Notice that both
of these complexities ignore the size of the grammar. For lcfgs, however, our
parsing framework can be as efficient as e.g. the Earley parser:

Lemma 5. The general string membership problem for totally ordered grammars
of type (D0,L{≺}) has complexity O(|G|2n3).

Proof. By the previous lemma, we know that O(2|G|n3) is an upper bound. The
restriction that the valency of each lexical entry are totally ordered implies that
we can represent valencies as lists instead of bags.

5.4 The size of the grammar

The previous section offered insights in how far the model class used by a certain
grammar formalism influences the completeness and the complexity with respect
to the length of the input sentence. To develop an efficient parser of practical
relevance based on our parsing schema however, a crucial point is the complexity
with respect to the size of the grammar. Grammar size is an often neglected factor
for the performance of parsing algorithms: a standard sentence of, say, 25 words,
is usually several orders of magnitude shorter than a lexicalised grammar. While
grammar size thus is significant even for frameworks in which the grammar only
contributes linearly or quadratically to the speed of the parsing algorithm (such
as context-free grammar), it is definitely an issue in a framework like lcg, where
for reasons of expressive power it cannot in general be avoided. It seems then, that
it is desirable to complement the chart-based parsing architecture by methods to
avoid the worst-case complexity in the size of the grammar whenever possible.
This is where we propose to use constraint propagation: lexical constraints can
be used to control the chart-based parser. To give a very simple example: in
the presence of order constraints, far from all of the possible combinations of
parse items need to be considered when applying the plug rule: if an item i
has open valencies π1 ≺ π2, there is no need to try to plug π2 with an item
adjacent to i—any item plugging π1 precedes any item plugging π2 in all licensing
drawings. How exactly the interaction between constraint propagation and chart
parsing it realized and how much a parser can benefit from each single constraint
are open questions that we are currently addressing.

48

6 Conclusion

This paper presented Lexicalised Configuration Grammars (lcgs), a novel frame-
work for the descriptive analysis of natural language. lcg is stratified with
respect to two parameters: the choice of a class of reference structures (a global
constraint), and the choice of a lexical (i.e., local) constraint language used to
describe those structures that should be considered grammatical. Translating
grammar formalisms into lcg makes it possible to study these formalisms and
their relations from a new perspective, and to experiment with gradual and local
alternations of their expressivity and processing complexity. lcgs are expressive
enough to generate the scrambling language, a language that cannot be gener-
ated by many traditional generative frameworks. The general string membership
problem for lcg is np-complete; however, a broad class of linguistically relevant
lcgs can be parsed in polynomial time.

Future work We plan to continue our research by investigating the potential
of the processing framework outlined in Section 5 to combine chart-based and
constraint-based processing techniques. Our immediate goal is the implementation
of a parser for lcgs that uses constraint propagation to avoid the worst-case
complexity of the chart-based parsing algorithm with respect of the size of the
grammar. One of the major technical challenges in this is the constraint-based
treatment of lexical ambiguity: handling disjunctive information is notorously
difficult for constraint propagation. In a second line of work, we will try to relate
lcgs to more and more traditional grammar formalisms by defining appropriate
lcg theories and grammars and proving the necessary equivalence results.

References

1. McCawley, J.D.: Concerning the base component of a transformational grammar.
Foundations of Language 4 (1968) 243–269

2. Bodirsky, M., Kuhlmann, M., Möhl, M.: Well-nested drawings as models of syntactic
structure. In: 10th Conference on Formal Grammar and 9th Meeting on Mathematics
of Language, Edinburgh, Scotland, UK (2005)

3. Joshi, A., Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal Languages.
Volume 3. Springer (1997) 69–123

4. Gazdar, G., Klein, E., Pullum, G.K., Sag, I.A.: Generalized Phrase Structure
Grammar. Havard University Press, Cambrige, MA (1985)

5. Maruyama, H.: Structural disambiguation with constraint propagation. In: 28th
Annual Meeting of the Association for Computational Linguistics (ACL 1990),
Pittsburgh, Pennsylvania, USA (1990) 31–38

6. Suhre, O.: Computational aspects of a grammar formalism for languages with freer
word order. Diploma thesis, Universität Tübingen (1999)

7. Becker, T., Rambow, O., Niv, M.: The derivational generative power, or, scrambling
is beyond lcfrs. Technical Report IRCS-92-38, University of Pennsylvania (1992)

8. Sikkel, K.: Parsing Schemata: A Framework for Specification and Analysis of Parsing
Algorithms. Springer-Verlag (1997)

9. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of
deductive parsing. Journal of Logic Programming 24 (1995) 3–36

49

N:M Mapping in XDG –The Case for

Upgrading Groups

Jorge Marques Pelizzoni and Maria das Graças Volpe Nunes

Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação

Av. do Trabalhador São-Carlense, 400. CEP 13560-970. São Carlos – SP – Brasil
{jorgemp, gracan}@icmc.usp.br
http://www.nilc.icmc.usp.br

Abstract. The eXtensible Dependency Grammar (XDG) is a very promising

CP-natural framework with which to tackle varied NLP problems and their

combinatorial complexity. XDG draws heavily on its non-transformational

character for efficiency, which opens the issue of N:M mapping e.g. between

syntactic and semantic structures. We resume discussion on this issue and

attempt to demonstrate that improvement of the available solutions is at once

desirable and crucial. To this end, we assess their suitability in several scenarios

assuming a syntax-semantics interface: parsing vs. generation; treating

Multiword Expressions; treating connectives introducing optional components

such as adverbials; etc. Finally, we propose some guidelines to overcome the

identified limitations.

1 Introduction

The intuition has been widespread for some time so far that language processing –

whether natural or artificial – emerges from the interplay of various concurrent

constraints operating at or between different levels of analysis. At times it seems

almost possible to feel determinacy ebbing and flowing through such constraint

systems e.g. as the potential ambiguity of the words in a sentence gradually reduces

until satisfactory interpretations become available. This is especially true of natural

processors, i.e. humans, when tackling a second language. As the paradigms of

Constraint Satisfaction (CS) and particularly Constraint Programming (CP) have

arisen in Computer Science exactly to mimic this ebb-and-flow intuition suitable to

tame complexity in a whole range of problems, no wonder language processing is also

in focus.

However, CP faces therein a twofold challenge: not only does the (in)exact nature

of linguistic constraints and objects still elude us all, CP practitioners or not, but also

much of the linguistic tradition, drawing heavily upon transformational primitives, is

not usually amenable to straightforward or efficient modelling, to say the least.

Therefore, the latest years have seen much effort to strengthen propagation in

grammar modelling, which often led to alternative constraint-based frameworks. The

move from early (and already not so mainstream) Tree Adjoining Grammar-based

frameworks [10, 11, 12] to more recent Dependency Grammar-based ones [9, 8, 7] is

50

certainly bound for stronger propagation, regardless and arguably to the detriment of

explanatory adequacy.

The eXtensible Dependency Grammar (XDG) [4, 5, 6] is perhaps the latest stage in

this evolutionary line and represents an important leap from its ancestors. Even

though still leaving much room for further development as we shall presently see,

XDG achieves an unprecedented balance between (i) complexity, which is hopefully

controlled by the strong propagation it inherits from DG-based frameworks, (ii)

generality, i.e. potential coverage of phenomena or application spectrum, which is

significantly broadened by XDG’s underspecification, extensibility and novel

multidimensional metaphor, and (iii) instantiability, i.e. ease of instantiation or

application, which benefits from XDG’s enhanced support for modularity and

reusability. As a generality bonus, XDG is such a CP natural that a CP

implementation can actually achieve bidirectionality, i.e. the property that one same

grammar might be used both for analysis and generation with the same search engine

modulo I/O processing.

In that respect, Debusmann et al. [5] have already sketched a XDG-based relational

(i.e. bidirectional) syntax-semantics interface. However, they bypassed the issue of

N:M mapping – or subgraph handling – then, which is nonetheless unavoidable if

one is ever to tackle most function words, especially connectives and auxiliary verbs,

support verbs (such as “do” in “do the dishes” or “have” in “have an argument with”)

and multiword expressions (MWEs), since these usually involve worthy syntactic

nodes that in spite of influencing interpretation have no semantic counterpart. The

issue has been addressed by Debusmann elsewhere [2] specifically with a focus on

MWEs, which were tackled in XDG by means of a restricted form of grouping and

deletion, herein referred to simply as the group construct. This remains the sole such

account so far and, ingenious as it is to provide a very promising technique, it does

not go beyond MWEs and leaves, even in that matter, several open issues. The

general purpose of this paper is exactly to resume discussion from that point and

address some of these issues. Rather than providing definitive solutions, our highest

goal is to demonstrate that improvement is at once desirable and crucial while

gathering requirements for future developments.

First of all, we provide a little background on XDG (Section 2) and review

Debusmann’s group technique (Section 3). Next we demonstrate some of its

shortcomings (Section 4), as (i) when treating connectives introducing optional

components, like adverbials, (ii) when some particularities of MWEs come into play,

and (iii) when one consider the convenience of an N1:N2:…:Nn mapping

generalization. Having presented this rationale and thus made the main point of the

paper, we very briefly provide some pointers as to future work on the lexicon

component towards overcoming those limitations (Section 5). At all times our main

concerns are those of generality (i.e. broaden the coverage of groups, also ensuring

bidirectionality), instantiability (make groups usable), and complexity/scalability

(make groups feasible in terms of lexicon storage and keep propagation strong).

51

2 XDG Background

We start by reviewing Debusmann’s treatment of MWEs [2] by means of groups,

which requires acquaintance with XDG’s core concepts. Therefore, an informal

overview of these concepts is also in order. For a formal description of XDG,

however, see Debusmann et al. [4, 5, 6].

Most of XDG’s strengths stem from its multidimensional metaphor (see Fig. 1),

whereby an (holistic or multidimensional) XDG analysis consists of a set of

concurrent, synchronized, complementary, mutually constraining one-dimensional

analyses, each of which is itself a graph sharing the same set of vertices as the other

analyses, but having its own type or dimension, i.e., its own edge label and lexical

feature types and its own well-formedness constraints. In other words, each 1D

analysis has a nature and interpretation of its own, associates each vertex with one

respective instance of a data type of its own (lexical features) and establishes its own

relations/edges between vertices using labels and principles of its own. For example,

an XDG grammar/analysis might have four dimensions/1D analyses, two for syntax

(immediate dominance and linear precedence) and two for semantics (predicate

argument structure and scope), as in Debusmann et al. [5].

Fig. 1. Three concurrent one-dimensional analyses. It is the sharing of one same set of vertices

that co-relates and synchronizes them into one holistic XDG analysis.

That might sound rather autistic at first, but the 1D components of an XDG

analysis interact in fact. It is exactly their sharing one same set of vertices, whose sole

intrinsic property is identity, that provides the substratum for interdimensional

communication, or rather, mutual constraining. That is chiefly achieved by means of

two devices, namely: interdimensional principles and lexical synchronization.

Interdimensional Principles. Principles are reusable, usually parametric constraint

predicates used to define grammars and their dimensions. Those posing constraints

between two or more 1D analyses are said interdimensional. For example, one XDG

grammar defining one dimension to capture predicate argument (PA, modelling

semantic roles) structure and another one for immediate dominance (ID, modelling

syntactic relations) may prescribe a principle between them ensuring that, for every

vertex v fulfilling some lexical precondition, whenever there is an edge pat(ient) from

a

b

c

d

e

S
*

52

v to some other vertex w on dimension PA, then there is an edge subj(ect) to w on

dimension ID. This constraint is more formally expressed thus:

()
pat subj

PA ID
v V unaccusative v w V v w u V u w , (1)

where V is the set of vertices of the current analysis.

This example principle is subsumed by the parametric principle linkingEnd
available in the XDG Development Kit1 (XDK). Each application of linkingEnd takes

three parameters, namely two dimensions D1 and D2 and one function

2
1

()
: () 2

label D
linkf V V label D , (2)

where label(D) denotes de set of all possible edge labels on dimension D and whose

function is thus map edges (v,w,l) on D1 into sets of edge labels on D2. The meaning

of linkingEnd(D1,D2,link) can be more formally expressed thus:

1 2

, , (, ,) , (, ,)
l l

D D
v w l v w linkf v w l u l l linkf v w l u w . (3)

Parameter link may well be set by an application of

() (, ,). ()(' ')()Ddefaultf D v w l lex v end l , (4)

where ()Dlex v maps vertex v into a function giving access to its lexical features

according to dimension D. Feature end, in turn, should denote a function mapping D1

edge labels into subsets of label(D2). Therefore, the constraint in Equation (1) can

easily be implemented by linkingEnd(PA,ID,default (PA)), provided that

unaccusative verbs have lexicon entries whose end features for dimension PA map

label pat into the singleton subj .

Some remarks are worth making as regards the above example, namely (i) that

shared vertices constitute the real and only meeting points between 1D analyses, (ii)

that interdimensional principles strongly rely on (i) to do their job, and (iii) that most

of them are lexicalized, i.e. impose constraints that depend on the lexical features of

vertices according to the dimensions involved. Further details on lexicalization are

provided below.

Lexical Synchronization. As pointed out above, principles, whether intra- or

interdimensional, usually resort to the lexical features of vertices. This implies that

any XDG instance has a lexicon as a component, which is specified in two steps: first,

each dimension declares its own lexicon entry type, i.e. an Attribute-Value Matrix

(AVM) type; next, once all dimensions have been declared, lexicon entries are

provided, each specifying the values for features on all dimensions. Finally, at

runtime it is required of well-formed analyses that there is at least one valid

assignment of lexicon entries to vertices such that all principles are satisfied. In other

words, every vertex must be assigned a lexicon entry that simultaneously satisfies all

1 http://www.ps.uni-sb.de/~rade/xdg.html.

53

principles on all dimensions, for which reason the lexicon is said to synchronize all

1D components of an XDG analysis.

Lexical synchronization is a major source of propagation. Resuming our

unaccusative verb example and assuming a text generation scenario, if it happens to

be known at some point that there are no more sources of subject edges available on

the ID dimension, then lexicon entries corresponding to unaccusative realizations of

an as yet unrealized verb shall be discarded. That might further narrow the domains of

variables on various dimensions and trigger further propagation.

3 The State of the Art – Groups

It must be clear from the previous section that the sharing of one same set of vertices

by the 1D components of an XDG analysis is key to the framework and that, formally

speaking, deletion or insertion operations would be out of the question. On the face of

it, that might seem lethal to any higher aspirations on the part of an XDG-based

syntax-semantics interface. Indeed, for starters, it is reasonable to expect that MWEs

such as “(to) have an argument with” and “argue with” should correspond to one

same single semantic literal, say argue, in spite of comprising multiple vertices on

syntactic dimensions (one per word). On the other hand, it is sometimes the case that

a semantic subgraph should correspond to fewer syntactic nodes, as in instrument

incorporation. For example, “cut with a knife” is likely to have a semantic

representation comprising at least two semantic vertices, whose realization in some

languages, however, would take one single word (for one, the Brazilian Sign

Language). Finally, in general, one would not expect vertices corresponding to

connectives (prepositions and conjunctions) to have direct counterparts on a semantic

dimension, much though they should be taken into account during interpretation or

somehow produced during generation.

Emulating Deletion. Debusmann [2] introduces a simple though clever technique to

circumvent this limitation, or rather, to carry out N:M mapping on top of XDG. The

basic idea behind his technique is emulating deletion thus: whenever a vertex has but

one incoming edge with a reserved label, say del, it is considered as virtually deleted.

In addition, one artificial “root” node is postulated from which emerge as many del

edges as required on all dimensions. Given that lexicon entries usually rule the

valency of vertices on each dimension separately, i.e. state which labels they accept

on incoming and outgoing edges, it is straightforward to state that a vertex should be

deleted on certain dimensions, it sufficing to provide lexicon entries accepting only

and necessarily one incoming del edge on the referred dimensions.

Crucial though it is, the possibility of deletion by itself is not enough. There must

also be a way to treat certain subgraphs as units, or rather groups, whose rationale

must be given from two complementary points of view.

The Group Coherence Problem. From the point of view of parsing, the fact must be

captured that the group meanings of “have a word with” or “take out” compete with

other readings of their component words that are applicable in other contexts (“out”

can even be an adjective!). In other words, treating “have a word with” as a block in

54

XDG implies that each word will have, among its lexicon entries, one have-a-word-
with entry, i.e. one exclusively reserved to the group reading. Now, when parsing

“write down a word”, the have-a-word-with entry of “word” will compete with the

applicable entry and should be guaranteed to lose. What is worse, any have-a-word-

with entry should be guaranteed to lose unless enough have-a-word-with entries (one

for each of the component words) are available at the same time for the sentence at

hand.

That problem will herein be referred to as the Group Coherence Problem (GCP).

Further generalizing and introducing some useful terminology: (i) every group

reading is built by selecting a set of grouped lexicon entries; (ii) any such set is said

to be a group instance; (iii) in order for a grouped lexicon entry to be selected it is

necessary that enough cogrouping entries, or rather, enough of its cogroupers are

available; (iv) given two group instances G1 and G2, they are said to be (group)

alternates iff there exist two entries e1 G1 and e2 G2 such that e1 and e2 cogroup

(e.g. “take out” and “takes out” may well be parsed by group alternates); (iv) the

paradigm of a group instance G is the union of all its alternates according to a

lexicon (e.g. the set of all lexicon entries necessary to parse

“take/takes/took/taking/etc. out”).

The GCP can thus be rephrased as the problem of identifying well-formed group

instances and ensuring that all cogroupers are simultaneously in the same state, either

selected or discarded. The solution proposed by Debusmann is based again on a

simple though ingenious idea. It consists of (i) capturing the inner structure of group

instances and (ii) requiring it to be wholly reconstituted by cogrouping entries only. If

(ii) cannot be satisfied, it means that there is at least one necessary cogrouper missing,

no group instance can be built, and all involved cogroupers are discarded.

The trick is not so easily implemented now. First of all, every group paradigm P is

assigned one unique identifier gid(P). Next, every lexicon entry must bear its group

id, even non-grouped entries (which might all take one same reserved null id). To this

end, one dimension must specify a special lexical feature, say group, to hold this bit

of information. Finally, all dimensions bearing structure (some may axiomatically

hold unconnected vertices only) must specify a lexical feature, say outgroups, of the

type

()()(' ') : () 2D

dom gidlex v outgroups label D , (5)

where dom() denotes the domain of function . For every dimension D having this

feature, outgroups maps edge labels into sets of group ids and is intended to shortlist

the otherwise worthy receivers of the edges emerging from any given vertex. More

specifically, given a pair of vertices src and target whose respective valencies

otherwise sanction an edge (src,target,label) on dimension D, any such edge will be

nonetheless inhibited unless the group of (the selected lexicon entry for) target

belongs to ()(' ')()Dlex src outgroups label . This new constraint is the group coherence

principle and must hold for every structure-bearing dimension.

55

Fig. 2: analisys of an occurrence of the MWE “have a word with” showing dimensions ID

(syntactic) and PA (semantic, in which there is deletion). Shaded vertices are external to the

group at issue

For example, supposing that “have a word with” should have the structure depicted

in Fig. 2 and correspond to one single semantic literal talk, the rows in Table 1 show

what the respective lexicon entries would look like for a selection of relevant features.

In this table, wherever relevant, features are subscripted with their respective

dimensions. For example, the forth column regards feature outgroups on dimension

ID. Apart from the already introduced features or otherwise self-explanatory ones, in
resp. out compose the valency of a vertex, i.e. hold information regarding (i) which

labels are accepted for incoming resp. outgoing edges and, for each listed label l, (ii) a

cardinality constraint, stating e.g. whether at least one l edge is required (l or l+) or

not (l? or l*) and whether the vertex may accept at most one l edge (l or l?) or more

(l* or l+). On the second column, (del) is but a special literal reserved for deleted

vertices.

Table 1. Lexical entries encoding the grouping of “talk to” and “have a word with”

word literal group outgroupsID inID outID inPA outPA linkPA

talk talk g1 1iobj g root ,subj obj root ,agt obj agt subj

obj obj

to (del) g1 iobj pcomp del

have (del) g2 2obj g root ,subj obj del

a (del) g2 2det g obj det del

word talk g2 2mod g det mod root ,agt obj agt subj

obj obj

with (del) g2 mod pcomp del

Vertex Expansion. By reconsidering the same “have a word with” example now

from the point of view of generation (i.e. given input on dimension PA, try to

reconstruct valid analyses on dimension ID), an additional issue emerges closely

related to that of model creation in CP and named herein the Vertex Expansion
Problem (VEP). As far as regards actual input to a generation system, one might well

expect to generate e.g. “They have a word with Mary” from a simple three-vertex PA

subj have a word with pcomp

56

graph as seen in Fig. 3, which obviously falls short of vertices. It should be clear by

now that, under grouping, there is more to setting up the XDG scene – or rather,

model creation – than simply transferring the input graph onto the PA dimension and

naïvely looking literals up on the lexicon. A group-oriented lookup procedure is

strictly needed, even though missing in XDG’s current implementation.

Fig. 3: an instance of the Expansion Problem in generation. Although PA is the input

dimension, the actual input lacks vertices

Debusmann has already pointed out the need for such a procedure and proposed

one. First, he states that, for generation, a function

(): 2dom gidgroups Sem (6)

(where Sem is the set of all semantic literals) is needed mapping any given literal lit to

a set containing the ids of all groups realizing lit. During model creation, for each

literal lit: (i) the set Ps is retrieved of the paradigms2 of all groups in groups(lit); (ii)

then the set V is created of new vertices such that max :V P P Ps ; (iii) for each

paradigm P Ps , its entries are arbitrarily assigned to nodes in V, i.e., an arbitrary

injection :Passign P V is constructed; then (iv) the base set of alternative lexicon

entries for each vertex v V is constructed thus:

1 1(),
()

,

P P

P Ps

assign v v dom assign
entries v

otherwise

;
(7)

(v) finally, the actual set of alternative lexicon entries for each vertex is defined thus:

(), ()
()

() ,

entries v entries v V
entries v

entries v Del otherwise

,
(8)

where Del is a constant lexical entry allowing simultaneous deletion on all

dimensions and thus accounting for paradigms requiring fewer nodes than available.

For an example application of this method, one might consider the realization of

literal talk according to the lexicon in Table 1. The number of vertices created for this

2 Specializing the general definition for Debusmann’s solution, a set of lexicon entries sharing

one same group id is a group paradigm iff it contains all lexicon entries sharing that id.

they have a word with Mary

57

sole literal would be four, say { , , , }u w v x , so as to hold the paradigm with the greatest

number of entries (“have a word with”). One valid actual assignment of alternative

lexical entries is given in Table 2, which states, for example, that vertex u will be

selecting either the first or the fifth row/entry. Notice that vertices v and x will select

the special Del entry in the event of “talk to” being generated (third and forth rows).

Table 2. During generation, actual lexical entries allowing selection between two alternative

realizations (“talk to” and “have a word with”) of one same semantic literal talk. The first

column coindexes entries competing for one same vertex

assigned

to vertex
word lit. group outgroupsID inID outID inPA outPA linkPA

u talk talk g1 1iobj g root ,subj obj root ,agt obj agt subj

obj obj

w to (del) g1 iobj pcomp del

v (del) (del) null del del

x (del) (del) null del del

u have (del) g2 2obj g root ,subj obj del

w a (del) g2 2det g obj det del

v word talk g2 2mod g det mod root ,agt obj agt subj

obj obj

x with (del) g2 mod pcomp del

4 Shortcomings and Requirements Gathering

Now we are in a position to sense the limits of the solutions presented in the previous

section and thus gather requirements for future enhancements to XDG and its

implementation. Our main goal in this section is provide evidence pointing towards a

new balance between maybe the most abstract requirements on frameworks, namely

the trinity (i) generality, i.e. coverage/expressibility of phenomena, (ii) instantiability,

i.e. ease of instantiation, and (iii) complexity. Instantiability is the design-time

analogue of complexity, a runtime concept. In fact, even if some methodology is

theoretically applicable with satisfactory accuracy (i.e. it is general enough), it is

likely to be discarded if its application happens to be too costly. In other words, it is

practicality, feasibility, ease, reasonable demand in resources, in summary,

instantiability during development and complexity during execution that will

eventually drive developers’ preference for this or that framework. As regards XDG,

instantiability concerns features and primitives of the grammar specification

language, while complexity is related to model creation, propagation and stored

lexicon size.

4.1 Generality vs. Expansion – Bidirectionality and Null Categories

Debusmann [2] has focused on MWEs only and implied that group-oriented lexicon

lookup would be a generation trait; however, vertex expansion is not restricted to

58

generation, which is already suggestive that such an enhanced lookup/model creation

procedure is actually the general – rather than the exceptional – case. Take for

instance instrument incorporation in the whole set of “cut-with-a-X” words in

Brazilian Sign Language [1], not to mention manner and intensity incorporation.

Although work is lacking on this specific matter, if ellipsis is ever to be handled in

XDG, that will probably resort to some kind of vertex expansion during parsing.

Consider, for example, the following Portuguese sentence3:

Eu comprei sapatos brancos e ele pretos.

I have bought shoes white and he (has bought) black (shoes).

 (= white shoes)

However such a hard phenomenon is to be tackled, one can count on the fact that

“Eu” and “ele” cannot share the same vertices for “(has/have) bought” or “shoes”, at

least not directly. Generally speaking, all evidence suggests that, if syntactic null

categories are ever to be “parsed”, that will require vertex expansion as they cannot

rely on the presence of words of their own to trigger the generation of their respective

vertices during model creation.

4.2 Complexity vs. Expansion

Inflecting MWEs. One issue that Debusmann has left open in his XDG account of

MWEs is related to inflection, i.e. how such alternations as “have/has/had an/

argument/s4 with” are to be encoded. As we shall presently see, the current solution

might have undesired side-effects on complexity, either on lexicon storage or

propagation. In the discussion below, one should always take into account that there

are languages considerably more inflected than English. Romance languages, for

example, deliver tenths of distinct inflected forms for every single verb, counting out

the so-called compound forms, i.e. those involving auxiliary verbs.

The obvious first impulse would be rather flawed to encode a whole grammatical

paradigm into one sole group paradigm, i.e. to make all inflections of a given base

MWE share the same group id, which might even work for parsing (strictly without

vertex expansion) but not generation5. Take for instance the grammatical paradigm

“have/has/had a word with”. In addition to the relevant entries in Table 1, its encoding

would also require two further entries – for “has” and “had” respectively – quite

similar to that of “have”. Supposing they all share the same group id and assuming a

generation scenario, on application of the vertex expansion procedure described in the

previous section six vertices would be created instead of the correct four, and either

failure or malformed output would follow. Apropos, in generating a Romance

language over forty vertices would usually sprout. This so to speak vertex prodigality

stems from the fact that, in this misencoding, there is no clue whatsoever that some

entries should compete for one same vertex.

3 Thanks to Denys Duchier, originally in German.
4 The alternation “had an argument with” vs. “has arguments with” can arguably be regarded

as involving aspect inflection.
5 One corollary worth deriving from the following facts is that XDG is only potentially

bidirectional, i.e. there are grammars that might work in one direction but not in the other.

59

Restricting ourselves to valid inflection schemes, we were able to devise two such

designs, both of which cannot help creating one exclusive group paradigm for each

inflection. They differ, however, in the possibility of paradigms sharing some entries.

Unfortunately, both of them entail complexity side-effects as explained below.

No Sharing: Storage Complexity and Overactivation. Let us first assume the

simplest solution, namely create as many group paradigms as there are inflections

ensuring that they do not share one entry whatsoever. In this design, if “have a word

with” takes four lexicon entries, then so does “has a word with”, and altogether this

makes eight distinct entries. The sole difference between the whole lot of

“a/word/with” entries lies in their group ids.

The design works but has two major disadvantages, namely: (i) storage

requirements are subject to a significant multiplying factor, which will get much

worse by the end of this section; (ii) this factor also affects model creation inasmuch

as overactivation is likely to occur, i.e. having vertices select from loads of virtually

equivalent lexicon entries. For example, in Portuguese, either when generating or

parsing something like “ter uma discussão com” (“have an argument with”), there

would be three vertices trying to select from over forty different entries for

“discussão”, “uma” and “com” respectively, which, ironically, are invariable in this

MWE.

Sharing: All the Same or Spurious Symmetries. An alternate encoding method

would be keep one group paradigm per inflection sharing equivalent entries (modulo

group ids) with all the others. Enabling sharing would require a minor adaptation to

Debusmann’s original solution, namely (i) replace feature group (the id of the group

to which an lexical entry belongs) with say groups (a set thereof), (ii) restate the

Group Coherence Principle to hold for every candidate edge (src,target,label) on

every structure-bearing dimension D thus:

()(' ') ()(' ')()GD Dlex target groups lex src outgroups label , (9)

where GD (a constant) is the dimension holding feature groups.

For example, in this design, “a/word/with” would take one single entry in the

encoding of the whole “have a word with” grammatical paradigm. However, this

solution comes in two radically different flavours depending on whether group

paradigms originating from different grammatical paradigms may be sharers. In

ground terms, depending on whether the entries for “a” and “with” might be shared by

all inflections not only of “have a word with” but also of “have a

fight/quarrel/argument/etc. with” or, more relevantly still, whether entries for the

inflections of “have” might also be shared by all groups paradigms in which “have”

acts as a support verb. Let us call restrained resp. unrestrained sharing the solution

obtained by refusing resp. accepting those conditions.

Unrestrained sharing certainly answers both the storage complexity and

overactivation problems posed by no sharing at all. However, it incurs propagation

loss, especially in generation, when the order of vertices is not predetermined, which

might otherwise help disambiguation. In either direction, odds are that propagation

only will not be able to reconstitute the internal structure of groups, as various

vertices may potentially belong to one given group, though not simultaneously, only

alternately, which is known to kill propagation. In other words, symmetries are likely

60

to be introduced by the encoding scheme – and spurious at that, inasmuch as not

natural of the problem at hand, but rather brought in by the adopted solution. For

example, consider the generation of the following sentence:

I had a word with the director after having a quarrel with one of my students.
 MWE1 MWE2

Under unrestrained sharing, vertex expansion would yield two “a/with” vertices,

respectively for MWE1 and MWE2. However and precisely due to sharing, both

vertices would accept edges from either group, which would block propagation at

some point and create a spurious choice point.

On the other hand, restrained sharing reduces spurious symmetries if only for the

fact that the co-occurrence of two inflections of one same MWE is less likely. Even if

that were satisfactory, it definitely does improve much on storage complexity as

compared to no sharing at all, especially in the light of the following new facts.

Connectives in Optional Constituents and the TNT Effect. It is worth reminding

that Debusmann’s solutions are originally targeted at MWEs, and one might argue

that their shortcomings are even acceptable taking into account that MWEs occur

much less often than self-contained single words. We reply that the magnifying factor

of whatever shortcomings a grouping solution may ever have might well be the sheer

size of a whole lexicon. In other words, just imagine what if, after all, there were as

many group paradigms as there are words or even word senses in a lexicon, or rather,

what if virtually every occurrence of any word involved grouping no matter whether it

belongs to a MWE. Minor flaws in the grouping scheme might have a disastrous

(TNT) effect then.

In order to clearly see how come, it suffices to leave MWEs, assume a generation

scenario and consider where connectives (prepositions and conjunctions) in optional

constituents (prepositional phrases and subordinate clauses acting as adverbials or

noun modifiers) are ever to come from. Even as simple a sentence as “John died for

Mary/love” becomes suddenly surrounded with mystery, and it seems rather unlikely

that any definitive MWE solution can be formulated before this issue has been

suitably tackled. Notice that our focus is not on how the correct connectives are

selected (for example, consider the alternations “at ten o’clock/on Monday/in

January”, which are all time adverbials and only the tip of the iceberg), although that

is a very current subject of debate and research. What we are considering is a much

more basic issue: the very mechanism allowing their surfacing once they are expected

to have no direct semantic counterpart.

Given the current state of the art in XDG, which includes the interesting group

technique by Debusmann, we advocate that the hypothesis must be tested that

connectives in optional constituents can be generated by some enhanced form of

grouping and vertex expansion. Although this surely is in our agenda, we have not yet

carried out any such comprehensive test. Instead, we find it essential first to make

sure that groups will scale – both in terms of instantiability and complexity – or else

that simply cannot be the solution.

Preliminary Evidence. We proceed to give preliminary evidence that, assuming such

a scalable grouping scheme exists, our hypothesis stands a chance. To this end, let us

61

analyze how the underlined connectives in “Mary knitted it for John while they lived

in Paris” could be generated.

Hypothesizing that “for/while” belongs to a group implies asking what its

cogrouper(s) must be after all. There seems to be two options only: either

“knitted/knitted” or “John/lived”. Generalizing, it is in order to decide whether a

connective introducing an optional constituent must group with its governor or its

governee, respectively. The second option is the only acceptable, as the resulting

groups consist of two components each, namely a connective and (the root of) its

governee, while the first option would involve grouping the governor with as many

optional (i.e. deletable) components as there can be connectives simultaneously

governed by the entity at hand (verb, noun, etc.). Not only is that somewhat difficult

to determine, but also most of the created components would usually be inactive in

most sentences.

Let us hypothetically trace the generation of “for” according to the analysis shown

in Fig. 4. Looking up the semantic literal underlying “John” yields two groups,

namely G1, a singleton corresponding to a nominative or accusative occurrence of

“John”, and G2, corresponding to a prepositioned occurrence. Assuming for clarity

that only one-word prepositions are possible, two vertices are created, say prep and

john. Two lexicon entries compete for john, one (belonging to G1) accepting either a

subj(ect) or a (direct) obj(ect) edge on the ID dimension and the other (G2) accepting

only pcomp (preposition complement). As for vertex prep, several entries compete for

it, one allowing deletion (because G1 does not have two components) plus one G2

entry per possible preposition, accepting, among others, adv and donating pcomp only

to G2 members by means of feature outgroups.

Fig. 4. Fragment of an analysis of “Mary knitted it for John”

All that remains to be explained is how “for” (or an equivalent) is to be selected

among all other prepositions, or rather, how to state (i) that the specific word “for” is

a possible realization of the ben(eficiary) relation on dimension PA and (ii) that its ID

mother (“knitted”) should be the PA mother of its ID daughter (“John”). For those

acquainted with XDG, that immediately suggests some interdimensional principle

involving a lexical feature, more precisely some kind of linking principle. In fact, the

XDK already provides library principle LinkingDaughterEnd, which is almost what

we need. Given two dimensions D1 and D2 and some function link of the type given

in Eq. (2), it ensures that, for every edge (src,target,label) on D1, either there is an

edge (src,target,label') on D2 such that either (, ,)label linkf src target label or

(, ,)linkf src target label is empty.

 knitted … for John

62

For our purposes, a similar principle would suffice operating, though, on groups

instead of directly on vertices. Given two dimensions D1 and D2 and some function

link , hypothetical principle LinkingDaughterGroupEnd would ensure that, for every

edge (src,t,l) on D1, either (i) there is an edge (src,t',l') on D2 such that

(, ,)l linkf src t l and () ()groups t groups t or (ii) (, ,)linkf src t l is empty. Letting

D1 = ID, D2 = PA and link access feature PAEndID of edge targets thus:

(_, ,). ()(' ')()IDlinkf target label lex target PAEnd label , (10)

the application of LinkingDaughterGroupEnd ensures the selection of “for”, provided

that its lexical entry has a value for PAEndID such that ' ' (' ')ben f adv .

The generation of “while” is perfectly analogous except for the fact that governed

finite verbs group with governing conjunctions instead of prepositions. Finally, it is

worth mentioning that this grouping solution (governing connectives with governed

entities) should only be applied to optional constituents. In contrast, prepositions

introducing indirect objects (such as “of” in “approve of”) should group with their

governing verbs, much like MWEs.

Consequences. In the event that the hypothesis introduced above is accepted,

grouping will come to play a leading role in XDG praxis. Its status might well be

upgraded to that of a primitive. For a start, we have already provided evidence that

group-oriented versions of library principles will be needed, and it would be no

wonder if the whole original library suddenly became obsolete. In addition, lexicon

language will have to be revised to make groups really instantiable, i.e. more friendly

to grammar developers. And, as we shall briefly argue in Section 5, so will probably

part of its operational semantics, in order to reduce storage complexity.

4.3 Instantiability vs. Expansion – Verbs, Nesting, Crossing, and

Generalized N1: :Nn Mapping

Much of what has been discussed for connectives and their generation also applies to

auxiliary verbs, even if only to such perfectly grammatical auxiliaries as English “do”

in questions and negative sentences. Under our hypothesis for connective generation,

it seems reasonable that at least “do” is to be generated by grouping with its main

verbs. As all English verbs but a few exceptional cases (auxiliaries and “be”) may

take this auxiliary, the issues discussed previously are still relevant.

Nevertheless, whether auxiliary or not, verbs are somewhat more complex objects

than connectives. A significant portion of their complexity lies in pure syntax and

morphology irrespective of semantics. For instance, although verbs such as “take”,

“make”, “get”, and non-auxiliary “have” may be employed in a variety of senses,

most of their syntactic and morphological behaviour remains the same all across. In

XDG terms, “have” may group with “do/does/did” and is inflected “has/had/having/to

have/etc.” no matter whether it should be part of “have a word with” or other MWEs

or even work on its own in several alternate senses. Instantiability (i.e. modularity and

separation of concerns) here demands that such obvious and productive

“irrespectiveness” can be captured, i.e., that partial behaviour can be defined once and

for all for later reuse. And as much as possible: it is highly desirable that such very

63

productive paradigms as grouping with “do” and the “to” infinitive particle could be

defined for a whole class of verbs at once. It is worth noticing that the abstract

concept of partial and thus reusable specifications already underlies the XDK’s

design, although the requirements we have been gathering are not currently met,

probably as a result of the underrated status groups have enjoyed thus far.

The described requirements hint at some sort of group nesting (e.g. “do have”

might be a subgroup inside “[[do have] an argument with]”, as might “on behalf of”

in “[[on behalf of] Mary]”), partial groups (i.e. underspecified groups, or rather,

groups setting a strict subset of all the required features) and the cross product of

complementary partial group paradigms. The latter refers to the concept that

complementary partial groups (i.e. setting disjoint subsets of features) might be

combined to generate a new group. For example, English phrasal verb “cut off” might

have all its morphosyntactic behaviour captured in a partial paradigm Syn involving

nesting (“[[do cut] off]” and such like). Next, various complementary paradigms

1, , nSem Sem should specify the possible meanings of “cut off” (“stop”, “separate”,

etc.), which might also comprise complex subgraphs. Finally, a hypothetical special

cross product
1, , nSyn Sem Sem would conveniently yield all the expected group

paradigms, which might, in turn, still be partial and thus reusable for further crossing.

Such a scheme, which we have not yet formalized but rather sketch as a teaser, would

provide a convenient form of generalized N1: :Nn mapping.

5 Future Work – Upgrading Groups and On-Demand Lexicon

The main point of this article has been to resume the discussion on grouping in

XDG, give evidence as to how central the issue is to XDG development and gather

requirements for enhancing the framework. We believe the way from here is to

upgrade groups to the status of a primitive, if not of XDG’s core, at least of the

XDK’s lexicon language.

Whether the upgrade makes it to the core or not, one possibility that seems rather

promising and unavoidable is modifying the operational semantics of the lexicon

component to circumvent storage complexity, among others. In other words, we

intend further to exploit the fact that the lexicon component of an implementation

does not have directly to reflect its formal counterpart. Specifically, it may well

become an on-demand producer of actual lexicon entries on an input-by-input basis.

This means that all nesting and crossing of primitive group paradigms can be

performed on the fly according to the input at hand, which can be relatively easily

implemented by means of higher-order programming and is likely to decrease the

number of active lexicon entries dramatically even in face of massive grouping.

Such a scheme appears all the more feasible if one takes into account automatic on-

the-fly generation and assignment of group ids, every new group occurrence receiving

a fresh group id in the scope of the current input, which is rather straightforwardly

implemented by means of functional programming and logic variables. This would

spare grammar developers from dealing directly with awkward, error-prone group id

features and is only possible because groups are very well-behaved: given a group, its

edges are either constrained to be internal to itself or free to link to any other group.

64

Nesting is likely to complicate things a little, but not too much, probably it sufficing

to introduce one third option, namely “or constrained to be internal to the innermost

enclosing group”.

We hope that a lexicon component may thereby reconcile (i) unrestrained sharing

(Section 4.2) in grammar development and storage with (ii) neither sharing nor

overactivation at all in model generation. All the referred constructs and a vertex

expansion algorithm are currently being designed and shall be presented in due time.

Acknowledgements

This research project has been partially funded by Conselho Nacional de
Desenvolvimento Científico e Tecnológico – CNPq, a Brazilian government agency

fostering technological and scientific development.

References

1. Brito, L. F. Por uma Gramática de Línguas de Sinais. Tempo Brasileiro Ed., Departamento

de Lingüística e Filologia, Universidade Federal do Rio de Janeiro (1995)

2. Debusmann, R.: Multiword Expressions as Dependency Subgraphs. In: Proceedings of the

42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004,

“Multiword Expressions: Integrating Processing” Workshop)

3. Debusmann, R., Postolache, O., Traat, M.: A Modular Account of Information Structure in

Extensible Dependency Grammar. In: Sixth International Conference on Intelligent Text

Processing and Computational Linguistics (CICLING 2005)

4. Debusmann, R., Duchier, D., Kruijff, G. J.: Extensible Dependency Grammar: A New

Methodology. In: Proceedings of the 20th International Conference on Computational

Linguistics (COLING 2004, Workshop on Recent Advances in Dependency Grammar)

5. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.: A

Relational Syntax-Semantics Interface Based on Dependency Grammar. In: Proceedings of

the 20th International Conference on Computational Linguistics (COLING 2004)

6. Debusmann, R., Duchier, D., Kuhlmann, M.: Multidimensional Graph Configuration for

Natural Language Processing. In: Proceedings of the International Workshop on

Constraint Solving and Language Processing (2004) 59–73

7. Duchier, D.: Configuration of labeled trees under lexicalized constraints and principles. In:

Journal of Language and Computation (2002)

8. Duchier, D.: Axiomatizing dependency parsing using set constraints. In: Proceedings of the

6th Meeting on the Mathematics of Language (1999)

9. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based account of

linear precedence. In: Proceedings of the 39th ACL (2001)

10. Duchier, D., Thater, S.: Parsing with Tree Descriptions: a Constraint-Based Approach. In:

Sixth International Workshop on Natural Language Understanding and Logic Programming

(NLULP 1999) 17–32

11. Gardent, C., Thater, S.: Generating with a Grammar Based on Tree Descriptions: a

Constraint-Based Approach. In: Bird, S. (ed.): Proceedings of the 39th Annual Meeting of

the Association for Computational Linguistics (ACL 2001)

12. Koller, A., Striegnitz, K.: Generation as Dependency Parsing. In: Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics (ACL 2002) 17-24

65

