
Proceedings of the 4th International Workshop on

Constraints and
Language Processing

(CSLP 2007)

Henning Christiansen
Jørgen Villadsen

(Editors)

AUGUST 2007 ROSKILDE UNIVERSITY COMPUTER SCIENCE RESEARCH REPORT #113

Copyright c© 2007

Henning Christiansen and Jørgen Villadsen

Computer Science
Roskilde University
P. O. Box 260
DK–4000 Roskilde
Denmark

Telephone: +45 4674 3839
Telefax: +45 4674 3072
Internet: http://www.ruc.dk/dat/
E-mail: datalogi@ruc.dk

All rights reserved

Permission to copy, print, or redistribute all or part of this work is
granted for educational or research use on condition that this copy-
right notice is included in any copy.

ISSN 0109–9779

This research report constitutes the proceedings of the 4th Interna-
tional Workshop on Constraints and Language Processing (CSLP
2007) which is held in conjunction with the 6th International and In-
terdisciplinary Conference on Modeling and Using Context (CON-
TEXT 2007), Roskilde University, Denmark, August 2007.

Research reports are available electronically from:

http://www.ruc.dk/dat/

Constraints and
Language Processing

CSLP@Context07

4th International Workshop, CSLP 2007

Roskilde, Denmark, 20 August 2007

Proceedings

Edited by

Henning Christiansen

Jørgen Villadsen

Preface

The present volume contains the proceedings of CSLP 2007, the 4th Inter-
national Workshop on Constraints and Language Processing which takes place
in Roskilde, Denmark, on 20 August, 2007.

CSLP 2007 is affiliated with Context07: Sixth International and Interdisci-
plinary Conference on Modeling and Using Context. We would like to thank the
organizers of Context07, especially its workshop chair Stefan Schulz, for hosting
the workshop.

Constraints are widely used in linguistics, computer science, and psychol-
ogy. How they are used, however, varies widely according to the research do-
main: knowledge representation, cognitive modelling, problem solving mecha-
nisms, etc. These different perspectives are complementary, each one adding a
piece to the puzzle. For example, linguistics proposes in-depth descriptions im-
plementing constraints in order to filter out structures by means of description
languages, constraint ranking, etc. The constraint programming paradigm, on
the other hand, shows that constraints have to be taken as a systematic whole
and can thus play a role in building the structures (or can even replace struc-
tures). Finally, psycholinguistics investigates the role of constraint systems for
cognitive processes in comprehension and production as well as addressing how
they can be acquired.

The CSLP@Context07 workshop considers the role of constraints in the re-
presentation of language and the implementation of language processing. This
theme should be interpreted inclusively: contributions from linguistics, computer
science, psycholinguistics and related areas are welcome, and an interdisciplinary
perspective is of particular interest.

The collocation with the Context07 conference underlines the application of
constraints for context comprehension and discourse modelling. We are honoured
to present our invited speaker, Annelies Braffort, who will talk on the modelling
of spatio-temporal constraints in sign language processing. We will also express a
special thanks to Barbara Hemforth who accepted to send us a late paper which
emphasizes the importance of the psycholinguistic dimension in this research.

This volume contains papers accepted for the workshop based on an open
call, and each paper has been reviewed by three or four members of the pro-
gram committee. As editors, we would also like to thank the other members of
the organization committee, Philippe Blache and Veronica Dahl, whose involve-
ment has been important for the establishment of the forum around the CSLP
workshops.

Revised papers from the 1st CSLP were published as Springer Lecture Notes
in Artificial Intelligence (volume 3438).

We want to thank the program committee listed below, the invited speaker,
and all researchers who submitted papers to the workshop and all participants
in the CSLP workshops 2004 (Roskilde, Denmark), 2005 (Sitges, Spain; with
ICLP), 2006 (Sydney, Australia; with COLING/ACL) and 2007, once again in
Roskilde affiliated with CONTEXT. We expect to continue the CSLP series,
which to us is a stimulating research forum concerning an important, inter-

disciplinary field, possibly collocating with central conferences for an increased
exchange of knowledge. The workshop is supported by the CONTROL project,
CONstraint based Tools for RObust Language processing, funded by the Danish
Natural Science Research Council, and the Programming, Logic and Intelligent
Systems Research Group & the Department of Communication, Business and
Information Technologies, Roskilde University, Denmark.

Finally we dedicate this volume to Peter Rossen Skadhauge, who sadly and
unexpectedly passed away last year. He has been a member of the program
committee for the previous CSLP workshops and co-editor of the mentioned
LNAI volume. We will miss Peter personally as well as for his contribution to
the CSLP workshop series.

Roskilde, July 2007 Henning Christiansen
Jørgen Villadsen

Organizing Committee

Philippe Blache
Henning Christiansen, co-chair
Veronica Dahl
Jørgen Villadsen, co-chair

Program Committee

Philippe Blache (Provence University, France)
Henning Christiansen (Roskilde University, Denmark), co-chair
Veronica Dahl (Simon Fraser University, Canada)
Denys Duchier (University of Orléans, France)
John Gallagher (Roskilde University, Denmark)
Claire Gardent (University of Nancy, France)
Barbara Hemforth (Provence University, France)
Jerry Hobbs (University of Southern California, USA)
M. Dolores Jiménez-López (Tarragona, Spain)
Michael Johnston (AT&T, USA)
Lars Konieczny (Freiburg University, Germany)
Shalom Lappin (King’s College, UK)
Detmar Meurers (Ohio State University, USA)
Véronique Moriceau (Université Paul Sabatier, Toulouse, France)
Gerald Penn (University of Toronto, Canada)
Kiril Simov (Bulgarian Academy of Sciences, Bulgaria)
Jørgen Villadsen (Technical University of Denmark), co-chair
Eric Villemonte de la Clergerie (INRIA, France)

Contents

Invited Talk

Sign Language Processing: Modelling of spatio-temporal constraints
Annelies Braffort . 1

Contributed Papers

Linguistic Context Solving with Membranes. A Preview
Gemma Bel-Enguix and M. Dolores Jiménez-López . 16

“Model Theoretic Syntax is not Generative Enumerative Syntax
with constraints”: under what condition?

Philippe Blache . 29

Reasoning about Use Cases using Logic Grammars and Constraints
Henning Christiansen, Christian Theil Have and Knut Tveitane 40

A CHRG Analysis of ambiguity in Biological Texts
Veronica Dahl and Baohua Gu . 53

Applying Constraints derived from the Context in the process of
Incremental Sortal Specification of German ung-Nominalizations

Kristina Spranger and Ulrich Heid . 65

Constraint-based Analysis of Discourse Structure
Antoine Widlöcher and Patrice Enjalbert . 78

Special contribution

Making sense out of nonsense: The acceptability of repairs
Barbara Hemforth, Joël Pynte and Emmanuel Bellengier 93

Sign Language Processing:
Modelling of spatio-temporal constraints

Annelies Braffort

LIMSI-CNRS, Campus d’Orsay, Bat 508,
90 403 Orsay cedex, France

annelies.braffort@limsi.fr

Abstract. Sign Language (SL) is the deaf community's first language. SL
linguistic functioning is completely adapted to the visuo-gestural channel
specificity: 1) Several articulators are simultaneously used (hands, arms, gaze,
mimic, head, chest), each of them having one or several specific linguistic roles,
and possibly interacting with other ones; 2) Iconic features have a key structural
role in shaping signed language discourse; 3) SL show a heavy and consistent
use of the "signing space", i.e. the portion of space in which the signs are
performed. SL Processing systems should be respectful of SL specificities.
Therefore, while modelling the signs of the language, i.e. at the lexical level, all
the possible context-driven variations must be considered as they are fully part
of the language. At the discourse level, sentence construction rules must also
account for the extensive use of space of LSF. We present here some examples
of our research on SL lexical and discourse modelling based on spatio-temporal
constraints, and we explain how we plan to exploit these models in the context
of SL generation by means of a signing avatar.

Keywords: Sign Language, lexical model, signing space, spatio-temporal rules,
signing avatar.

1 Introduction

Sign Language (SL) is the deaf community's first language. For deaf persons to have
ready access to information and communication technologies (ICTs), the latter must
be usable in sign language. Such applications will be accepted by deaf users if they
are reliable and respectful of SL. Before developing ICT applications, it is necessary
to model these features.

LIMSI lab has begun studies on LSF modelling in 1992. Several models have been
proposed in the context of automatic SL recognition, mainly on spatio-temporal
structure modelling and on lexical modelling. The LIMSI’s SL team has recently
initiated a signing avatar project called ELSI1 with the purpose of generating French
Sign Language (LSF) and which integrated a number of these models.

This paper describes some of our investigations on SL modelling and the way we
plan to exploit these models in the context of SL generation by means of a signing

1 ELSI: Elsi is Limsi's SIgner

1

avatar. Section 2 goes through the main characteristics of LSF and addresses the
consequent problems posed for representation. Section 3 describes some of our
investigations on LSF lexicon and sentence modelling. Section 4 presents the ELSI
software platform as well as the methodology we chose for its development and
ongoing evaluation. Section 5 states our progress and discusses some of the prospects
of the ELSI platform.

2 SL functioning

The principle characteristic of LSF and of SL in general, is the use of the visuo-
gestural channel. Thus, there is a compromise between articulation, visual
interpretation and comprehensibility. Signs are articulated with a constant purpose of
a economising in articulation, while retaining a meaningful message which can be
easily interpreted by another person [8].

The number of body features involved in LSF communication allows for a lot of
information at once: Sign Languages (SLs) do not only use hands, but also chest and
shoulder movements, eye gaze, facial expression, head movements (§ 2.1.); linguistic
studies of LSF, whose a major actor in France is Cuxac and his team [7], [8], show a
heavy and consistent use of the "signing space", i.e. the portion of space in which the
signs are performed (§ 2.2.); iconicity is also a relevant feature of both its lexicon and
its grammar (§ 2.3.). All these characteristics allow a signer to “say”, but also to
“show while saying”.

2.1 Simultaneous parameters
The meaning is conveyed by means of body articulators: hand and arm shape
movement orientation and location, head shoulder and chest movements, but also
gaze (direction, closing) and facial expression. These parameters occur
simultaneously and are articulated in the space. Each of them can possess a
syntactical function and a semantic value, allowing whole parts of sentence in vocal
language to be expressed with a single sign.

Figure 1 shows an extract of a LSF story related to a cow looking at a horse while
ruminated. This also illustrates one of the way a signer can “show while saying”, and
the importance of the gaze: During this kind of utterance, the gaze is never directed to
the addressee, but toward a specific point in the signing space, or on his hands or
arms.

2

Fig. 1. Example of a LSF production involving the whole body articulators [4].

2.2 Signing space
One of the main properties of SL is the intensive use of the space located in front of
the signer, called signing space [8], [21]. This space is responsible of the global
discourse structure. The entities of the discourse (persons, objects, events…) are often
located in this signing space. Then spatio-temporal structures are used at the sentence
level. For example, spatial relations between entities are generally established without
using lexical signs. This is the spatio-temporal organisation of specific signs named
“proforms” which allows interpretation. An example is given in figure 2b, showing a
bird (left hand proform showing the beak) located on (relative positions of the two
hands) a fence composed of two horizontal bars (right hand proform).

The sign order is less important than their arrangement in space. But we can draw
out some general principles. The larger and the more static objects are signed before
the little or moving ones. The general rule is that one signs from the more general, the
context, to the more detailed, the action.

2.3 Iconicity
An important property of SL is the iconicity. Because the language is highly
contextual, a lot of signs are articulated in highly iconic structures (HISs). Cuxac has
proposed a categorisation of these linguistic structures [7], [8]. He has distinguished
three kinds of structures that he called transfers: The size and shape transfer (TTF),
which is used to describe the shape of a person, an object or a place (Fig. 2a), the
situational transfer (TS), which is used to show the displacement of a person or an
object relatively to a stable locative reference (Fig. 1 and 2b), and the personal
transfer (TP), where the signer “becomes” one of the person or object of the discourse
(Fig. 2c). TS and TP can be combined in double transfers (DT), such as in figure 2d.
Sometimes, some parts of lexical signs can be combined with a DT to form a semi
transfer (SM) (Fig. 2e).

3

Fig. 2. Examples of transfers - a: A TTF, “spread pastry”; b: A TS, “a bird on a fence”; c: A
TP, “a horse galloping”; d: A DT, “a ruminating cow”; e: A SM, “the cow (left hand) is waiting
(right hand)” [4].

3 SL modelling: what to tackle?

Figure 3 give some examples of what an automatic generation system should be able
to produce. These animations have been designed by our computer artist. The number
of body features involved (hands, but also chest, shoulders, eye gaze, facial

a b

c d

e

4

expression, head movements - Fig. 1a), the heavy and consistent use of the signing
space (Fig. 1c and 1d), and iconicity of both lexicon and grammar (Fig. 1b) should be
tackle in SL processing systems.

Fig. 3. Examples of LSF signs: (a) [WHAT?], (b) [BIRTH], (c) “here”, (d) [GROUP].

Formalising such features for automatic sign generation is not trivial. This section
present some of our investigations both at the lexical (§ 3.1) and sentence (§ 3.2)
levels.

3.1 Lexical modelling

The major current model suitable as an input to a computer generation platform is
SigML [10], [19], which is basically a machine-readable form of HamNoSys.
HamNoSys is virtually the only formal model for signs and has already been
encapsulated in sign generation software (eSign, ViSiCast) [15], [16], [17]. It is based
on Stokoe's 4-parameter model (hand shape, hand orientation, location and
movement). But we see three limitations to these parameter models that we would
like to avoid.

3.1.1 Parameter model limitations
Parameter models describe every sign with the same fixed set of parameters, each of
which must be given a discrete value. However, we argue that not all signs require all
parameters, and that not all the parameters that are needed can be given at the same

5

time in the same way. The trouble when filling a parameter list with values is that all
parameters inherit the same status. Yet often, some are crucial to the sign in that
changing them would result in a loss of the whole sign, whereas others are only given
so as to enable, say, a signing avatar to perform the target sign but could well be
specified differently. Instead of over-specifying the orientation parameter, we suggest
that the sign contents be constrained enough to define the target sign, but that
whatever is not necessary be banned from its description.

Parameter models consider parameters separately. Each of them is assigned a
distinct value, regardless of the other parameters. It means that these assignments
could all be carried out simultaneously, in other words all at once and independently.
Though, this does not account for inter-parameter dependencies. Moreover, two
different parameters could well depend on a common non-parameter object, such as in
[BUILDING] (Fig. 4a). The strong hand moves along and close to a line, say L. Its
palm is constantly facing L and the weak hand's location and orientation is defined as
being symmetric to those of the strong hand's, with respect to L. Both location and
palm orientation of both hands depend on the same object L. Although it is obviously
crucial to the sign as a great part of the description depends on it, L is no parameter in
Stokoe's sense. It is why we call L a non-parameter common dependency. To account
for all the cases mentioned above, we claim that any part of a sign description should
even be allowed to make use of other parts of the same description. This way, internal
dependencies become part of the description.

Above all, using C. Cuxac's theory of iconicity [8] as a framework for ours, it has
become obvious that the many possible influences of discourse context on the signs
that are used cannot be ignored in the process of devising a lexical description model.
A great part of the beauty of SLs and their power in conciseness comes from the
potential for signs to be altered according to the context in which they are used,
thereby switching discourse from a conventional sign flow to HISs. For instance, the
sole sign [BUILDING] can be used to sign the phrase "large building" in LSF, only
the distances between the hands will be greater than the ones involved in the plain
conventional [BUILDING] sign (plus the signer will probably also puff his cheeks
and raise his elbows). Formalising such features for automatic sign generation is not
trivial. An HIS can not only alter the location or the hand shape involved in a sign, but
also a path, a direction, eye gaze, etc. Virtually, anything can be acted upon, and these
actions being commonplace in SL, we claim a description model should allow signs
to behave accordingly. Back to the example above, describing [BUILDING] without
making the distance between the hands responsive to the contextual size weakens –if
not destroys– the sign's re-usability.

6

Fig. 4. a) [BUILDING], b) [BALL]. Pictures extracted from [23].

3.1.2 A lexical model based on geometric constraints
Our model uses geometric constraints [11, 12]. Signs are no more regarded as tuples
of universal parameters like in Stokoe-based approaches [24], but rather as dynamic
spatial geometric figures. A description may build any useful set of geometric objects
like planes or points in space, and constrains body segments to describe positions and
gestures. For instance, when hands are symmetric, we rather build the symmetry and
not repeat parts of the description for both hands.

A statistical analysis of LSF [2] shows that geometric objects are commonplace in
sign languages: most two-handed signs include a symmetry or a parallelism, a large
number of signs sketch out or move along planes, lines or circles... Almost every sign
makes people use geometric notions in spontaneous descriptions. Realising how
essential geometry is in every sign, we no longer regard it as a universal list of
placeholders but as a geometric construction in space. Like any spatial geometric
figure, objects like points, planes, etc. are built step by step using a formal description
language in an unambiguous way to form a desired figure. Specifying a sign requires
that, from an empty space (the signing space), the necessary objects are built one by
one, and then constrained as the description goes to create a dynamic figure, to which
parts of the body then just have to be connected.

No over-specification
The first challenge above becomes easy: as we are free to build whatever we decide,
there is no need to build superfluous objects. Starting in an empty space, we just have
to build as much –and indeed as little– as required for the description. Nothing is
added for the only sake of fitting into the model.

For example, to describe the sign [BALL], we will need to build different things:
− A symmetry plane through the centre of the ball;
− A starting point for the path of the strong hand, in this plane;
− A semi-circle path for the strong hand;

a b

7

− A path for the weak hand, symmetric to the first path, across the symmetry plane.

Fig. 5. Geometric objects for [BALL].

Figure 5 shows geometric objects present in sign [BALL], superimposed on a
snapshot of the signing avatar under development in LIMSI [13]. Only the symmetry
plane is missing, as it would simply have covered half the picture if it were inserted.

Reveal sign structures
This geometric approach also beats the second challenge. One object being built at a
time, descriptions are iterative and sequential. Each object can well refer to one or
several other objects already in place, like the starting point above is said to be in the
plane defined in a first place. Allowing objects to rely on other objects this way
makes the whole process account for internal object dependencies: when an object is
specified with a reference to another (or others), the former is explicitly dependent on
the latter. Thus, contrary to parametric models, a sign-dependent structure is visible in
each description.

Figure 7 shows the type of language we actually plan to describe the signs with. It
includes object building and different constraint statements, each on a separate line.

8

Fig. 6. Description for [BALL], using the geometric model.

It consists of a list of lines, whose order cannot randomly be changed. If a line
includes a reference to other objects, it has to come after the ones defining these
objects. This happens for instance on line 7, where the path of the strong hand is
constrained to start at point S, which itself is defined earlier in the description.

In a less direct sense of the term, we can infer that the path of the strong hand also
depends on the ball's centre point {Loc} (see next session for a word on why {Loc} is
the centre point): line 5 tells us that the starting point S depends on {Loc}. But, and as
we just stated, the strong hand path depends on S. Hence transitively, we may say that
the path of the strong hand depends on the centre of the ball. We can picture that well,
as if we move the centre of the ball, the path taken by both hands (hence the strong
hand) will necessarily change accordingly.

If we push this property further to a 3-step transitivity, we could infer from the
symmetry between the hands that the path of the weak hand also depends on the ball's
centre. We call these indirect dependencies.

Enable real productive sign units
It has always been intended that the model handle iconicity in sign descriptions.
Enabling iconicity in signs can be done by extending the language with a new type of
reference. Every time a value or an object is expected in the description, a call to a
context element can be placed instead. For instance, instead of specifying an arbitrary
distance between the hands' positions in the description for [BUILDING], we may
refer to an external reference called size. This way, whenever the description is used
to perform the sign in discourse (i.e. in context), it can be tagged with a size attribute,
so that the distances are changed accordingly, with no extra rule about how to sign
"big building" or "small building". This brings us to allow elements within the
description to depend on values that are "outside" the lexeme itself. In fact, they are to
be found in –or given by– the context when the description is used to utter an actual
sign.

9

On figure 6, these external dependencies are noted in curly brackets. {Loc}
illustrates a dependency on the location of the ball in the signing space; {Rad}
represents the radius of the ball.

3.2 Sentence modelling
To date, most research on sign language views an utterance as a sequence of isolated,
sometimes coarticulated signs. The models used (generation or recognition of finger
spelling, signed English, etc.) may be far removed from real SL mechanisms.

A small number of projects, mainly generation-related, nevertheless credit some of
the syntactico-semantic features of SL. Some work has been initiated with the
ViSiCAST project to include use of proforms and signing space [22]. Classifier
predicates, as generated by [18], are close to the situational transfers described by
Cuxac. But we do not find anything which is really close to the richness of the
different kinds of HISs reported in his book [8].

Because SLs employ visual-gestural channels to transmit and receive messages,
their organisation hinges on pertinent use of space and on multilinear structures built
of discrete or non discrete, iconic or non iconic units. Our models seek to credit the
specific nature of sign language. Their utterance representations, designed to reflect
SL specificities, therefore differ from those used for vocal languages.

Our claim is that computerised modelling must includes signing space models as a
basis for language representation. In [2], [3], signing space modelling is used to
interpret utterances containing proforms and directional verbs in an automatic sign
recognition system. More recently, signing space modelling has been proposed in the
context of FSL analysis using image processing techniques [9], [20]. For generation, a
semantico-cognitive formalisation has been proposed in [5] in order to represent some
iconic properties related to iconicity within a signing space modelling scheme.

3.2.1 Signing space modelling as an extended scene graph
We use signing space representation as the discourse structure representation. This
representation can have more or less fine levels of granularity, as needed. It can be a
simple "spatial memory" containing a history of relevant locations in space [2], [3],
with a list of associated entities; or, in more complex cases, a set of information on
inter-entity relationships and their semantico-cognitive characteristics [5].

Our representation is made up of appropriate entities and a three-dimensional
Euclidian space structured as an extended 3d scene graph.

The signing scene is made up of entities with specified locations, and the
relationships between them. Some of the locations are predefined and generic, such as
those used to represent time (past: straight, horizontal backward line away from the
signer; present: signer location; and future: straight, horizontal forward line away
from the signer).

All entities and their relationships are represented as a graph with as many nodes as
there are entities in the discourse. The nodes contain information about shape, size,
location, orientation and semantico-cognitive kind of entity, in accordance with the
principles described above. The arcs of this graph contain information on spatial
relationships.

10

3.2.2 Spatio-temporal representation using qualitative temporal properties and
spatial constraints
We have associated this representation with a set of methods for manipulating entities
and their relationships, to allow updates of the signing scene, and to manage a set of
sentence generation rules.

To date, only a limited number of rules has been devised. These rules are
concerned with use of proforms to express spatial relationships between entities. The
proposed spatio-temporal structures are based on the assumption that the natural order
of SL production is Localiser-Localised entity [8]. Such structures are expressed in a
formal language that is currently being developed. This language facilitates
expression of qualitative temporal properties with more or less severe spatial
constraints. It is based on Allen's interval logic [1] and enriched with data types and
operators for manipulating sign components and spatial data.

The examples given below illustrate representation of a "proform structure". This
kind of structure is intensively used in SL discourse and dialogues. It allows entities
to be spatialised in the signing space. This type of structure is made up of lexical signs
that designate entities, denoted as [SIGN], proforms for spatialising entities at a given
location in the signing space, denoted as PF(sign, place), and a gaze unit, denoted as
GAZ(place), which serves to "instantiate" or "reactivate" a location in the signing
space, specifically before a proform is placed there. Once the entity is signed, a brief
gaze is directed toward the future location of the proform; and the proform is
produced at that location. In the corresponding sequence of events, we observe that
certain phenomena take place in parallel. These can be represented in a partition-type
scheme in which time elapses from left to right (Fig. 7).
− The first tier of this diagram represents the direction of the signer's gaze. Unless his

eyes are closed, his gaze is always directed toward some location (light grey area).
The dark grey area represents the point in time at which his gaze is forced to focus
on a point P of the signing space (GAZ(P)).

− The second tier represents the moment in time at which the standard sign [S]
representing the entity is produced. This occurs at the start of the sequence.

− Tier 3 depicts the proform PF(S, P), whose configuration is selected according to
kind of entity S and to the context, and is located at point P.
The duration of each event is based on statistical values derived from video corpus

analysis. Note that the signer's gaze may focus on point P shortly before the end of S
and turn away from this point shortly before the end of the proform. The constraints
implemented here are flexible, as shown by different shades of grey on the "Gaze" tier
of figure 7.

Fig. 7. Partition scheme for representing a proform structure.

[S]

PF(S, P)

GAZ(P)
Lexical

sign

Gaze

Proform

11

This structure can be formalised as follows, using Allen’s temporal relation ships:

POINT P ;
INTERVAL TGAZE, TSS, TPF ;
(TSS < TGAZE) v (TSS m TGAZE) v (TSS o TGAZE) ;
(TPF e TGAZE) v (TGAZE = TPF) v (TGAZE o TPF) ;
TGAZE.direction = Vect(eyes, P) ;
TPF.location = P ;
TPF.handshape = Select(TSS.proformList) ;

Meaning of Allen relationships:

v : or
< : precedes
m : immediately precedes
o : partially overlaps
e : completely overlaps at end

The first two lines declare a 3d point in space and three temporal intervals. The

next two lines describe the temporal relationships between these intervals, using
Allen's relationships. They are followed by two further lines expressing the spatial
constraints within the intervals. The last line associates with the proform a list of
possible proforms for the entity represented by S. A proform is selected from this list
only when the context is adequately specified.

4 SL generation & animation software on the way...

An avatar animation platform is presently under development at LIMSI. The lexical
signs involved in a sign utterance are first ordered, then performed according to
context and output to a video. Figure 8 sketches out the structure of the ELSI sign
production software.

Sentence generation (M1) is based on a model of the signing space (K2) and uses
spatio-temporal structures (K1). The sign generation module (M2) uses descriptions
of the wanted signs (K3).

The animation engine module (M3) is taking as input a formal XML representing
the sentence production. Its role is to animate ELSI in a separate window. It uses a
hierarchical description of the avatar (K4) and a bank of animated signs performed by
our computer artist.

12

Fig. 8. Structure of the ELSI animation platform.

Producing an LSF clause consists in producing a sequence of LSF signs that suits
the LSF grammar defined by means of the spatio-temporal structures representations.
We use a simple model of the signing space for now. It contains the signed units and
their respective locations, orientations and sizes. For the moment being, it allows
production of isolated gap clauses with predefined format and use of both manual and
non-manual signs. Production is carried out by signing the units back to back. We
chose an incremental approach so that each module can be tested independently and
every step forward guaranteed the reliability of its basis:
1. Design a virtual character (K4) and predefined units (K5) and check the fluidity of

a single animation;
2. Try sequences of those units and check the fluidity of the interpolated transitions

(M3);
3. Replace a predefined unit by a lexical description processed by M2;
4. Add context values to the input of M2;
5. Add more complex spatio-temporal structures representations in K1;
6. Extend the representation power of the signing space modelling (K2)…

All the modules and knowledge bases are not yet completely implemented. We are

currently at the step 2: evaluation of the automatic coarticulation process, that will
need a specific study based on LSF corpus analysis in order to design dedicated
collision detection and a planning process.

13

5. Conclusion, current progress and prospects

This paper describes our approach to constructing the models and formalisms required
to develop SL applications for ICTs. Deaf-friendly SL models must reflect the
specificities of the language – use of space to support discursive concepts, iconicity as
the structuring principle and simultaneous contribution of various body parts –
shoulders, chest, face and eyes – that supplement hand movements.

A good evaluation of the models will currently be their integration with the
platform of virtual signation under development in LIMSI. It will then be advisable to
estimate acceptability, with the linguistic direction, of the generated signs. Also we
will be interested particularly in the precision of the articulations of the avatar’s
skeleton, the fluidity of his movements and the quality of the transitions between the
productions.

Another promising perspective of our work is related to the LS-Script project [14],
whose objective is to build a written form of LSF. This study focuses, among other
aspects of signs, on geometric features contained in them. Even more importantly, it
includes discussions about what is "core" to a sign and what can be seen as
"peripheral". It is vital indeed, with the goal of offering a writing system usable for
taking quick notes, to be aware of what must end up on the paper and what elements
may be left out.

Finally, high level models of the signing space, along with a representation of the
FSL lexicon should be shareable for SL analysis and synthesis domains and thus
afford synergies that already seem promising [6].

References

1. Allen JF. (1990) Towards a general theory of action and time. In Allen J., Hendler J., Tate
A. (eds.) Readings in planning, Kaufmann, San Mateo, pp. 464-479

2. Braffort A. (1996). Reconnaissance et Compréhension de gestes, application à la langue des
signes. PhD thesis, Université Paris-XI Orsay.

3. Braffort A. (1996). ARGo: An Architecture for Sign Language Recognition and
Interpretation. In: Proceedings of Gesture Workshop on Progress in Gestural Interaction.
Pages: 17 - 30 ISBN:3-540-76094-6

4. Braffort A., Choisier A., Collet C. and Lejeune F. (2004). « Presentation of three French
Sign Language Corpora ». In: In: Gesture in human-computer interaction and simulation,
LNCS/LNAI vol 2915/2004.

5. Braffort A., Lejeune F. (2006), “Spatialised semantic relations in French Sign Language:
toward a computational modelling”. In: Gesture in human-computer interaction and
simulation, LNCS/LNAI vol 3881/2006.

6. Braffort A. and Dalle P. (to appear), Sign Language Application: preliminary modelling. In:
UAIS Journal, Special Issue on Emerging Technologies for Deaf Accessibility in the
Information Society, Springer.

7. Cuxac, C. (1999). French sign language: proposition of a structural explanation by iconicity.
In A. Braffort, R. Gherbi, S. Gibet, J. Richardson and D. Teil, (Eds.), Lecture Notes in
Artificial Intelligence 1739, Springer: Berlin, pp. 165-184

8. Cuxac C. (2000), « La Langue des Signes Française (LSF) – Les voies de l’iconicité ». In:
Faits de Langues vol 15-16, Ophrys.

14

9. Dalle P., Lenseigne B. (2005). Vision-based sign language processing using a predictive
approach and linguistic knowledge. In: IAPR conference on Machine Vision Applications –
MVA Tsukuba Science City, Japon,. IAPR, pp. 510-513

10. Elliott, R., Glauert, J. R. W., Jennings, V. and Kennaway, J. R (2004), “SiGML Notation
and SiGMLSigning Software System”., Workshop on the Representation and Processing of
Sign Languages, Proceedings of LREC 2004, Portugal.

11. Filhol M., Braffort A. (2006), “A sequential approach to lexical sign description”, Second
Workshop on the Representation and Processing of Sign Languages: Lexicographic matters
and didactic scenarios, LREC 2006, Italy.

12. Filhol M., Braffort A. (2006), “Sign Description - How geometry and graphing serve
linguistic issues”, TISLR 2006, Brasil.

13. Filhol M., Braffort A. and Bolot L. (2007). “Signing Anatar: Say hello to Elsi!. In: Gesture
in human-computer interaction and simulation, LNCS/LNAI vol to appear/2007.

14. Garcia B., Boutet D., Braffort A. Dalle P. (2005), “Sign language in graphical form:
methodology, modeling and representations for gestural communication”. In: Interacting
Bodies, ISGS 2005, France.

15. Hanke T. (1989). HamNoSys - an introductory guide. Signum Press, Hamburg.
16. Hanke T. et al (2002), ViSiCAST deliverable D5-1: interface definitions, ViSiCAST project

report, http://www.visicast.co.uk.
17. Hanke T. (2004). HamNoSys for representing sign language data in language resources and

language processing contexts. In: Streiter, Oliver / Vettori, Chiara (eds): LREC 2004,
Workshop proceedings: Representation and processing of sign languages. Paris : ELRA - pp.
1-6

18. Huenerfauth M. (2006), Generating American Sign Language Classifier Predicates For
English-To-ASL Machine Translation, Doctoral dissertation, University of Pennsylvania

19. Kennaway R. (2004), “Experience with and Requirements for a Gesture Description
Language for Synthetic Animation”. In: Gesture-Based Communication in Human-
Computer Interaction, LNCS/LNAI vol 2915/2004, Selected Revised Papers of GW’03.

20. Lenseigne B., Dalle P.(2005) Using signing space as a representation for sign language
processing, in Gibet S., Courty N., Kamp JF. (eds) Lecture Notes In Artificial Intelligence
3881. Springer, Berlin Heilderberg, pp 25-36

21. Liddell S. (2003). Grammar, gesture and meaning in American Sign Language. Cambridge
Univ. Press, Cambridge.

22. Marshall I., Safar E. (2004), « Sign Language Generation in an ALE HPSG, in Proc. Of
HPSG04 conference, Bergium.

23. Moody, B. Moody B. (1986). La langue des signes. Dictionnaire bilingue élémentaire. vol.2,
IVT, Paris.

24. Stokoe W. (1960). “Sign Language Structure: An Outline of the Visual Communication
System of the American Deaf”. Studies in Linguistics, NY.

15

Linguistic Context Solving with Membranes. A
Preview

Gemma Bel-Enguix and M. Dolores Jiménez-López

Research Group on Mathematical Linguistics (GRLMC)
Rovira i Virgili University

Pl. Imperial Tárraco, 1, 43005 Tarragona, Spain
gemma.bel@urv.cat

mariadolores.jimenez@urv.cat

Abstract. Membrane Systems [24] and Brane Calculi [9] provide a good
framework for modelling context in linguistics. Several context-based lin-
guistic branches are not easily formalizable and implementable, due to
difficulty of dealing with environments and actual circumstances. We
claim that the combination of the bio-inspired models based on the be-
haviour of cells and some tools taken from constraint grammars and con-
straint solving can help to define a new formal approach to “contextual”
linguistics.

1 Introduction

The new idea introduced in this paper comes from (or is based on) the con-
junction of three theories: Membrane Systems, Brane Calculi and Constraint
Solving.

Membrane Systems (MS) were introduced by Păun [24] as a powerful genera-
tion device based in the behaviour of cellular membranes, and developed during
almost a decade by an increasing number of papers. Membrane computing can
be included in the area of natural computing. Despite its microbiological inspira-
tion, the model has to be described as a mathematical and formal computational
device.

On the other hand, Brane Calculi (BC) [9] are a new type of calculi that
have been especially conceived to model the behaviour of biological membranes.
Brane calculi is closely related to BioAmbients [26] and Mobile Ambients [8].

It seems, then, that membrane computing (MC) and brane calculi share the
same biological referent and they could be understood almost as the same formal
device. Indeed, they are closely connected and some interaction between both
fields has been performed [7, 10]. However, there are some interesting differences
between MC and BC:

– MC is mainly focused on the elements inside the membranes. In fact, the
first formalizations of MC did not take into account what happened with
membranes, but only what they generated. Later, the idea of dynamic sys-
tems, with operations in membranes, was introduced, but the main focus

16

of the theory is still what the system produces. Nevertheless, BC is more
concerned in the behaviour of membranes, in the interaction between them,
forgetting what they have inside.

– MC is a formal model only primarily inspired in a biological entity, which
does not care about the biological coherence of the rules. BC tries to formal-
ize biological operations, and is closer to systems biology, even if it makes
use of algebra.

– MC is, by definition, a maximal parallel system, whereas BC performs, in
each computational step, only one instruction.

Whereas membrane systems are focused in the computational power of mem-
branes and Brane calculi highlight the biological referent, we go one step further:
the use of membranes in linguistics and context management. The main features
we are taking into account are the following:

– For us, membranes are not cellular objects or generative mechanisms, but
contexts: environments with specific configurations that can modify elements
and processes inside them.

– We are interested in interactions between membranes, like dynamic mem-
brane systems or brane calculi. But we also take into account the final pro-
ductions, like classical membrane systems do.

– Membranes can help to start an approach to context solving, and also to
those parts of linguistics which have the context as a main component. The
different resolution of syntactic and semantic operations in different environ-
ment is still an open problem both for linguistics and for the implementation
of linguistic theories. Context is also a difficulty for linguistic computational
simulation. By context solving we define the attempt to find the correct in-
stance of a linguistic problem depending on the context where it is placed
and the surrounding contexts it has.

– This work could be said to be closer to brane calculi because of the final goal,
management and resolution of context. However mathematical formalisms
are directly taken form membrane systems with the contribution of several
operations based on BC to describe interaction among membranes.

For linguistics, the main feature and advantage of membranes over the other
generative methods is that the membranes can be understood as contexts, pro-
viding a suitable framework for the formalization of semantics, pragmatics and
interaction between different agents or contexts. Contexts may be different words,
persons, social groups, historical periods, languages. They can accept, reject, or
produce changes in elements they have inside. Membranes can be also defined
as constraint stores, which determine different worlds.

From here, we think constraint solving [18] can be also a model for context
solving with membranes. Although constraint solving is far away from our simple
mechanism to deal with contexts, we think they can provide some tools for the
formalization of operations with contexts, as suggested by [13].

The paper is organized as follows. In section 2, we present a definition of
membrane systems and the definition of context solving membranes systems.

17

Section 3 provides some operations taken from brane calculi. Finally, section 5
shows how some processes of context resolution can be modelled by membranes.

2 P systems: Generalities

Membrane systems provide a powerful framework for formalizing any kind of
interaction, both among agents and among agents and the environment. An
important idea in membrane systems is that generation is made by evolution,
when the configuration of membranes undergoes some modifications, given by
certain rules. Therefore, most of evolving systems can be formalized by means
of membranes.

Membrane systems, as a computational model based in biology, consist of
multisets of objects which are placed in the compartments defined by the mem-
brane structure –a hierarchical arrangement of membranes, all of them placed
in a main membrane called the skin membrane– that delimits the system from
its environment.

!

"

#

$

!

"

#

$

%
&

'
(!

"

#

$
%
&

'
(

%
&

'
(

%
&

'
(

)

*

+

,)
*

+
,

!!!"
#
#
#
#
##$

%%%%%%%%&

region

'
'
''(

membrane

'
'(

skin

)
)

))*

elementary membrane

Fig. 1. A Membrane Structure.

Each membrane identifies a region, the space between it and all the directly
inner membranes, if any exists. Objects evolve by means of reaction rules also
associated with the compartments, and applied in a maximally parallel, non-
deterministic manner. Objects can pass through membranes, membranes can
change their permeability, dissolve and divide.

Definitions of membrane systems can be found in [24] and [25]. In general,
membrane systems are a distributed parallel computational model based in the
concept of membrane structure. Such structure is represented by a Venn diagram
where all the sets, membranes, are inside a unique skin membrane. A membrane

18

without any membrane inside is called elementary membrane. Every membrane
delimits a region. Objects, placed in these regions, are able to evolve travelling
to other membranes or being transformed in different objects. Unlike other sim-
ilar computational devices – as Grammar Systems and NEPs – that consist of
two different types of configuration states – evolution and communication –,
Membrane Systems have only evolution rules. Therefore, the rules in membrane
systems regulate both: changes in the system and communication between mem-
branes.

Figure 1 shows the graphical intuitive idea on how a membrane structure is.
Membranes are usually represented by the sign [], and they are labelled with a
number between 1 and the number n of membranes in the system. For example,
the structure in Figure 1 has the shape [[]2 []3 [[]5 [[]8 []9]6 []7]4]1.

Definition 1 A membrane system Π is defined as a construct:

Π = (V, µ,w1, ...wn, (R1, ρ1), ..., (Rn, ρn), io),

where:

– V is an alphabet; its elements are objects;
– µ is a membrane structure of degree n;
– wi, 1 ≤ i ≤ n, are strings from V ∗ representing multisets over V associated

with the regions 1, 2,...n of µ;
– Ri, 1 ≤ i ≤ n, are finite sets of evolution rules over V associated with the

regions 1, 2,...n of µ; ρ is a partial order relation over Ri, 1 ≤ i ≤ n,
specifying a priority relation between rules of Ri.

– io is a number between 1 and n, which specifies the output membrane of Π.

The degree of a system is the number of membranes it has (cf. [24]). It is
denoted by degree(µ).

2.1 Relations between Membranes

The way the membranes are related to the others is important in the moment
they have to interact, and also in the configuration of the communication we are
going to deal with later. There are mainly tree types of relations: nesting, sibling
and command.

1. Nesting. Given two membranes M1, M2, it is said M2 to be nested in M1

when it is inside M1. The outer membrane M1 is called parent membrane and
the inner membrane M2 is called nested membrane. It is denoted M2 ⊂ M1:
[1 [2]2]1. The notation ⊂ M1 refers to every membrane nested in M1.

Nesting is a strict order, which satisfies:

a) It is not reflexive, by definition.
b) It is asymmetric. If Mn ⊂ Mm, then it is not the case that Mm ⊂ Mn.
c) It is transitive. If Mn ⊂ Mm and Mm ⊂ Mj , then Mn ⊂ Mj .

19

!

"

#

$

1%
&

'
(
2

!

"

#

$

1-

.

/

0
2

!

"

#

$

3-

.

/

0
4

+,

+,

Fig. 2. Nesting and Sibling.

2. Sibling. Two membranes Mn, Mm are related by sibling, if they satisfy:

i. they are adjacent or nested in adjacent membranes, and
ii. they have the same depth.

Sibling is denoted Mn ≈ Mm. Namely, in a membrane system denoted as
[0 [1 [2]2]1 [3 [4]4]3]0, M1 ≈ M3 and M2 ≈ M4. The notation ≈ Mn refers to
every sibling membrane for Mn.
Sibling satisfies the following properties:

– It is reflexive, by definition. Mn ≈ Mn.
– It is symmetric. If Mn ≈ Mm, then Mm ≈ Mn.
– It is transitive. If Mn ≈ Mm, and Mm ≈ Mi, then Mn ≈ Mi.

3. Command. Given two membranes Mn, Mm, Mn commands Mm iff:

i. they are not nested,
ii. both are nested in a membrane Mj ,
iii. deg(Mn ⊂ Mj) = 1, deg(Mm ⊂ Mj) > 1

Command is denoted Mn # Mm. In the system [0 [1 [2]2]1 [3 [4]4]3]0,
M1 commands M4 and M3 commands M2. The notation $Mn refers to every
membrane commanded by Mn.

!

"

#

$

0!

"

#

$

1-

.

/

0
2

!

"

#

$

3-

.

/

0
4

+

,

Fig. 3. Command.

Command is a strict order:

a) It is not reflexive, by definition. It is not Mn # Mn.

20

b) It is asymetric. If Mn # Mm, then it is not the case that Mm # Mn.
c) It is transitive. If Mn # Mm and Mm # Mj , then Mn # Mj .

For two given membranes Ms, Mz, if Ms ≈ Mz, then Ms # (⊂ Mz), and Mz #
(⊂ Ms). This means that, if two membranes are related by sibling, then each
one of them commands the membranes nested inside the other.

For two given membranes Ms, Mz, if Ms # Mz, then Ms # (⊂ Mz). This is, if a
membrane Ms commands a membrane Mz, it also commands every membrane
nested in it.

The relationships of adjacency and nesting will be very important in the
development of this paper.

3 Brane Calculi: Operations with Membranes

Operations are directly inspired in the ones of brane calculi, with several dif-
ferences: a) BC introduces a dinstinction between bitonality and monotonality
(see [9]). We dismiss such distinction because of the lack of lingusitic relevance.
In linguistic membranes, every operation is monotonal. From here, b) there is
only one level in membrane extraction. And, finally, c) not every brane interac-
tion has a correspondent interaction in membrane systems. Eight operations are
considered here: pino, frith, endo, exo, froth, mate, mito, drip. From these, froth
and frith are complementary. The same can be said for endo and exo. Mate is
complementary with mito and with drip.

Endo [p]m[q]n ⇒endo m [[p]mq]n

Exo [[p]mq]n ⇒exo [p]m[q]n

Pino [p]m ⇒pino [[]np]m

Frith [p]m ⇒frith

Mate [p]m[q]n ⇒mate [pq]i

Mito [pq]i ⇒mito [p]m[q]n

Drip [pq]i ⇒drip [pq]m[pq]n

Froth [p]m ⇒froth p [[p]n]

21

4 Context Solving Membrane Systems

We introduce in this section a new type of membrane systems, Context Solving
Membrane Systems, specially defined for dealing with semantics and context-
based linguistics. In them, membranes are contexts, this is, constraint stores.
Objects in membranes are features, understood as first order predicates.

The rules are of three types, related with conjunction, disjunction or impli-
cation. It is important to keep in mind that membranes are not sets; they do
not behave as sets. Disjunction is related to membrane generation, conjunction
to addition of objects (constraints) in membranes, and implication to membrane
nesting.

The main logical formula can be modelled by membrane systems. If we under-
stand a membrane as a constraints store, conjunction adds elements (constraints)
to the membrane or produces the fusion of two membranes (MATE), while dis-
junctive and implicative relations create new membranes. Disjunction crates a
sibling membrane (MITO), while implication creates nesting (ENDO).

Definition 2 A Context Solving Membrane System CΠ is defined as a con-
struct:

CΠ = (V, µ,C, ρ),

where:

– V is an alphabet; its elements are objects, for example first order predicates;
– µ is a membrane structure of degree n;
– C is a set of logical connectors (∧, ∨ →).
– ρ is a set of evolution rules for µ, which represent operations with mem-

branes, given by the connectors on C: ∧/Mate; ∨/Mito; →/Endo.

The three basic rules – Mate, Mito, Endo – given by basic operators, can be
formalized as follows:

1. [f(x)] ∧ [g(x)] ⇒ [f(x) g(x)]: Mate
2. [f(x) ∨ g(x)] ⇒ [f(x)][g(x)]: Mito
3. [f(x)] → [g(x)] ⇒ [[f(x)]g(x)]: Endo

A graphical representation is shown in Figure 4.
Combining these rules, we obtain several types of reactions: a) simple reac-

tions, reductions, b) composition.

Simple Reactions Simple reactions show how relationship among elements in
a membrane, can start several processes in this membrane. We enumerate the
easiest ones:

4. [f(x)g(x)]
f(x)∧g(x) ⇒ [f(x) g(x)]: Mate

5. [f(x)g(x)]
f(x)∨g(x) ⇒ [f(x)] [g(x)]: Mito

6. [f(x)g(x)]
f(x)→g(x) ⇒ [[f(x)] g(x)] Endo

22

1
2

3
4

1
2

3
4∧ ⇒f(x) g(x)

1
2

3
4f(x)g(x)

1
2

3
4∨ ⇒f(x) g(x)

1
2

3
4
1
2

3
4f(x) g(x)

1
2

3
4

1
2

3
4→ ⇒f(x) g(x)

1
2

3
4

!

"

#

$
f(x) g(x)

Fig. 4. Mito, Mate, Endo.

Reductions Reductions are reflexive fusions:

7. [f(x)] ∧ [f(x)] ⇒ [f(x)]
8. [f(x)] ∨ [f(x)] ⇒ [f(x)]
9. [f(x)] → [f(x)] ⇒ [f(x)]

Composition Composition refers to the solution of operations among two or
more membrane systems with deg > 1, – among three or more simple mem-
branes. In them, more than one simple operation is performed. We enumerate
five simple cases:

10. ([f(x)] → [g(x)]) ∨ ([g(x)] → [h(x)]) ⇒ [[f(x)][h(x)]]g(x)]: ENDO + Reduc-
tion + MITO

11. ([f(x)] → [g(x)])∧([g(x)] → [h(x)]) ⇒ [[f(x)g(x)]h(x)]: ENDO + Reduction
+ MATE

12. ([f(x)] ∧ [g(x)]) ∧ ([f(x)] ∧ [h(x)]) ⇒ [f(x)g(x)h(x)]: MATE
13. ([f(x)] → [g(x)]) ∧ ([g(x)] → [h(x)]) ⇒ [[[f(x)]g(x)]h(x)]: ENDO + Reduc-

tion + ENDO
14. ([f(x)] → [g(x)]) ∧ [g(x)h(x)] ⇒ [f(x)[g(x)h(x)]]: ENDO + Reduction

5 Lexical Semantics with Membrane Context Solvers

In this section, we introduce a quite simple formalization of lexical semantics
considering membranes and the basic rules explained above. First, we define by
means of simple rules, the three main types of semantic relationship: polysemy,
synonymy and hyponymy. Later, we give in the same way two of the main types
of semantic change according to [15]: broadening and narrowing.

23

)
*

+
,

!

"

#

$
∨f(x) g(x)

)
*

+
,

!

"

#

$
h(x) g(x) ⇒

)
*

+
,

)
*

+
,

!

"

#

$
f(x) h(x) g(x)

Fig. 5. Compositon 10: ENDO + Reduction + MITO

)
*

+
,

!

"

#

$
∧f(x) g(x)

)
*

+
,

!

"

#

$
g(x) h(x) ⇒

)
*

+
,

!

"

#

$
f(x) g(x) h(x)

Fig. 6. Composition 11: ENDO + Reduction + MATE

5.1 Semantic Relationships

Three Brane Calculi operations are considered for defining the three main se-
mantic relationships: DRIP, MATE, ENDO. Drip refers to the context division
which causes the multiplicity in the meaning of a lexical item; the fusion process
entailed by mate merges meanings and contexts which have, after the opera-
tion, the same linguistic referent; on the other hand, implication (or inclusion),
establishes a membership feature in words. Here, the definition and membrane
modelling for every relationship is provided.

– Polysemy: Drip.

• Definition: Polysemy is a matter of one lexeme having several interre-
lated meanings.

• Membrane Modelling: Polysemy is generated by Drip operations,
when a membrane produces a copy of itself generating a new context
for its productions.

• Example: Let w1 be a membrane with the element “light” insight. By
the Drip rule [light]1 → [light]1 [light]2, multiple contexts can be created
for the same word, with different meanings.

– Synonymy: Mate.

• Definition: Can be explained in a way inverse to polysemy. There is a
fusion of contexts with some common element, producing very similar
lexical items.

• Membrane Modelling: Mate operations merge context causing syn-
onymy.

24

• Example: Having two membranes w1 and w2, with “thrifty” ∈ w1,
“mean” ∈ w2, we obtain a new membrane including both terms by
[thrifty]1 ∧ [mean]2.

– Hyponymy: Endo.

• Definition: According to [21], hyponymy can be defined as follows: an
expression A is a hyponym of an expression B iff the meaning of B is
part of the meaning of A and A is a subordinate of B. In addition to the
meaning of B, the meaning of A must contain further specifications, ren-
dering the meaning of A, the hyponym, more specific than the meaning
of B. If A is a hyponym of B, B is called a hyperonym of A.

• Membrane Modelling: Hyponymy can be explained by the nesting
relationship. Every membrane can be explained as a constraint store of
traits of a lexical item, so that by including one membrane into another
one we account for the relation between words that are in a hyponymy
relationship.

• Example: Let us consider that membranes w1, w2, and w3 representing
respectively the words “animal”, “dog” and “terrier”, by establishing a
nesting relation between them (w3 ⊂ w2 ⊂ w1) we are easily accounting
for the hyponymy relation.
Following the properties we have explained before, it can be said that
being w3 ⊂ w2 ⊂ w1 and being x a constraint of the world w, it can be
said that, if ∀x(x ∈ w3 → x ∈ w2 → x ∈ w1). However ∃x(x ∈ w1 ∧ x ∈
w2 ∧ x ∈ w3). In the same way, it is obvious that ∃x(x ∈ w3 ∧ x /∈ w2).

5.2 Semantic Change

Hyponymy relationships can evolve and change, mainly in two directions. First
of all, some of the membranes can accept some constraint during the evolution
process, in a way that the membrane is equivalent to its parent one. The next step
is the dissolution of the parent membrane. This is a process called broadening
in lexical semantics. The opposite process is the one called narrowing. By it, a
membrane loose a constraint and, in the process, it becomes equivalent to the
nested membrane in it. The next step is the dissolution of the nested membrane.

– Broadening, extension or generalization: Froth.

• Definition: The term broadening is used to refer to a change in mean-
ing that results in a word acquiring additional meanings to those that
it originally had, while still retaining those original meanings as part
of the new meaning. So, it refers to the increase of the number of con-
texts in which a word can be used, paradoxically reducing the amount
of information conveyed about each one.

• Membrane Modelling: Membranes can model broadening by deleting
constraints to the membrane, i.e. generating a new parent membrane to
the existing one:

25

∗ There is a membrane system µ, being w1 and w2 membranes of that
system, in a nested relationship such as w2 ⊂ w1. Both membranes
are defined as a store of constraints w1 = f(x) ∧ g(x) ∧ h(x), w2 =
f(x)∧ g(x) The relationship between both domains is the following:
∀x(f(x) ∈ w1 → f(x) ∈ w2, and ∃x(f(x) ∈ w2 ∧ f(x) /∈ w1).

∗ By applying the Froth operation, we obtain: w1 = f(x)∧ g(x)∧h(x)
→ wi = f(x) ∧ g(x), with the broadening of the membrane. And by
reduction, they MATE.

• Example: Figure 7 shows a graphical example of the extension of the
word “dog”.

!

"

#

$

!

"

#

$
)
*

+
,

Animal
Can

canis
canis

breed

Dog

⇒

!

"

#

$

!

"

#

$
)
*

+
,

Animal
Can

canis
canis

Dog

⇒

!

"

#

$

)
*

+
,

Animal

canis

Dog

Fig. 7. Example of Broadening: Dog.

– Narrowing, restriction or specialization: Pino.

• Definition: Semantic narrowing is the exact opposite of the previous
kind of change. We say that narrowing takes place when a word comes
to refer to only part of the original meaning. The restriction of meaning
paradoxically involves an increase in the information conveyed, since a
restricted form is applicable to fewer situations, but tells more about
each one.

• Membrane Modelling: Membranes can model narrowing by adding
constraints to the membrane, i.e. generating a new nested membrane to
the existing one:
∗ There is a membrane system µ, being w1 and w2 membranes of that

system, in a nested relationship such as w2 ⊂ w1. Both membranes
are defined as a store of constraints w1 = f(x) ∧ g(x) ∧ h(x), w2 =
f(x)∧ g(x) The relationship between both domains is the following:
∀x(f(x) ∈ w1 → f(x) ∈ w2, and ∃x(f(x) ∈ w2 ∧ f(x) /∈ w1).

∗ By applying the Pino operation, we obtain: w2 = f(x) ∧ g(x) →
wi = f(x) ∧ g(x) ∧ h(x), with the narrowing of the membrane.

• Example: Figure 8 shows a graphical example of the extension of the
word “meat”.

26

)
*

+
,aliment

Meat

⇒

)
*

+
,

aliment

flesh

Meat

⇒

!

"

#

$
)
*

+
,

Foot

aliment
aliment

flesh

Meat

Fig. 8. Example of Restriction: Meat.

6 Final Remarks

The paper starts from a quite intuitive idea, the use of constraints for dealing
with context in linguistics. This work has as a goal the implementation of con-
texts in natural language processing, and the ideas introduced here have to be
further developed in order to have some application.

We suggest that, by means of the membrane-based approach to linguistics,
some traditional difficulties like ambiguity and the formalization of pragmatics
could be partially covered in a computational-friendly way. But membranes are
a computational method introduced to generate formal languages, and their
mathematical tools to formalize reasoning are quite limited. Constraint handling
rules can help to this task. We think constraint solving provides some convenient
formalization for inference that can be adapted to the membrane computing
framework. Finally, perhaps using logical-based reasoning, the computational
approach to context can become more robust as well as more consistent with
current theories on formal linguistics.

The ideas introduced in this paper are still seminal, and a better study is
needed in order to demonstrate such formalism can be useful for description and
implementation of linguistic contexts. If it works, even if partially, and can be
implemented, several applications for semantics and pragmatics can be designed.

References

1. Aitchison, J. (1991), Language Change: Progress or Decay?, Cambridge, Cambridge
University Press.

2. Bel Enguix, G. (2003), Preliminaries about some Possible Applications of P Sys-
tems in Linguistics, in Păun, Gh.; Rozenberg, G.; Salomaa, A. & Zandron, C.,
(eds.), Membrane Computing, LNCS 2597, Springer, Berlin: 74–89.

3. Bel Enguix, G. & Gramatovici, R. (2004), Parsing with Active P Automata, in
Mart́ın-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., & Salomaa, A. (eds), Mem-
brane Computing, Berlin, Springer.

4. Bel Enguix, G. & Jiménez López, M.D. (2007), Dynamic Meaning Membrane Sys-
tems: an Application to the Description of Semantic Change, Fundamenta Infor-
maticae, 76(3): 219–237.

27

5. Bel Enguix, G. & Jiménez López, M.D. (2005), Linguistic Membrane Systems and
Applications, in Ciobanu, G., Păun, Gh. & Pérez Jiménez, M.J. (eds.), Applications
of Membrane Computing, Springer, Berlin: 347–388.

6. Bunt, Harry C. (1990), DIT-Dynamic Interpretation in Text and Dialogue, ITK
Research Report, no. 15, Tilburg University, The Netherlands.

7. Busi, N. & Gorrieri, R. (2005), On the computational power of Brane Calculi.
Proc. Third Workshop on Computational Methods in Systems Biology (CMSB05),
Edinburgh: 106-117.

8. L. Cardelli, A.D. Gordon (2000), Mobile Ambients. Theoretical Computer Science,
240 (1): 177-213.

9. Cardelli, L. (2005), Brane Calculi. Interactions of Biological Membranes, Proc.
Computational Methods in System Biology (CMSB 2004), Paris, France, May
2004. Revised Selected Papers, LNCS 3082, Berlin, Springer: 257-280.

10. Cardelli, L. & Paun, G. (2006), A universality result for a (Mem)Brane Calculus
based on mate/drip operations, J. Found. Comput. Sci. 17(1): 49–68.

11. Christiansen, H. (2001), CHR as Grammar Formalism. A first report, Annual
Workshop of the ERCIM Working group on Constraints. Available at CoRR:
http://arXiv.org/abs/cs.PL/0106059.

12. Christiansen, H. (2005), CHR Grammars, in International Journal on Theory and
Practice of Logic Programming, vol. 4+5, special issue on Constraint Handling
Rules: 467–501.

13. Cristiansen, H. & Dahl, V. (2005), Meaning in Context, in Dey, A., Kokinov, B.,
Leake, D., Turner, R. (eds.), Lecture Notes in Artificial Intelligence 3554: 97–111.

14. Croft, W. (2000), Explaining Language Change. An Evolutionary Approach, Long-
man, Singapore.

15. Crowley, T. (1992), An Introduction to Historical Linguistics, Oxford University
Press.

16. Cruse, D.A. (1986), Lexical Semantics, Cambridge University Press.
17. Debusmann, R., Duchier, D. & Kuhlmann, M. (2004), Multi-dimensional Graph

Con.guration for Natural Language Processing, in Christiansen, H., Skadhauge,
P.R. & Villadsen, J. (2004), Constraint Solving and Language Processing. Interna-
tional Workshop, CSLP 2004. Proceedings, Roskilde, Roskilde University: 59–73.

18. Frühwirth, T. (1994), Theory and Practice of Constraint Handling Rules, Journal
of Logic Programming 37, 1-3: 95–138.

19. Groenendijk, J. & Stokhof, M. (1991), Dynamic Predicate Logic, Linguistics and
Philosophy, 14: 39–100.

20. Hobbs, J.R., Stickel, M., Martin, P. & Edwards, D. (1993), Interpretation as ab-
duction, Artificial Intelligence 63, 1-2: 69–142.

21. Löbner, S. (2002), Understanding Semantics, Arnold, London.
22. Lyons, J. (1995), Linguistic Semantics. An Introduction, Cambridge University

Press.
23. McMahon, A.M.S. (1996), Understanding Language Change, Cambridge University

Press.
24. Păun, Gh. (2000), Computing with Membranes, Journal of Computer and System

Sciences, 61(1): 108-143.
25. Păun, Gh. (2002), Membrane Computing. An Introduction, Springer, Berlin.
26. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro (2004), BioAmbi-

ents: An Abstraction for Biological Compartments. Theoretical Computer Science
325 (1): 141-167.

27. Sihler, A. L. (2000), Language History. An Introduction, John Benjamins, Amster-
dam.

28

“Model Theoretic Syntax is not Generative

Enumerative Syntax with constraints”: under

what condition?

Philippe Blache

Laboratoire Parole et Langage
Aix-Marseille Universités & CNRS

pb@lpl.univ-aix.fr

Abstract. The generative conception of grammars relies on the deriva-
tion process which, to its turn, depends on a hierarchical representation
of syntax. We show in this paper how a fully constraint-based approach,
avoiding such restriction, can constitute an alternative to generativity
and form the basis of a framework for a model-theoretic conception of
grammar.

1 Introduction

There are two different approaches in logic: one is syntactic and only uses the
form of the formulae in order to demonstrate a theorem, the second is semantic
and relies on formulae interpretation. The same distinction also holds in linguis-
tics. A first conception relies on the study of the input formedness. In this case,
the problem consists in finding a structure adequate to the input. Grammat-
ical information is then represented by means of a set a rules. An alternative
conception, instead of relying on the input form, focuses on its characteristics.
Following [Pullum & Scholz 01], we will call these approaches respectively gen-
erative enumerative syntax (GES) and model-theoretic syntax (MTS) The first
approach is that of generative theories, it has been extensively experimented.
The latter still remains marginal. One of the reasons is that generativity has
been for years almost the unique view for formal syntax and it is difficult to
move from this conception to a different one. In particular, one of the problem
comes from the fact that all approaches, even those in the second perspective,
still rely on a hierarchical (tree-like) representation of syntactic information.

This paper describes this problem and proposes an MTS framework moving
from a classical tree domain towards a graph domain for the representation
of syntactic information. We show how constraints can be an answer to this
problem: first, they can represent all kinds of syntactic information and second,
they constitute a system, all constraints being at the same level (none being to
be evaluated before others).

The paper starts with a description of the main characteristics of these dif-
ferent conceptions of syntax. In the second section, we focus on the specific
problems coming from the hierarchical conception of syntax, showing how it can

29

constitute a severe limitation for linguistic description. The third section pro-
poses an overview of an MTS framework, called Property Grammars, following
this requirements. We precise formally the status of the constraints we use, and
how in this approach a syntactic description comes to a graph. We explain in
particular how it is possible to take advantage of such a representation in order
to shift from the classical tree domain to a graph one, and in what sense this
shift constitutes a solution to the MTS problem.

2 Proof vs. Model Theory in Syntax

The generative conception of syntax relies on a particular relation between gram-
mar and language: a specific mechanism, derivation, makes it possible to gener-
ate a language from a grammar. This basic mechanism can be completed with
other devices (transformations, moves, feature propagation, etc.) but in all cases
constitute the core of all generative approaches. In such case, grammaticality
consists in finding a set of derivations between the start symbol of the grammar
and the sentence to be parsed. As a side effect, a derivation step coming to a
local tree, it is possible to build a syntactic structure, represented by a tree. It is
then possible to reduce in a certain sense the question of grammaticality to the
possibility of building a tree. This reminder seems to be trivial, but it is impor-
tant to mesure its consequences. The first is that grammaticality is reduced, as
it has been noticed in [Chomsky75], to a boolean value: true when a tree can be
built, false otherwise. This is a very restrictive view of grammaticality, as it also
has been noticed in [Chomsky75] (without proposing a solution), which forbids
a finer conception, capable of representing in particular a grammaticality scale
(also called gradience, see [Keller00] or [Aarts07]).

This generative conception of syntax is characterized as being enumerative
(see [Pullum & Scholz 01] in the sense that derivation can be seen as an enu-
meration process, generating all possible structures and selecting them by means
of extra constraints (as it is typically the case in the Optimality Theory, see
[Prince93]).

Model Theoretic Syntax proposes an alternative view ([Blackburn & al. 93],
[Cornell & Rogers 00], [Pullum & Scholz 01]). In this conception, a grammar is
a set of assessments, the problem consists in finding a model into a domain.

>From a logical perspective, generative approaches rely on a syntactic con-
ception in the sense that parsing consists in applying rules depending on the
form of the structures generated at each step. For example, a nonterminal is
replaced with a set of constituents. On the opposite, model-theoretic approaches
rely on a semantic view in which parsing is based on the interpretation (the
truth values) of the statements of the grammar. A grammar in MTS is a set of
statements or, formally speaking, formulae. Each formula describes a linguistic
property; its interpretation consists in finding whether this statement is true or
false for a given set of values (the universe of the theory in logical terms). When
a set of values satisfies all assessments of the grammar (in other words when the

30

interpretation of all the formulae for this set of values is true), then this set is
said to be a model.

As far as syntax is concerned, formulae indicate relations between categories
or, more precisely, between descriptions of categories. These descriptions corre-
spond to the specification of a variable associated with several properties: they
can be seen as formulae. For example, given K a set of categories, a description
of a nominative noun comes to the formula:

∃x[cat(x, N) ∧ gend(x, masc)](1)

A category can be described by a more or less precise description, according
to the number of conjuncts. A grammatical statement is a more complex formula,
adding to the categories descriptions other relations. For example, a statement
indicating that a determiner is unique within a noun phrase comes to the formula:

[cat(x, Det) ∧ cat(y, Det) → x ≈ y](2)

Concretely, when parsing a given input, a set of categories is instantiated,
making it possible to interpret all the atomic predicates corresponding to the
features (category, gender, number, etc.), making it possible to interpret to their
turn the complex predicates formed by the grammatical statements. In this per-
spective, we say that an instantiated category is a value and finding a model
consists in finding a set of values satisfying all the grammatical statements.
For example, the set of words “the book” makes it possible to instantiate two
categories with labels Det and N (these labels representing the conjunction of
features). Intuitively, we can say that the set of values {Det, N} is a model for
the NP.

Finding a model is then completely different than deriving a structure. As
underlined by [Pullum & Scholz 01], instead of enumerating a set of expressions,
an MTS grammar simply states conditions on these expressions.

3 Generativity and hierarchical structures

Geoffrey Pullum, during a lecture at ESSLLI in 2003, explained that “Model
Theoretic Syntax is not Generative Enumerative Syntax with constraints”. In
other words, constraints are not to be considered only as a control device (in the
DCG sense for example) but have to be part of the theory. Some theories (in
particular HPSG) try to integrate this aspect. But it remains an issue both for
theoretical and technical reasons. The problem comes in particular from the fact
usually, dominance relation plays a specific role in the representation of syntactic
information: dominance structures have first to be built before verifying other
kinds of constraints. This is a problem when no such hierarchical relations can
be identified. Moreover, we know since GPSG that dominance constitutes only a
part of syntactic information to be represented in phrase-structure approaches,
not necessarily to be considered as more important than others.

31

Syntactic information is usually defined, especially in generative approaches,
over tree domains. This is due to the central role played by the notion of dom-
inance, and more precisely by the relation existing between the head and its
direct ancestor. In theories like HPSG (see [Sag al. 03]), even though no rules
are used (they are replaced with abstract schemata), this hierarchical organiza-
tion remains at the core of the system. As a consequence, constraints in HPSG
can be evaluated provided that a tree can be built: features can be propagated
and categories can be instantiated only when the hierarchical skeleton is known.
This means that one type of information, dominance, plays a specific role in the
syntactic description.

However, in many cases, a representation in terms of tree is not adapted or
even not possible. The following example illustrate this situation. It present the
case of a cleft element adjunct of two coordinated verbs.

S

Cleft wh-S

C’est avec colère que NP VP Conj VP

Jean V NP et V NP

a posé son livre quitté la salle

C’est avec colère que Jean a posé son livre et quitté la salle
It is with anger that Jean put his book and left the room

Arrows in this figure shows in what sense the tree fails in representing the
distribution of the cleft element onto the conjuncts. Moreover, there also ex-
ist other kinds of relations, for example the obligatory cooccurrence in French
between “c’est” and “que”.

The second example, presented in the following structure, illustrates the fact
that in many cases, it is not possible to specify clearly what kind of syntactic
relation exists between different parts of the structure:

NP NP S

le piano les doigts NP VP

ça a beaucoup d’importance

Le piano les doigts ça a beaucoup d’importance
The piano the fingers it has a lot of immportance

This example illustrate a multiple detachment construction. In this case,
detached element are not directly connected by classical syntactic relations to
the rest of the structure: the two relations indicated by arrows are dependencies
at the discourse level (plus an anaphoric relation).

32

Many other examples can be given, illustrating this problem: it is not always
possible to give a connected structure on the basis of syntactic relations. More-
over, when adding other kinds of relations, the structure is not anymore a tree.
This conception has direct consequences on the notion of grammaticalness. First,
building a tree being a pre-requisite, nothing can be said about the input when
this operation fails. This is the main problem with generative approaches that
can only indicate whether or not an input is grammatical, but do not explain the
existence of levels of grammaticality (the gradience phenomenon, see [Keller00],
[Pullum & Scholz 01]).

A second consequence concerns the nature of linguistic information, that is
typically spread over different domains (prosody, syntax, pragmatics, and re-
lated domains such as gestures, etc.). An input, in order to be interpreted, does
not necessarily need to receive a complete syntactic structure. The interpreta-
tion rather consists in bringing together pieces of information coming from these
different domains. This means that interpreting an input requires to take into
account all the different domains and their interaction, rather than building a
structure for each of them and then calculating their interface. In this perspec-
tive, no specific relation plays a more important role than others. This is also true
within domains: as for syntax, the different properties presented in the previous
section has to be evaluated independently from the others.

4 A constraint-based MTS framework: Property
Grammars

A seminal idea in GPSG (see [Gazdar & al. 85]) was to dissociate the representa-
tion of different types of syntactic information: dominance and linear precedence
(forming the ID/LP formalism), but also some other kinds of information stipu-
lated in terms of cooccurrence restriction. This proposal is not only interesting
in terms of syntactic knowledge representation (making it possible to factorize
rules, for example), but also theoretically. Remind that one of the main differ-
ences between GES and MTS frameworks lies in the relation between grammar
and language: MTS approaches try to characterize an input starting from avail-
able information, with no need to “overanalyze”, to re-build (or infer) information
that is not accessible from the input. For example, GES techniques have to build
a connex and ordered structure, representing the generation of the input. On the
opposite, nothing in MTS imposes to build a structure covering the input, which
makes it possible for example to deal with partial or heterogeneous information.
Property Grammars (see [Blache05]) systematizes the GPSG proposal in speci-
fying these different types. More precisely, they propose to represent separately
the following properties:

– Constituency: set of all the possible elements of a construction

– Uniqueness: constituents that cannot be repeated within a construction

– Linearity: linear order

33

– Obligation: set of obligatory constituents, one of them (exclusively to the
others) being realized.

– Requirement : obligatory cooccurrence between constituents within a con-
struction

– Exclusion: impossible cooccurrence between constituents within a construc-
tion

This list is not closed and other types of information can be added. For
example, dependency (syntactico-semantic relation between a governor and a
complement), or adjacency (juxtaposition of two elements). We focus in this pa-
per on the 6 basic relations indicated above. These relations makes it possible to
represent most of the syntactic information. We call these relations “properties”,
they can also be considered as constraints on the structure.

We adopt in the remaining of this paper the following notations: x, y (lower
case) represent individual variables; X, Y (upper case) are set variables. We note
C(x) the set of individual variables in the domain assigned to the category C
(see [Backofen & al. 95] for more precise definitions). We use the set of binary
predicates for immediate domination (!), linear precedence (≺) and equality (≈).

Let us now define more precisely the different properties. The first one (con-
stituency) implements the classical immediate dominance relation. The others
can be defined as follow:

– Const(A, B) : (∀x, y)[(A(x) ∧ B(y) → x ! y]
This is the classical definition of constituency, represented by the dominance
relation: a category B is constituent of A stipulates that there is a dominance
relation between the corresponding nodes.

– Uniq(A) : (∀x, y)[A(x) ∧ A(y) → x ≈ y]
If one node of category A is realized, there cannot exists other nodes with the
same category A. Uniqueness stipulates constituents that cannot be repeated
in a given construction.

– Prec(A, B) : (∀x, y)[(A(x) ∧ B(y) → y '≺ x)]
This is the linear precedence relation as proposed in GPSG. If the nodes x
and y are realized, then y cannot precedes x

– Oblig(A) : (∃x)(∀y)[A(x) ∧ A(y) → x ≈ y]
There exists a node x of category A and there is no other node y of the same
category. An obligatory category is realized exactly once.

– Req(A, B) : (∀x, y)[A(x) → B(y)]
If a node x of category A is realized, a node y of category B has too. This
relation implements cooccurrence, in the same way as GPSG does.

– Excl(A, B) : (∀x)(' ∃y)[A(x) ∧ B(y)]
When x exists, there cannot exist a sibling y. This is the exclusion relation
between two constituents.

34

What is interesting in this representation of syntactic information is that all
relations are represented independently form each others. They all are assessment
in the MTS sense, and they can be evaluated separately (which fits well with
the non-holistic view of grammatical information proposed by Pullum). In other
words there is no need to assign the dominance relation a specific role: this is one
information among others, what is meaningful is the interaction between these
relations. More precisely, a set of categories can lead to a well-formed structure
when all these assessments are satisfied, altogether. We do not need first to build
a structure relying on dominance and then to verify other kind of information
represented by the rest of the relations. In other words, in this approach, “MTS
is not GES with constraints” ([Pullum & Scholz 03]).

Concretely, when taking into consideration a set of categories (an assign-
ment), building the syntactic structure comes to evaluate the constraint system
for this specific assignment. The result of the evaluation indicates whether or not
the assignment corresponds to a well-formed list of constituents. For example,
given two nodes x and y, if they only verify a precedence relation, nothing else
can be said. But when several other properties such that requirement, unique-
ness, constituency are also satisfied, the assignment {x, y} becomes a model for
an upper-level category. For example, if we have x and y such that Det(x) and
N(y), this assignment verifies precedence, uniqueness, constituency and require-
ment properties. This set of properties makes it possible to characterize a NP.
At the opposite, if we take x and y such that Det(x) and Adv(y), no constraint
involving both constituents belong to the system: they do not constitue a model,
and no new category can be infer.

In terms of representation, at the difference with classical approaches, syntac-
tic information is not represented by means of a tree (see [Huddleston & Pullum 02]),
but with a directed labelled graph. Nodes are categories and edges represent con-
straints over the categories: dominance, precedence, requirement, etc. A non-
lexical category is described by a set of constraints, that are relations between
its constituents. It is possible to take under consideration only one type of prop-
erty (in other words one type of relation): this comes to extract a subgraph from
the total one. For example, one can consider only constituency properties. In this
case, the corresponding subgraph of dominance relations is (generally) a tree.
But what is needed to describe precisely an input is the entire set of relations.

In the following, we represent the properties with the set of relations noted
⇒ (requirement), ⊗ (exclusion), ◦ (uniqueness), ! (constituency), ↑ (obligation),
≺ (precedence). A Property Grammar graph (noted PG-graph) is a tuple of the
form:

G = 〈W,⇒,⊗, ◦, !, ↑,≺, θ〉

in which W is the set of nodes, θ the set of terminal nodes. A model is a pair
〈G, V 〉 where V is a function from W to Pow(W). We describe in the next section
the use of such graphs.

35

5 Grammaticalness and constraints

Classically, syntactic information is usually represented in terms of decorated
ordered trees (see [Blackburn & al. 93], [Blackburn & Meyer-Viol 94]). In this
approach, tree admissibility relies on a distinction between dominance relation
(that gives the structure) and other constraints on the tree such as precedence,
cooccurrence restriction, etc. In our view, all relations has to be at the same level.
In other words, dominance does not play a specific role: cooccurrence restriction
for example can be expressed and evaluated independently from dominance. This
means that each property represents a relation between nodes, dominance be-
ing one of them. When taking into consideration the entire set of relations, the
structure is then a graph, not a tree. More precisely, each property specifies a set
of relations between nodes: precedence relations, cooccurrence relations, domi-
nance relations, etc. It can be the case that the dominance subset of relations
(a subgraph of the graph of relations), is a tree, but this can be considered as
a side effect. No constraint for example stipulates a connexity restriction on the
dominance subgraph.

In PG, a grammar is then conceived as a constraint system, corresponding
to a set of properties as defined above. Parsing an input consists in finding a
model satisfying all the properties (or more precisely, the properties involving
the categories of an assignment). In this case, the input is said to be grammati-
cal, its description being the set of such properties. However, it is also possible to
find models that satisfy partially the system. This means that some constraints
can be violated. If so, the input is not grammatical, but the set of satisfied and
violated properties still constitute a good description. We call such set a charac-
terization. This notion replaces that of grammaticalness (which is a particular
case of characterization in which no property is violated).

The following example (figure 1b) illustrates the case of an assignment A={NP,
Det, Adj, N}. All properties are satisfied, each relation forms an labeled edge,
the set of relations being a graph. A phrase is characterized when it is connected
to a graph of properties.

NP
!
!!
!

!!!!!
!

""

""""
""

!

##

Det
≺

$$

⇒

%%
≺

##
#

&&##
#

N
↑

''

Adj

≺$$

(($$$

Fig. 1a

S
!
%%

%

))%%%
!

""
"

""""
"

NP
!&&

&

**&&&
!

''

&&'''

!

##

≺ ++ V P
!,, !

'''

&&'''

⇒
--

Det
≺

..

⇒

%%
≺

'''

&&''
'

N↑

//

Aux
≺

00 V

↑
11

Adj

≺
$$

(($$$

Fig. 1b

Figure 1b shows a more complete graph, corresponding to an entire sentence.
Again, no relation in this graph plays a specific role. The information comes from
the fact that this set of categories are linked by several relations. The set of re-
lations forms a description: it tells us that linearity, requirement, obligation,
constituency properties are satisfied, they characterize an S. Theoretically, each

36

node can be connected to any other node. Nothing forbids for example to repre-
sent a relation of some semantic type between the adjective and the verb nodes.
By another way, when taking from this graph constituency relations only, we
obtain a dominance tree:

S

NP VP

Finally, insofar as a property can be satisfied or violated in a characterization,
we have to label relations with their type and their interpretation (true or false,
represented + or -). The following example presents a graph for the assignment
A={NP, Adj, Det, N}, in which the determiner has been realized after the
adjective.

NP
!+

$$

))$$$
!+

((

""((
(

!+

##

Adj
≺+

$$

≺−
##

&&##

N
↑+

//

Det

≺+
$$

(($$$

⇒+

22

In this graph, all constraints but the precedence between Det and Adj have
been satisfied, the corresponding relations being labeled with +.

6 Explaining levels of grammaticality

As a side effect, representing information in this way also constitues a possibility
to rank the inputs according to a grammaticalness evaluation. We present in this
section how to use characterizations in order to quantify such information. The
idea (see [Blache & al. 06]) consists in analyzing the form of the graph and its
density, taking into account the interpretation of the relations. More precisely
the method consists in calculating an index from the cardinality of P+ and P−,
(respectively the set of satisfied and violated properties). Let’s call N+ and N−

the cardinality of these sets. The first indication that can be obtained is the ratio
of satisfied properties with respect to the total number of evaluated properties
E. This index is called the Satisfaction ratio, calculated as SR = N

+

E
.

Going further, it is also possible to give an account of the coverage of the
assignment by means of the ratio of evaluated properties with respect to the total
number of properties T describing the category in the grammar. This coefficient
is called Completeness coefficient : CC = E

T
.

A Precision Index can to its turn be proposed, integrating these two previous
information: PI = SR+CC

2 .
Finally, a general index can be proposed, taking into consideration the dif-

ferent indexes of all the constituents. For example, a phrase containing only

37

well-formed constituents has to be assigned a higher value than one containing
ill-formed ones. This is done by means of the Grammaticalness Index, d be-
ing the number of embedded constructions Ci: if d = 0 then GI = PI, else

GI = PI ×

∑
d

i=1
GI(Ci)

d
.

In reality, this different figures need to be balanced with other kind of infor-
mation. For example, we can take into consideration the relative importance of
constraint types in weighting them. Also, the influence of SR and CC over the
global index can be modified by means of coefficients.

This possibility of giving a quantified estimation of grammaticalness di-
rectly comes from the possibility of representing syntactic information in a fully
contraint-based manner, that has been made possible thanks to the MTS view
of grammar.

7 Conclusion

The representation of syntactic information by means of constraints, as described
in this paper, has several advantages. First, it makes it possible to implement
the entire MTS programme in which derivation does not play anymore a role.
The shift from generative to model-based conception of syntax becomes then
concrete: constraint satisfaction completely replaces derivation. This evolution
becomes possible provided that we abandon a strict hierarchical representation
of syntax in which dominance plays a central role.

As a consequence, such fully constraint-based approach offers the possibility
to replace ordered trees domain with that of constraint graphs. This is not only
a matter of representation, but has deep consequences on theory itself: different
types of information is represented by different relations, all of them being at
the same level.

The Property Grammar framework described in this paper represents the
possibility of an actual MTS implementation in which constraints are not only
a control layer over the structure, but represent the structure itself: MTS is not
GES plus constraints, provided that dominance is not represented separately
from other information.

References

[Aarts07] Aarts. B (2007) Syntactic Gradience. The nature of Grammatical Indeter-
minacy, Oxford University Press.

[Blackburn & al. 93] Blackburn P., C. Gardent & W. Meyer-Viol (1993) “Talking
About Trees” in proceedings of EACL

[Blackburn & Meyer-Viol 94] Blackburn P. & W. Meyer-Viol (1994) “Linguistics, Logic
and Finite Trees” in Bulletin of the IGPL, 2.

[Backofen & al. 95] Backofen R., J. Rogers, and K. Vijay-Shanker (1995) “A First-
Order Axiomatization of the Theory of Finite Trees” in Journal of Logic, Language,
and Information, 4:1

38

[Blache05] Blache P. (2005) “Property Grammars: A Fully Constraint-Based Theory",
in H. Christiansen & al. (eds), Constraint Solving and NLP, Lecture Notes in
Computer Science, Springer.

[Blache & al. 06] Blache P., B. Hemforth & S. Rauzy (2006), “Acceptability Prediction
by Means of Grammaticality Quantification”, in proceedings of COLING-ACL 06

[Chomsky75] Chomsky N.. (1975) The Logical Structure of Linguistic Theory, Plenum
Press

[Cornell & Rogers 00] Cornell T. & J. Rogers (2000) “Model Theoretic Syntax”, in L.
Lai-Shen Cheng & R. Sybesma (eds), The Glot International State of the Article
Book I, Holland Academic Graphics

[Gazdar & al. 85] Gazdar G., E. Klein, G. Pullum & I. Sag (1985) Generalized Phrase
Structure Grammars, Blackwell

[Huddleston & Pullum 02] Huddleston R. G. Pullum (2002) The Cambridge Grammar

of the English Language, Cambridge University Press.
[Keller00] Keller F. (2000) Gradience in Grammar. Experimental and Computational

Aspects of Degrees of Grammaticality, Phd Thesis, University of Edinburgh.
[Prince93] Prince A. & Smolensky P. (1993) Optimality Theory: Constraint Interac-

tion in Generative Grammars, Technical Report RUCCS TR-2, Rutgers Center for
Cognitive Science.

[Pullum & Scholz 01] Pullum G. & B. Scholz (2001) “On the distinction between
model-theoretic and generative-enumerative syntactic frameworks”, in processd-
ings of the conference on Logical Aspects of Computational Linguistics, Springer

[Pullum & Scholz 03] Pullum G. & B. Scholz (2003) “Foundations of Model-Theoretic
Syntax”, Introductory course of the ESSLLI-03

[Rogers97] Rogers J. (1997) “Grammarless Phrase Structure Grammar”, in Linguistics
and Philosophy, 20

[Sag al. 03] Sag I., T. Wasow & E. Bender (2003) Syntactic Theory. A Formal Intro-
duction, CSLI.

39

Reasoning about Use Cases using Logic
Grammars and Constraints

Henning Christiansen, Christian Theil Have, Knut Tveitane

Roskilde University and IT University of Copenhagen

Abstract. We consider automated transition from Use Cases in a re-
stricted natural language syntax into UML models, by trying to capture
the semantics of the natural language and map it into building blocks of
the object oriented programming paradigm. Syntax and semantic anal-
ysis is done in a framework of Definite Clause Grammars extended with
Constraint Handling Rules, which generalizes previous approaches with
a direct way to express domain knowledge utilized in the interpretation
process as well as stating explicit rules for pronoun resolution.

1 Introduction

Definite Clause grammars [1] complemented with Constraint Handling Rules [2]
(CHR) provides a potential for abductive discourse analysis as suggested by [3, 4]:
knowledge about the semantic and syntactic context, represented as constraints,
is added gradually to the constraint store, and a rule-based constraint solver
can provide an incremental processing of this knowledge, including resolving
various issues at different levels, such as anaphora analysis and other potential
ambiguities. For a better processing of anaphora we extend “assumptions” of
earlier proposals with time stamps.

We apply these principles in an automatic and interactive system which trans-
lates a restricted, but naturally appearing, use case language into software mod-
els. The software models take the form of class and activity diagrams in the
UML notation [5].

The system maintains an up-to-date diagrammatical presentation of the cur-
rent use case text in a window on the user’s screen, cf. Fig. 4. This is intended
to encourage an iterative mode of working, so as soon as the user adds a new or
modifies an existing sentence, the consequences in terms of the object model is
displayed immediately. This can aid the user in the process of understanding the
current domain, including identifying possible misconceptions at an early stage.
In case of unknown or ambiguous sentence constructions, the system may issue
a warning and advise the user in rephrasing the sentence. Possible applications
include requirement engineering, brainstorming, prototyping and as a tool for
teaching UML.

The paper is structured as follows. Section 2 reviews related work; section
3 provides an overview of the system and section 4 goes into detail with the
specific NLP methods developed. A conclusion and proposal for future directions
is provided by section 5.

40

Fig. 1. The system is used iteratively and interactively - each new sentence causes the
UML diagram to be updated.

2 Related Work

2.1 Similar Systems

Several authors have attempted to automate translation from specifications in
natural language to code or diagrams. We have not seen this related directly to
Use Cases and UML, which is our approach.

The examined systems use either essentially formal language with a “natural”
appearance or opportunistic parsing. Formal languages are essentially designed
to to allow unambiguous interpretation whereas opportunistic parsing takes a
statistical approach to ambiguity, interpreting it as the most likely hypothesis
wrt. a corpus of statistical material. Our approach falls into the first category
and is based on a subset english which can be interpreted unambiguously.

Attempto Controlled English [6] is a system that translates specification texts
in a formal language of declarative sentences into first order logic discourse
representation structures and optionally into Prolog. ACE supports anaphora
resolution and simple variable references. It accomplishes the translation using
“a top-down parser using a unification-based phase structure grammar” [6].

Sowa has defined a similar, but simpler, specification language called “Com-
mon Logic Controlled English” [7] which translates directly into first order logic
(and vice versa). CLCE can be parsed using a context-free grammar and a couple
of lookup tables. Anaphora is not allowed. The Metafor system [8] use oppor-
tunistic techniques and the semantically enriched lexicon ConceptNet [9] to de-
rive and discover relations between classes and translate English sentences into
code in Lisp or Python. The supported input language supports in an impress-
ing way a variety of narrative stances, past and present tense and anaphorical
and indirect references, but it also allows for much ambiguity and it is not clear
how this is handled. The authors [10] have coined the term “programmatic se-
mantics” to describe the transliteration process: “Programmatic semantics is a
mapping between natural linguistic structures and basic programming language
structures” [10]. We have adopted this terminology.

Examples of other approaches using NLP for requirement analysis are de-
scribed by [11–15].

41

2.2 Use Cases and Unified Modelling Language

Using problem description sentence analysis to derive program designs is by no
means a new idea. Abbott [16] introduced a (manual) methodology for object-
oriented program design that derives candidate classes, objects and operators
from the syntactical elements of English sentences.

Booch was inspired by Abbotts method, which became an integral part of
Booch’s “object-oriented design” process, where an informal problem description
is formalized through definition of objects and their attributes and operations.

At the OOPSLA conference in 1987, Jacobsen introduced the concept of Use
Cases [17], which resembled Booch’s problem descriptions. Use cases model the
actors of a system and the flow of events between them. They describe what a
system does without specifying how [18], which is useful for “gaining an under-
standing of the problem” and “identifying candidate objects” [19]. Rumbaugh
et. all [20] decribed the OMT notation including the “Class Association Dia-
gram”, the precursor of the UML class diagram. All these things came together
when Booch, Jacobson and Rumbaugh later defined the first draft for a “Unified
Modeling Language” [21].

The UML User Guide [18] does not provide any in-depth guidance on how to
write use-cases. However semi-formal approaches aiming simplify the language
in which the use cases are written have been suggested by [22–25].

2.3 NLP using Logic Grammars

As shown in previous work [26–28, 4], CHR provides a straightforward imple-
mentation of abduction, and here we follow the principle of discourse analysis
as abduction, introduced by [29] and now widely accepted: the meaning of a
discourse is taken to be the set of “hidden” facts over which the discourse is
faithfully created; in our application, these facts represent the inherent class
relationships and other properties of the involved actors and objects.

The NLP methods developed through the present application follows the
tradition of logic programming based grammars, but extends previous work in
different ways. Assumption Grammars [30] (AG) provide mechanisms that may
cope with pronouns references. Inspired by the work of [28, 4] that realizes AGs
in CHR, we have extended such “assumptions” with time stamps to make it
possible to specify detailed scope and preference rules in CHR, which otherwise
is a shortcoming of AGs. Creation of data and knowledge bases from text using
logic grammars have been pursued by a variety of authors, e.g., [31, 6]. The model
of “Meaning in Context” formalized by [3], which is based on CHR shows how
domain knowledge utilized in the interpretation process can be expressed directly
in CHR; the domain for our application is, thus, general use case modeling.

42

3 System Overview

3.1 Architecture

The system is implemented in Prolog using a combination of Definite Clause
Grammars and Constraint Handling Rules. Input sentences are entered and pro-
cessed individually by the user. Each sentence is processed using our combined
DCG and CHR grammar, explained in section 4, and a representation of its
meaning is added to a constraint store. The contents of the constraint store is
extracted as code in the GraphViz language using a second DCG. The code is
rendered as a UML class diagram using a GraphViz engine, and displayed to the
user. Figure 2 illustrates this architecture.

!"#$"# %&'(('&

!"#$%$&"
'()*+"
,-)..)-

)*$"# %&'(('&

!"#$%$&"
'()*+"
,-)..)-

'/%+&-)$%&
0)%1($%2
3*("+

+,*-#&'.*# -#,&/

,-)456$7
3"%1"-$%2
8%2$%"9%4*& +"%&"%:"+

Fig. 2. Architecture Overview. The thick lines illustrate program flow and the thin
lines illustrate the use of the constraint store.

3.2 Supported Language Constructs

The subset of natural English supported by our system needs to be sufficiently
expressive as to cover the important entities and relations in an object oriented
system description. While conforming with a basic formal syntax, it should also
allow for a sufficient flexibility to maintain a certain degree of the flow and style
of natural language. We have tried to find a balance between these; a natural
and expressive, but formal language.

In the following, we describe the supported sentence types; an example is
given for each and at the end, in Fig. 3, the diagram produced by our system is
shown. The grammar includes compund sentences, conjunctions, and repetions
which are more or less standard and not discussed in detail, but illustrated in
the examples.

Method Sentences The most basic sentence consist of a noun phrase followed
by a simple verb phrase. The verb phrase can contain an intransitive or transitive
verb. We will first consider verbs that imply an action to be performed by or on
the subject of the sentence.

43

Programmatic Semantics The subject of the sentence is a noun. This noun maps
to a class definition in the object oriented programming paradigm. The verb
maps to a method of the class represented by the subject. If the verb is transitive,
the object is another noun (that defines another class) and this class serves as
argument to the method.
Example: “The professor teaches. A student reads, writes projects and takes
exams.”

Property Sentences Property sentences that imply an ownership or contain-
ment relation are syntactically similar to the transitive sentences above, but uses
specific verbs such as “have” indicating a different programmatic semantics. The
object of a property sentence may be plural, and can be quantified. The quan-
tification may be exact; a numeral or a number, but can also be a linguistic
quantifier such as “some”, “most” or “every”.

Programmatic Semantics Property sentences associate properties expressed by
their object with the class(es) indicated by their subject. Properties in plural
form map to multi-valued properties. There are different approaches for repre-
senting these in object oriented programming languages. We have tried not to
limit the flexibility, by maintaining as precise information as possible about the
cardinality of the property. When exact number is given, this is preserved and a
quantifier such as “some” is mapped into an undetermined cardinality denoted
as “n”. When alternatives are given for the same property, the different cardi-
nalities are aggregated into an interval; the details are spelled out in section 4.2
below.
Example: “A professor has an office. The university has five study lines.”

Inheritance and Instantiation Sentences Sentences formed with the verb
“to be” relate single objects or classes to other classes.

Programmatic Semantics In “A student is a (kind of) person”, “person” is a
superclass of “student”, and “student” a subclass of “person”; the markers kind
of/type of are reserved for sub/superclass relationships. Multiple inheritance,
where the subject is “a kind of” more than one class is also possible.

Another construction is a sentence like “John is a student”. The subject noun
phrase here is a proper noun, and the significance of this sentence is that there
is a concrete, named entity (John) of the class “student”. In object oriented
terminology, John is an object of class student. After an individual has been
introduced with a designated class membership, it can be used as a prototype
member of that class C in sentence forms above. Consider a sentence such as
“John reads”. It looks straightforward at first glance, but its programmatic se-
mantics is bit more complex. “John” maps to an object, “reads” to a method,
but objects don’t define methods (or properties). The sentence must be under-
stood to mean that the method belongs to the class the object is an instance

44

of. However, if John has been explicitly declared member of two different classes
(i.e., not implicitly via superclass relationships), “John reads” is judged am-
biguous and rejected. Prototypes have also natural usages as arguments in basic
sentences that introduces method In a suitable context, “Mary interviews Peter”
carries the same programmatic semantics as “Teachers interview students.
Example: ‘Students are a kind of persons and professors are a kind of persons.”

Pronouns For use case text, we need to require that pronouns can be resolved
in a unique way which is intelligible to the user; at the same time we should also,
for the acceptance of the tool, allow a variety of natural patterns. As is well-
known, pronoun (and anaphora) resolution is one of the most difficult tasks in
computational linguistics, cf. [32], and we have decided to use a simple heuristic,
and reject any sentence for which it does not apply. Resolving, say, “he” considers
the most recent occurrence of a male object which is found in a previous sentence
S; however, if S contains two candidates, the pronoun application is claimed
ambiguous. This excludes usages such as “Peter and Paul He ...” and “Women
are persons. They have two legs.”
Example: “The professor writes papers and he supervises students.”

Temporal Sentences Most sentences in a use case will have an event-oriented
nature, since the purpose of use cases is to describe what a system does. Temporal
sentences are in essence method sentences. The verb implies an action, which
gives rise to an event from a temporal perspective and a method from a structural
perspective.

The word when is used to indicate the beginning of an event flow. Continu-
ations of events in the following sentences are indicated using next or then.

Conjunctions of event sentences like ”the professor thinks and he mumbles”
indicate a fork ; the events in the sentences occur independently and their order
is not given. If the next sentence is a continuation, it will join the event flow.
Example: “When a worm sees an apple, the worm enters the apple. When a boy
sees an apple, he eats it. Next he burps and he throws the core.”

3.3 Current Status

Incrementality is simulated by parsing the entire text and drawing new diagram
when a period which is added or changed. Only a rudimentary user interface
exists at the moment, but the current prototype qualifies as proof of concept for
our ideas.

4 NLP Methods Applied

In the following, we assume a basic knowledge of logic programming and DCG,
and explain the CHR specifics that are used.

45

Fig. 3. UML class diagram generated as result of the collected sample sentences above,
which contains examples of the three kinds of class relationships; association, aggrega-
tion and inheritance. Associations are labeled with corresponding verbs and aggrega-
tions are labeled with cardinalities.

worm see apple worm enter apple final

boy see apple boy eat apple fork
boy burb

boy throw core
join final

Fig. 4. UML Activity diagram generated from the temporal sentences example.

46

4.1 Overall Implementation Principles

We consider sentences that describe class hierarchy, e.g., “A dog is an animal”.
The following grammar rule gives the overall structure.

sentence -->

fc noun phrase(Number, , subj, IdSub),

subord verb(Number,),

fc noun phrase(, Number, obj, IdObj),

{extends(IdSub,IdObj)}.

Notice that it produces no explicit output via arguments, but updates the con-
straint store by the calls to constraints, i.e., extends by abductive reasoning the
constraint store with those facts that seem to be the reason why the sentence
can be stated. In this example, the rule depends on extends(dog,animal) and,
since extends is declared as a constraints (and thus distinguished from ordinary
Prolog predicates), it will be added to the constraint store if it was not there
already. The grammar rules for noun phrases may, in a similar way, create the
facts class(dog) and class(animal). Thus the analysis of this sample sentence
produces a store of three constraints that can be converted in a straightforward
way into the input language of Graphviz, which in turn produces a class diagram
showing that the class of dogs is a subclass of animals.

The second attribute of noun phrases is called CollectiveNumber; for “a cat
and a dog” it evaluates to sing and for “cats and dogs” to plur. Taking the
collective number for the subject as the number for the object allows “A dog is
an animal and a pet” and excludes * “A dog is animals and pets”. Noun phrases
are divided into different categories with particular restrictions; for example,
fc noun phrase (for fully specified class) used above is a category which for-
bids pronouns and quantified expressions like “two cats” in this particular sort
of sentences. Similar categories are defined for indiv noun phrase referring to
particular objects (“She, Peter, and Paul”), rc noun phrase for restricted class
(“Mary and the boys” assuming that Mary is a prototype for some class), and
q noun phrase for quantified expressions such as “four legs and a tail”.

Noun phrases generate a representation of their contents, using a plus to
combine conjunctive phrases. Here are some examples, assuming that Mary is a
prototype woman and that “she” refers to Mary.

fc cats and dogs cat+dog

indiv her, Peter, and Paul mary+peter+paul
rc Mary and the boys woman+boy

q a tail and some legs tail:1+legs:n

Special codes are produced in case of errors within noun phrases such as unre-
solved or ambiguously used pronouns, or an attempt to use a named individual
without a unique class as prototype. The following CHR rules unroll constraints
with composite arguments into individual constraints.

extends(A+B,C) <=> extends(A,C), extends(B,C).

extends(A,B+C) <=> extends(A,B), extends(A,C).

47

These are so-called simplification rules, triggered each time an extends con-
straint with a plus in one of its arguments appear in the store. They delete the
constraint(s) matched by the left-hand side, the head, and add those on the
right, the body.

4.2 Expressing Knowledge About Use Case Modeling

CHR can be used to express knowledge about the domain in question. We can
illustrate this by the way we aggregate the constraints emerging from different
statements about the same property. We use property(car,wheels:4) to ex-
press that a car has four wheels and property(car,doors:(2..5)) to say that
it has between 2 and 5 doors. Consider the following CHR rule which is part of
the implementation.
property(C,P:N), property(C,P:M) <=>

q count(N), q count(M), q less eq(N,M)

| property(C,P:(N..M)).

It applies when the store contains two property constraints for the same class
and property, provided the guard is true. The guard is an optional part be-
tween the arrow and the vertical bar which here refers to Prolog predicates
written specifically for the purpose, so that, say, q count(5), q count(n), and
q less eq(2,n) are true. So “Peter has a dog. Paul has five dogs” yields
property(man,dog:1) and property(man,dog:5) which by the rule above get
replaced by property(man,dog:(1..5)). The following rule combines different
intervals for multiplicity into one.
property(C,P:(N1..M1)),property(C,P:(N2..M2)) <=>

q min(N1,N2,N), q max(M1,M2,M),

property(C,P:(N..M)).

So property(c,a:(1..7)) and property(c, a:(5..n)) are converted into
property(c, a:(1..n)). In total, five rules are used to manage multiplicity of
properties.

4.3 Pronoun Resolution

Here we sketch briefly the approach inspired by the assumption principle of [30]
but extended with a time stamp (here, sentence number) to realize the indi-
cated principle. When, say, “Peter” is mentioned in sentence no. 7, a constraint
referent(sing,masc,peter,7) is emitted, and an occurence of “him” in sen-
tence no. 10 gives rise to expect referent(sing, masc,X); the following rule
attempts to bind X to the suitable value.

48

sentence no(Now), referent(No,G,Id,T) \
expect referent(No,G,X) <=>

T < Now,

\+ (find constraint(referent(No,G, ,TMoreRecent),),

T < TMoreRecent, TMoreRecent\==Now)

| (find constraint(referent(No,G,Id1,T),),

Id1\=Id
-> X = error:pronoun:ambiguous(No,G,Now)

; X=Id).

The rule is a so-called simpagation rule which, when applied, keeps the con-
straints before “\” in the store and removes the remaining ones up until the
arrow. CHR does not allow negations in the head, so the test that time T desig-
nates the most recent relevant referent (i.e., there is no other such with a more
recent time stamp) is done in less elegant way in the guard. The body tests for
ambiguity and generates a special code which is converted into an error message
elsewhere. Finally, the following rule catches unresolved pronouns if, e.g., the
whole text start with “He”.
sentence no(Now) \ expect referent(No,G,X) <=>

X=error:pronoun:unresolved(No,G,Now).

The following grammar rule for using pronouns shows how the implemented
expect referent constraint can be used.
indiv simple noun phrase(Num,Case,G,Id) -->

pronoun(Num,Case,G),

{expect referent(Num,G,Id)}.

This example illustrates how relatively complicated contextual dependencies in
logic grammars can be modeled in a fairly concise way using CHR. The use of
prototypical individuals for classes is realized in a similar way. In “Mary is the
boss. She manages the employees.”, the pronoun is resolved to mary, and a call to
a constraint expect class(· · ·mary· · ·) locates the class boss (i.e., if it is unique,
otherwise an error code) and the constraint method(boss,manage,employees)
is created.

4.4 From Constraint Stores to UML Diagrams

The program ”Graphviz” is used to create the graphical representation of an
UML diagram given an input in graph drawing language. A DCG is defined to
generate the input for the GraphViz input language after a use case has been
processed. This grammar references the constraint store and generates a phrase
as long as possible, thereby converting constraints into phrases to be given as
input to GraphViz. If, for example, the constraint store contains class(man)
and method(man,walk), the nonterminal class node generates the phrase man[
label = "{man||: walk(): void\l}"]. This is straightforward and not de-
scribed further.

49

5 Conclusions and Future Work

We presented a system for analyzing a restricted natural language for use case
writing, based on Definite Clause Grammars extended with Constraint Handling
Rules. Our grammar captures candidate domain classes and their relations and
visualize these using an UML class diagram. The syntax of the language is simple
but expressive enough to model a given domain. The language seems natural and
expressive but avoids inherently ambiguous sentence elements such as adverbs
and adjectives.

By extending our grammar with Constraint Handling Rules, we are able
to handle pronoun resolution with ambiguity detection, prototypical references
(e.g. names) and allow the user to express knowledge about the domain, such as
multiplicity, using simple prototypical sentences.

We have shown that the system has potential for extraction of dynamic
information. We are currently working on extending language so more complex
activity stories, including conditions and loops, can be expressed.

At this stage the implemented system qualifies only as proof of concept for
our ideas. More work needs to be done in order to apply the tool in a realistic
setting. It would be interesting to evaluate the system applied to large real world
problems and to study how users would respond to the various usage scenarios.

Acknowledgement: This work is supported by the CONTROL project, funded
by Danish Natural Science Research Council.

References

1. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis—
A survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13(3) (1980) 231–278

2. Frühwirth, T.: Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming 37(1–3) (October
1998) 95–138

3. Christiansen, H., Dahl, V.: Meaning in Context. In Dey, A., Kokinov, B., Leake,
D., Turner, R., eds.: Proceedings of Fifth International and Interdisciplinary Con-
ference on Modeling and Using Context (CONTEXT-05). Volume 3554 of Lecture
Notes in Artificial Intelligence. (2005) 97–111

4. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with
assumptions and abduction. In Gabbrielli, M., Gupta, G., eds.: ICLP. Volume 3668
of Lecture Notes in Computer Science., Springer (2005) 159–173

5. Object Management Group: Unified Modeling Language (UML), version 2.0. Ob-
ject Management Group, Framingham, Massachusetts. (October 2004)

6. Fuchs, N.E.: Attempto controlled english. In: WLP. (2000) 211–218
7. Sowa, J.F.: Common Logic Controlled English (2004) Draft,

http://www.jfsowa.com/clce/specs.htm.
8. Liu, H., Lieberman, H.: Toward a programmatic semantics of natural language.

In: VL/HCC, IEEE Computer Society (2004) 281–282
9. Liu, H., Singh, P.: Conceptnet: A practical commonsense reasoning toolkit (May 02

2004)

50

10. Liu, Hugo, Lieberman, Henry: Programmatic semantics for natural language inter-
faces. In: Proceedings of ACM CHI 2005 Conference on Human Factors in Com-
puting Systems. Volume 2 of Late breaking results: short papers. (2005) 1597–1600

11. Drazan, J., Mencl, V.: Improved processing of textual use cases: Deriving behavior
specifications. In: Proceedings of SOFSEM 2007. Volume 4362 of Lecture Notes in
Computer Science., Springer (2007)

12. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. In: RE, IEEE Computer Society (2002) 157–164

13. Harmain, H.M., Gaizauskas, R.J.: Cm-builder: A natural language-based case tool
for object-oriented analysis. Autom. Softw. Eng. 10(2) (2003) 157–181

14. Kiyavitskaya, N., Zeni, N., Mich, L., Mylopoulos, J.: Experimenting with linguistic
tools for conceptual modelling: Quality of the models and critical features. In
Meziane, F., Métais, E., eds.: NLDB. Volume 3136 of Lecture Notes in Computer
Science., Springer (2004) 135–146

15. Estratat, M., Henocque, L.: An intuitive tool for constraint based grammars.
Volume 3438., Springer (2004)

16. Abbott, R.J.: Program design by informal English descriptions. Communications
of the ACM 26(11) (1983) 882–894

17. Jacobson, I.: Object oriented development in an industrial environment. In: OOP-
SLA. (1987) 183–191

18. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User
Guide. Addison-Wesley (1999)

19. Berard, E.V.: Be Careful With ’Use Cases’. The Object Agency, Inc. (August
1998)

20. Loomis, M.E.S., Shah, A.V., Rumbaugh, J.E.: An object modeling technique for
conceptual design. In Bézivin, J., Hullot, J.M., Cointe, P., Lieberman, H., eds.:
ECOOP ’87, European Conference on Object-Oriented Programming. Volume 276
of Lecture Notes in Computer Science., Springer-Verlag (1987) 192–202

21. Booch, G., Rumbaugh, J.: Unified Method for Object-Oriented Development Ver-
sion 1.0. Rational Software Corporation (1997)

22. Cockburn, A.: Structuring use cases with goals. Journal of Object-Oriented Pro-
gramming (SeptemberOctober 1997)

23. Achour, C.B.: Guiding scenario authoring. In: EJC. (1998) 152–171
24. Cox, K., Phalp, K.: Replicating the CREWS use case authoring guidelines exper-

iment. Empirical Software Engineering 5(3) (2000) 245–267
25. Karl Cox, K.P., Shepperd, M.: Comparing use case writing guidelines. In: Seventh

International Workshop on Requirements Engineering (RE’01). (June 2001)
26. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity

constraints and abduction. In: Proceedings of FQAS2000, Flexible Query Answer-
ing Systems: Advances in Soft Computing series, Physica-Verlag (Springer) (2000)
141–152

27. Christiansen, H.: A constraint-based bottom-up counterpart to definite clause
grammars. In Nicolov, N., Bontcheva, K., Angelova, G., Mitkov, R., eds.: RANLP.
Volume 260 of Current Issues in Linguistic Theory (CILT)., John Benjamins, Am-
sterdam/Philadelphia (2004) 227–236

28. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic
Programming 5(4-5) (2005) 467–501

29. Hobbs, J.R., Stickel, M.E., Appelt, D.E., Martin, P.A.: Interpretation as abduction.
Artif. Intell. 63(1-2) (1993) 69–142

30. Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language.
In: ICLP. (1997) 256–270

51

31. Tarau, P., Bosschere, K.D., Dahl, V., Rochefort, S.: Logimoo: An extensible multi-
user virtual world with natural language control. J. Log. Program. 38(3) (1999)
331–353

32. Mitkov, R.: Anaphora Resolution. Longman (Pearson Education) (2002)

52

A CHRG Analysis of ambiguity in
Biological Texts

(Extended Abstract)

Veronica Dahl and Baohua Gu

Logic and Functional Programming Group,
School of Computing Science, Simon Fraser University,

Burnaby, B.C. V5A 1S6 Canada
{veronica,bgu}@cs.sfu.ca

Abstract. We propose a methodology for analyzing human language
sentences which can efficiently choose between alternative readings spring-
ing from the interaction between coordination and preposition phrase
attachment. We present a proof-of-concept in terms of an extremely
succinct CHRG [3] analyzer for interpreting biological text titles. Our
method uses expert knowledge on semantic types and compatibilities
among them, as well as contextual facilities of CHRG to gain an overall
view of the sentence components involved in disambiguation.

1 Introduction

This work was inspired by our efforts to automatically extract concepts from
biological text, where one of the main challenges faced is the amount of infor-
mation succinctly packed into titles. Typically, biological named entities appear
as acronyms or in condensed versions, and the amount of information is max-
imized by heavy use of coordination within noun phrases. As well, they have
a tendency to contain several prepositional phrases with no clear indication of
what antecedent they should attach to. For example, given the title sentence of
a Medline abstract: “IL-2 gene expression and NF-kappa B activation through
CD28 requires reactive oxygen production by 5-lipoxygenase”, it is hard to see
whether the activation through CD28 refers only to NF-kappa B or to both IL-2
gene and NF-kappa B.

The ambiguity involved in titles containing even one instance of coordination
or preposition phrase attachment is a challenge, and when two or more coexist
in the same title, the number of possible interpretations explodes, making it
extremely difficult for a naive automated system to cope with.

However, it is not unusual to find, within the text or in related knowledge
bases such as biological dictionaries and ontologies (e.g., the GENIA Ontology
[8]), short descriptions of what the entities’ names refer to, or at the very least
their semantic types (e.g., protein molecule, DNA family or group). The short
descriptions are often contained in simple constructs named appositions (e.g., as

53

in “Grf40, a novel Grb2 family member””), and their semantic types can very
often be found directly in available taxonomies (e.g., the GENIA corpus [7]), or
inferred from other related knowledge bases (e.g., [8]).

We have found that by extracting the semantic class to which each named
entity refers, and by considering the relationships the sentence involves it in, we
can discard many of the ambiguities that originate in the coordination construc-
tions where they intervene. In this paper we propose an analysis of ambiguity in
compact text in general, while focusing on biological texts’ titles in particular
for ease of demonstration and exemplification.

2 Analysis of the Ambiguities Most Commonly Present
in Biological Titles

2.1 An Example

The typical features of titles and similar corpora are:

a) the entities are referred to through abbreviations or acronyms;
b) coordination is quite common;
c) prepositional phrase attachment ambiguities are very common too;

The following sentence, taken from the GENIA corpus [7], illustrates:
IL-2 gene expression and NF-kappa B activation through CD28 requires re-

active oxygen production by 5-lipoxygenase.

In this sentence, coordination interacts with preposition phrase attachment with
highly ambiguous results: the sentence could mean either (note that each reading
is the conjunction of two simpler sentences, noted with a) and b) below):

– Reading (1):
1a. IL-2 gene expression through CD28 requires reactive oxygen production

by 5-lipoxygenase.
1b. NF-kappa B activation through CD28 requires reactive oxygen produc-

tion by 5-lipoxygenase.
– Reading (2):

2a. IL-2 gene expression requires reactive oxygen production by 5-lipoxygenase.
2b. NF-kappa B activation through CD28 requires reactive oxygen produc-

tion by 5-lipoxygenase.

At first glance, deciding among these possible readings appears an un-surmountable
task. However, if we simply retrieve the semantic types or classes to which each
entity belongs, and note whether such classes can meaningfully appear as ar-
guments of the relationships in which they are involved, many of the possible
readings fade away. Any remaining ones will in general be those that are also
ambiguous for a human expert in the biological notions involved.

54

2.2 Our methodology

To analyze sentences such as the above, we first consult the GENIA corpus,
a repository of annotations for every biological named entity in biological text
in order to attach each abbreviation or acronym to a) its full name and b) its
semantic type. In those cases where this information is not present, we look for
an apposition either in the text that accompanies the title we are analyzing, or
in related texts.

In the previous section’s example, a lookup for IL-2 gene in the GENIA
corpus yields the name IL-2 gene and the semantic type DNA domain or region.
On the other hand, it could be that an entity is not annotated as a biological
entity in the GENIA corpus, but we find it within the text or within some other
corpus, in an apposition which can point us to the type. Even when an entity is
found in the GENIA corpus, consultation of the appositions which further define
it may be useful. For instance, from “Grf40 , A novel Grb2 family member, is
involved in T cell signaling through interaction with SLP-76 and LAT.”, we can
infer that the protein molecule GRf40 further belongs to the subfamily Grb2.

Our problem now reduces to encode which semantic types make sense in each
argument of each of the biological relationships we most commonly encounter
in biological texts. This information has to be constructed from an expert’s
knowledge. The Appendix shows a prototype implementation of our methodology
as a first step in demonstrating its usefulness.

3 Exploiting ontological information

One of the files we consult in our system is the GENIA ontology, which expresses
subtype relationships in the format exemplified by:

subtype("Natural_source", "Source").

In another file we have the expert knowledge about compatibility between
biomedical concepts, expressed in our system as constants or as types, e.g.

compatible(IL-2_gene_expression’,’Protein_molecule’).

Such information will be consulted from our grammar rules for disambigua-
tion. For instance, the example in 2.1 is easily taken care of by just one CHRG
rule, namely

np(A), prep(P), np(B) /- (verb(_); prep(_); eos(_)) <:>
subtype(A,’BioProcess’), subtype(B,’BioEntity’), compatible(A,B)
| np(A+P+B).

This rule will create a noun phrase from two noun phrases (represented A
and B) joined by a preposition (P), provided that the second np is flanked
by either a verb, another preposition, or and end of sentence character, and
provided that A’s type and B’s type are compatible (as well as being a subtype of,
respectively, ’BioProcess’ and ’BioEntity’). The ontology is consulted, of course,
when checking the desired subtype relationships.

55

4 Criticality of CHRG for our methodology

The use of CHRG is crucial to our approach, since
a) it allows us to work bottom-up, thereby heading more directly to the right

analysis.
b) it allows us to put together into the same rule information coming from

heterogeneous sources. For instance, we mine ontology information from the
Genia Ontology [8], and can consult or effect transformations of that information
that suit disambiguation purposes. Left hand sides of CHRG rules do not care
from which file (among the ones having been read) the information that needs
to be put together comes from, so this gives a great degree of modularity and
allows us to incorporate information from heterogenous sources.

c) in the case of the text,or even of some titles containing appositions that
define a given term. If we consider for instance the sentence: ”Overexpression
of DR-nm23, a protein encoded by a member of the nm23 gene family, inhibits
granulocyte differentiation and induces apoptosis in 32Dc13 myeloid cells”, we
can glean some definitional information for DR-nm23. The level of granularity
with which we want to take advantage of this feature will vary according to
our purposes. We might be content for instance with noting only that it is a
protein, in which case the rest of the sentence can be ignored (CHRG includes a
facility for disregarding intermediate strings which will not be analyzed) or that
it is a protein and is encoded by a member of the nm23 gene family, or that
it is a protein, is encoded by a member of the nm23 gene family, and induces
apoptosis, and so on. Likewise, the information that nm23 is a gene can be
gleaned from the same sentence. In other words, we can implement a specialized
CHRG which only looks at appositions within a text, disregards the rest of the
text, and decides how to usefully exploit the information in the apposition: will
it be used to consult the type hierarchy, to expand it, or just to add a definition
into the database we are working with?

d) the use of CHRGs allows for a straightforward coexistence with CHR [6]
rules, and even for the same symbols to be considered both as grammar symbols
or as constraints. This is exemplified by the coexistence of the grammar rule
described in Section 3 with the CHR rule:

np(X), np(Y), compatible(A,B) ==>
subtype(X,A), subtype(Y,B) | compatible(X,Y).

which extends the user’s definitions of compatibility by considering that if the
user has described A and B as being compatible, and the parser has discovered
X and Y as noun phrases, where X is a subtype of A and Y is a subtype of B, X
and Y are also compatible. This inferred compatibility information can then be
used by the grammar rule in Section 3, since it is now in the constraint store.

We do not know of any other system which so seamlessly would allow us to
combine grammar and program rules for similar interactions needed.

As well, the facility of CHRG for looking at context allows us to implement
the above described methodology with extreme conciseness. The full prototype
program takes only one page and is included in full in the Appendix.

56

It is to be noted that as a side effect of disambiguation, our implementation
completes the meaning of coordinated sentences which do not overtly contain
all the conjuncts. Previous work for reconstructing elided meanings within co-
ordinated phrases in natural language typically take more machinery for their
implementation, e.g. computing parallelism in discourse, or further tools such as
assumptions and Datalog grammars [4] [5].

Let us exemplify with the same sample sentence, taken from a real life title,
which we showed in Section 1. Semantic types are described through binary pred-
icates of the form type(Entity,Class), e.g. from the program in the Appendix
we can see that the semantic type of “IL-2 gene-expression” is “bioprocess”. As
well, our expert knowledge base includes information on compatibilities , from
which we can know for instance that “IL-2 gene-expression is compatible with
CD28.

The rules that analyze conjoined noun phrases consult such information and
take appropriate action by conjoining only those components that are compatible
in type, and likewise appropriately attaching any prepositional phrases. Thus, in
the above example, the second reading is simply not accessible from the grammar
rules given, since they fail to satisfy the compatibility condition.

5 Discussion

We have proposed a CHRG methodology to disambiguate multiple readings of
sentences in biological text, on the basis of compatibilities between semantic
types, which are calculated on the fly by consulting the GENIA ontology and
dynamically extending user defined, basic relationships on compatibilities. Our
parsing technique integrates semantics at the lexical level, exploiting an ontology
for the application domain (biological texts).

We mix grammar rules and CHR proper rules to allow productive interac-
tion between domain constraints and grammatical constraints. As explained in
Section 4, this makes it easier to express our problem in directly executable
terms.

Our approach uses includes expert knowledge on semantic types of named
entities and on compatibility between entities based on their semantic types.
Appositions can provide further information about an entity of interest, as we
also saw. Some appositions may even throw light upon relationships between
two entities.

We have shown that this approach allows us to very succinctly express within
the grammar rules the conditions under which alternative readings originating
in preposition attachment plus coordinating ambiguities should be chosen.

We have exemplified our methodology for the particular problem of PP-
attachment in coordinate constructions, and tested it with a first running proto-
type which is shown in the Appendix. These first results show that much simpler
machinery can be arrived at within our methodology than was previously the
case in related work on coordination, including our own work with Datalog gram-
mars and assumptions [4] and even CHR [5]. Part of this is due to the restriction

57

of our domain to a well-investigated domain for which online corpora and on-
tologies exist, namely the biological domain, but as also pointed out, a bigger
part is due to the use of CHRG rules which focus on the relevant context seen
overall, checks on types and their compatibilities, and uses this information to
decide how to form meaning from the meanings of the involved parts.

However, we yet have to combine the advantages obtained in the present
work with other long distance dependency work around CHR [6], for a uniform,
more encompassing treatment, perhaps along the lines suggested in citeDahl-
2004. Our present focus on titles allows us to get away with ”just” allowing
coordination among the possible long-distance dependency phenomena.

With this work we hope to stimulate further research into the subject.

Acknowledgements This work is supported by the CONTROL project, funded
by Danish Natural Science Research Council, and by Veronica Dahl’s NSERC
Discovery Grant.

References

[1] Aguilar Solis, D. and Dahl, V.: Coordination revisited: a CHR approach. In Proc.
Iberamia ’04, Mexico.

[2] CHRG User Manual. http://akira.ruc.dk/ henning/chrg/
[3] Henning Christiansen: CHR grammars. Theory and Practice of Logic Programming,

5(4-5): 467-501 (2005)
[4] Dahl, V.: On Implicit Meanings. In: Computational Logic: From Logic Program-

ming into the Future . F. Sadri and T. Kakas (eds). (invited contribution), volume
in honour of Bob Kowalski, Springer-Verlag, 2002.

[5] Dahl, V.: Treating Long-Distance Dependencies through Constraint Reasoning. In
Proc. of the 3rd International Workshop on Multiparadigm Constraint Programming
Languages, 2004.

[6] Frhwirth, T.: Theory and Practice of Constraint Handling Rules, Special Issue on
Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.), Journal of Logic
Programming, Vol 37(1-3), pp 95-138, October 1998.

[7] GENIA Corpus: http://www-tsujii.is.s.u-tokyo.ac.jp/ genia/topics/Corpus/
[8] GENIA Ontology: http://www-tsujii.is.s.u-tokyo.ac.jp/ genia/topics/Corpus/genia-

ontology. html

Appendix A: the prototype CHRG implementation for
title disambiguation

% the CHR rules and CHR grammar rules used for disambiguation

:- compile(’chrg.txt’).

handler simple_coordination_solver.

constraints np/1, compatible/2, subtype/2.

grammar_symbols sentence/1, subj/1, verb/1, obj/1,

58

np/1, conj/1, prep/1, eos/1,

compatible/2, subtype/2.

% to induce new subtype relations

np(A), subtype(A,B), subtype(B,C) ==> subtype(A,C).

% to induce new compatible relations

np(X), np(Y), compatible(A,B) ==>

subtype(X,A), subtype(Y,B) | compatible(X,Y).

np(X), compatible(A,B) ==> subtype(X,A) | compatible(X,B).

np(Y), compatible(A,B) ==> subtype(Y,B) | compatible(A,Y).

%% grammar rules to group a np with a following preposition phrase

np(A), prep(P), np(B), conj(K), np(C) <:> np(A+P+B), conj(K), np(A+P+C).

np(A), prep(P), np(B) /- (verb(_); prep(_); eos(_)) <:>

subtype(A,’BioProcess’), subtype(B,’BioEntity’), compatible(A,B)

| np(A+P+B).

np(A), conj(K), np(B+P+C) <:>

subtype(A,’BioProcess’), subtype(C,’BioEntity’), compatible(A,C)

| np(A+P+C), conj(K), np(B+P+C).

%% rules to classify noun phrases as subjects or objects of verbs

np(A) /- verb(_) ::> subj(A).

verb(_) -\ np(A) ::> obj(A).

%% rules to handle coordinations

np(A), conj(_), subj(B) ::> subj(A), subj(B).

obj(A), conj(_), np(B) ::> obj(A), obj(B).

%% to identify a complete sentence

59

subj(A), verb(V), obj(B) ::> sentence(s(A,V,B)).

sentence(A), conj(_), sentence(B) <:> sentence(A+B).

%% to solve incomplete sentences

subj(A), verb(V) /- conj(_), sentence(s(_,_,B))

::> sentence(s(A,V,B)).

sentence(s(A,_,_)) -\ conj(_), verb(V), obj(B)

::> sentence(s(A,V,B)).

subj(A) -\ conj(_), sentence(s(_,V,B))

::> sentence(s(A,V,B)).

sentence(s(A,V,_)) -\ conj(_), obj(B)

::> sentence(s(A,V,B)).

subj(A), verb(V1), conj(_), verb(V2), obj(B)

::> sentence(s(A,V1,B)),

sentence(s(A,V2,B)).

% include example sentence, ontology, concepts, and domain knowledge

:- include(’test_example.txt’). % sentences for testing

:- include(’genia_ontology.txt’). % the GENIA Ontology

:- include(’genia_concepts.txt’). % annotations from GENIA corpus

:- include(’compatibility.txt’). % compatibility between concepts

end_of_CHRG_source.

(N.B. for the referees: you can download the example1.txt and other

title phrases or title sentences of the GENIA corpus we are considering

here from www.cs.sfu.ca/ bgu/personal/CSLP2007)

Appendix B: the Auxiliary Files

% the content of file "genia_ontology.txt"

subtype(’BioEntity’, ’BioConcept’).

subtype(’BioProcess’, ’BioConcept’).

60

subtype(’Source’, ’BioEntity’).

subtype(’Substance’, ’BioEntity’).

subtype(’Natural_source’, ’Source’).

subtype(’Artificial_source’, ’Source’).

subtype(’Organism’, ’Natural_source’).

subtype(’Body_part’, ’Natural_source’).

subtype(’Tissue’, ’Natural_source’).

subtype(’Cell_type’, ’Natural_source’).

subtype(’Cell_component’, ’Natural_source’).

subtype(’Other_artificial_source’, ’Artificial_source’).

subtype(’Cell_line’, ’Artificial_source’).

subtype(’Multi_cell’, ’Organism’).

subtype(’Mono_cell’, ’Organism’).

subtype(’Virus’, ’Organism’).

subtype(’Compound’, ’Substance’).

subtype(’Atom’, ’Substance’).

subtype(’Organic’, ’Compound’).

subtype(’Inorganic’, ’Compound’).

subtype(’Amino_acid’, ’Organic’).

subtype(’Nucleic_acid’, ’Organic’).

subtype(’Lipid’, ’Organic’).

subtype(’Carbohydrate’, ’Organic’).

subtype(’Other_organic_compound’, ’Organic’).

subtype(’Protein’, ’Amino_acid’).

subtype(’Peptide’, ’Amino_acid’).

subtype(’Amino_acid_monomer’, ’Amino_acid’).

subtype(’DNA’, ’Nucleic_acid’).

subtype(’RNA’, ’Nucleic_acid’).

subtype(’Nucleotide’, ’Nucleic_acid’).

61

subtype(’Polynucleotide’, ’Nucleic_acid’).

subtype(’Protein_family_or_group’, ’Protein’).

subtype(’Protein_complex’, ’Protein’).

subtype(’Protein_molecule’, ’Protein’).

subtype(’Protein_subunit’, ’Protein’).

subtype(’Protein_substructure’, ’Protein’).

subtype(’Protein_domain_or_region’, ’Protein’).

subtype(’Protein_ETC’, ’Protein’).

subtype(’DNA_family_or_group’, ’DNA’).

subtype(’DNA_molecule’, ’DNA’).

subtype(’DNA_domain_or_region’, ’DNA’).

subtype(’DNA_substructure’, ’DNA’).

subtype(’DNA_ETC’, ’DNA’).

subtype(’RNA_family_or_group’, ’RNA’).

subtype(’RNA_molecule’, ’RNA’).

subtype(’RNA_domain_or_region’, ’RNA’).

subtype(’RNA_substructure’, ’RNA’).

subtype(’RNA_ETC’, ’RNA’).

% the content of file "genia_concepts.txt"

% sample domain knowledge about the types of bioconcepts

subtype(’IL-2_gene_expression’, ’BioProcess’).

subtype(’NF-kappa-B_activation’, ’BioProcess’).

subtype(’reactive_oxygen_production’, ’BioProcess’).

subtype(’CD28’, ’Protein_molecule’).

subtype(’5-lipoxygenase’, ’Protein_molecule’).

% the content of file "compatibility.txt"

% sample domain knowledge about compatibility between bioconcepts

compatible(’IL-2_gene_expression’, ’Protein_molecule’).

compatible(’NF-kappa-B_activation’, ’Protein’).

compatible(’reactive_oxygen_production’, ’Protein_molecule’).

62

% the content of file "test_example.txt"

% a sample sentence to disambiguate

% we assume that base NPs have been identified beforehand

s1 :- X = [’IL-2_gene_expression’, and, ’NF-kappa-B_activation’, \

through, ’CD28’, requires, ’reactive_oxygen_production’, \

by, ’5-lipoxygenase’, ’.’], parse(X).

[’IL-2_gene_expression’] <:> np(’IL-2_gene_expression’).

[and] <:> conj(and).

[’NF-kappa-B_activation’] <:> np(’NF-kappa-B_activation’).

[through] <:> prep(through).

[’CD28’] <:> np(’CD28’).

[requires] <:> verb(require).

[’reactive_oxygen_production’] <:> np(’reactive_oxygen_production’).

[by] <:> prep(by).

[’5-lipoxygenase’] <:> np(’5-lipoxygenase’).

[’.’] <:> eos(’.’).

Appendix C: the Execution of Testing Sentences

% the execution results of the testing sentence on SICSTUS 3.8.4

| ?- s1.

<0> IL-2_gene_expression <1> and <2> NF-kappa-B_activation \

<3> through <4> CD28 <5> requires <6> reactive_oxygen_production \

<7> by <8> 5-lipoxygenase <9> . <10>

all(0,10),

begin(-1,0),

end(10,11),

subtype(’NF-kappa-B_activation’,’BioProcess’),

subtype(’CD28’,’BioEntity’),

compatible(’NF-kappa-B_activation’,’CD28’),

subtype(’IL-2_gene_expression’,’BioProcess’),

subtype(’CD28’,’BioEntity’),

63

compatible(’IL-2_gene_expression’,’CD28’),

subtype(reactive_oxygen_production,’BioProcess’),

subtype(’5-lipoxygenase’,’BioEntity’),

compatible(reactive_oxygen_production,’5-lipoxygenase’),

verb(5,6,require),

np(0,5,’IL-2_gene_expression’+through+’CD28’),

subj(0,5,’IL-2_gene_expression’+through+’CD28’),

conj(0,5,and),

np(0,5,’NF-kappa-B_activation’+through+’CD28’),

subj(0,5,’NF-kappa-B_activation’+through+’CD28’),

obj(6,7,reactive_oxygen_production),

sentence(0,7,s(’NF-kappa-B_activation’+through+’CD28’,require, \

reactive_oxygen_production)),

sentence(0,7,s(’IL-2_gene_expression’+through+’CD28’,require, \

reactive_oxygen_production)),

eos(9,10,’.’),

np(6,9,reactive_oxygen_production+by+’5-lipoxygenase’),

obj(6,9,reactive_oxygen_production+by+’5-lipoxygenase’),

sentence(0,9,s(’NF-kappa-B_activation’+through+’CD28’,require, \

reactive_oxygen_production+by+’5-lipoxygenase’)),

sentence(0,9,s(’IL-2_gene_expression’+through+’CD28’,require, \

reactive_oxygen_production+by+’5-lipoxygenase’)) ?

yes

| ?-

64

Applying Constraints derived from the Context
in the process of

Incremental Sortal Specification of
German ung-Nominalizations

Kristina Spranger and Ulrich Heid

IMS, Universität Stuttgart, 70 174 Stuttgart, Germany

Abstract. Many German nominalizations with the affix -ung are sor-
tally ambiguous. Within a sentence, lexico-semantic and/or syntactic
phenomena may support disambiguation. The sortal interpretation of a
nominalization may vary depending on the underlying syntactic analysis
of one and the same, syntactically ambiguous sentence.
We model the process of sortal disambiguation as a constraint-based
incremental process. The process is incremental as it evaluates in subse-
quent steps constraints from increasingly larger context windows.

1 Introduction

In this article, we present work towards the automatic interpretation of German
nominalizations with the affix -ung, such as Lieferung (delivery) or Messung
(measurement). Many such -ung-nominalizations are ambiguous with respect to
their sortal interpretation (cf. [3] - who lean heavily on [8] and [7] - for the notion
of sortal ambiguity). In section 2, a more detailed discussion on sortal ambiguity
as regards German -ung-nominalizations is given.
We are working towards a system for data extraction from corpus text that
is able to carry out sortal disambiguation. Given the productivity of the -ung-
formation process in German (cf. [4] and [12]) and the high frequency of -ung-
nominalizations in text (cf. [6] or [10]), this ability is relevant, among others, for
question answering or high quality information extraction1.
In this work, we analyze the influence of the context of an ung-nominalization
on its sortal interpretation. Relevant contextual phenomena include lexical com-
bination partners of the nominalization and/or the surrounding syntactic struc-
tures. As we rely on parsed corpus data, we have no discourse representations
available that go beyond the sentence level. Thus, we have to limit the interpre-
tation process to the sentence context, even though the disambiguation of some
-ung-nominalizations would require a larger context.
In a preliminary case study (see section 3), we have identified some of the con-
textual phenomena which constrain the sortal interpretation of Messung. From a
1 A more detailed discussion on the relevance of this ability in natural language pro-

cessing systems is given in [11].

65

descriptive perspective, such phenomena serve as “indicators” of sortal readings.
We model the process of sortal interpretation as a process of incremental specifi-
cation where the context of a nominalization is used for its sortal interpretation.
Knowledge about the reading indicators is explicitly formulated as constraints
that are applied to a given nominalization. In section 4, we explain the specifi-
cation process in detail.
In the process of sortal disambiguation, the order in which different constraints
are applied is crucial for the interpretation of a nominalization at the sentence
level. Obviously, the order in which the constraints are applied depends on the
syntactic analysis of the targeted sentence, and syntactic ambiguity leads to
multiple syntactic analyses. In section 5, we demonstrate that the sortal inter-
pretation depends on the underlying syntactic analysis.
We conclude in section 6, addressing relevant aspects of a planned underspeci-
fied representation to make allowance for the effect of syntactic ambiguity and
pointing to some more directions of future work.

2 Ambiguous German Nominalizations with -ung

German verb nominalizations with -ung are up to three-fold ambiguous concern-
ing their sortal interpretation. They may have an event reading, a (result) state
reading, and an object reading2.

2.1 The Sortal Interpretation of ung-Nominalizations

According to [3] the primary distinction is the distinction between (i) eventual-
ities and (ii) objects:

ung-Nominalizations

Eventualities

Processes
(e)

Events
(e)

States

Result states
(sres)

Non-Result states
(e)

Objects
(non-e/non-sres)

Fig. 1. The Sortal Interpretation of German -ung-Nominalizations

2 For a more detailed discussion cf. [3], and [13] and [5] whose works are based on the
theory developed in [3].

66

Eventualities Ehrich and Rapp subsume processes, events, and states under
the concept of eventualities taken over from [2].
Events refer to telic actions whereas processes refer to atelic actions3. According
to [9] processes as well as events can be seen as event complexes that are an
association of a goal event, or “culmination” with a “preparatory phase” by
which it is accomplished and a “consequent state” which ensues.
States (result states as well as non-result states) refer to eventualities that do not
have a dynamic preparatory phase. Result states (e.g. Absperrung (roadblock)),
in contrast to non-result states (e.g. Bewunderung (admiration)), are caused by
a preceding event. Therefore, we distinguish between result states and other
eventualities (including non-result states).
In the following, processes, events and non-result states are referred to by e,
result states are referred to by sres.

Objects Objects refer to physical as well as abstract objects. They are referred
to by non-e/non-sres.

2.2 Distributional Tests

Except for non-result states and objects all classes of -ung-nominalizations (cf. fig-
ure 1) refer to some phase in the event complex as it is described by Moens and
Steedman (cf. [9]): result states refer to the post-culmination phase, and events
and processes refer to the whole event complex. Thus, it is especially challeng-
ing to keep them apart. To this end, Ehrich and Rapp propose a number of
distributional tests:

1. Only eventualities allow to refer to phases of the events (a) and can be
combined with process modifying predicates (b):

(a) Die
The

Verfolgung
pursuit

des
the

Täters
perpetrator

/
/

Die
The

Absperrung
cordon

des
the

Geländes
area

beginnt
starts

/
/

hört auf
stops

/
/

wird
is

unterbrochen.
interrupted.

‘The pursuit of the perpetrator / The cordon of the area starts /
stops / is interrupted.’

(b) die
the

umständliche
awkward

/
/

vorsichtige
cautious

Verfolgung
pursuit

des
the

Täters
perpetrator

/
/

Absperrung
cordon

des
the

Geländes
area

‘the awkward / cautious pursuit of the perpetrator / cordon of the
area.’

2. Result states can be combined with stative predicates (a) and with predicates
of perceptibility (b) (summed up as “static predicates”):

3 According to [15] events are “accomplishments” and “achievements”, and processes
are “activities”.

67

(a) die
the

bestehende
existing

Absperrung
cordon

des
the

Geländes
area

’the existing cordon of the area’
(b) die

the
vorgefundene
found

/
/

kartographisch
cartographically

registrierte
registered

Absperrung
cordon

des
the

Geländes
area

’the cordon of the area found / cartographically registered’
3. Duration predicates can only occur together with processes and result states:

• die
the

tagelange
lasting for days

Verfolgung
pursuit

des
the

Täters
perpetrator

/
/

Absperrung
cordon

des
the

Geländes
area
’the pursuit of the perpetrator / cordon of the area lasting for days’

4. Events can go together with time frame predicates (a) and they allow to
refer to the incremental progression of the event (b):

(a) die in zwei Tagen erfolgte Absperrung des Geländes
the in two days accomplished cordon the area
’the cordon of the area accomplished in two days’

(b) die
the

allmähliche
gradual

Absperrung
cordon

des
the

Geländes
area

’the cordon of the area completed step by step’

The distributional tests show that event nominalizations and result state nomi-
nalizations are distributed complementarily.

3 The -ung-Nominalization Messung: A Case Study

The nominalization Messung (measurement) is two-fold ambiguous: it allows for
an event interpretation (e), and for an object interpretation (non-e)4.

3.1 Sortal Readings of Messung

The event reading of Messung refers to the process of measuring. Sentence (1)
is a typical context for Messung as an event.

(1) die
the

Messung
measuring

des
the

Erdumfangs
circumference of the earth

durch
by

Eratosthenes
Eratosthenes

‘the measuring of the circumference of the earth by Eratosthenes’

The object reading refers to the result of a measuring process, i.e. to data or
figures. Sentence (2) is a context for Messung as an object.
4 For the sake of convenience, we do without non-sres since there is no result state

interpretation of Messung.

68

(2) Die
The

Messungen
measurements

liegen
lie

unter
under

dem
the

zulässigen
acceptable

Grenzwert
critical value

von
of

250
250

ppm.
ppm.

‘The measurements are lower than the maximum permissible value of 250
ppm.’

3.2 Disambiguating Reading Indicators from the Context

To decide about the sortal interpretation of an -ung-nominalization, humans
seem to use lexico-semantic and syntactic reading indicators from the context.
Many lexical indicators are combinatory constraints of lexico-semantic nature,
ranging from preferences for general (ontological) classes, over selection restric-
tions, to lexeme-specific combinations. Some such indicators have been used
by [3] to formulate their distributional tests (cf. section 2.2). We list more such
indicators for event and object readings of Messung in tables 1 and 2. These indi-
cators have been derived from a manual analysis of circa 400 sentences newspaper
text.

Type Examples

Reference to Event Phase nominalization as subject: Messung geht weiter
nominalization as object: Messung aufnehmen, fortset-
zen, abschliessen

Duration predicates adjectives: fortlaufende, kontinuierliche Messungen
temporal PPs: während der Messung

Selection Restriction of
Verbs of Order

Messung anordnen, vorschreiben, veranlassen

Lexical Collocations support verbs: Messung findet statt, Messungen
durchführen

Local/Temporal Adjuncts Messungen an Strassen, Messungen im Sommer

Table 1. Event Indicators

Type Examples

Static Predicates Messungen liegen vor
Value Indicating Verbs M. liegt bei <value>
Use with Proving Verbs Messung beweist/zeigt, dass; jmd. zieht aus der

Messung den Schluss, dass

Table 2. Object Indicators

In a given sentence, the lexical indicators may appear in different syntactic struc-
tures. For example, a support verb which has the nominalization as its object
may also come as a prenominal participle or in a relative clause. Moreover,
roughly synonymous indicators may belong to different word classes.

69

4 Incremental Sortal Specification in Context Using
Context-Derived Constraints

Taking the contextual phenomena we have identified to constrain the sortal
interpretation of Messung as a starting point, we will show in the following
how the knowledge about these reading indicators is explicitly formulated as
constraints, and how these constraints are used in an incremental process of
sortal disambiguation.

4.1 Competing Reading Indicators

In many cases there is more than one indicator in a sentence, and not all indica-
tors present in a given sentence support the same sortal reading. Sentence (3),
for example, contains two indicators: one for the object reading and one for the
event reading.

(3) Die
The

Geologen
geologists

beschreiben
describe

Messungen
measurements

[auf
on

den
the

Seychellen]e,
Seychelles,

[die
that

Anzeichen
indications

des
the

Klimawandels
climate change

zeigen]non−e.
show.

’The geologists describe measurements on the Seychelles that show indica-
tions of the climate change.’

auf den Seychellen is an indicator for the event reading: it is a local adjunct
(cf. table 1). The relative clause die Anzeichen des Klimawandels zeigen with
zeigen as predicate is an indicator for the object reading: zeigen belongs to the
class of “proving verbs” (cf. table 2).
Nevertheless, the nominalization does not (necessarily) remain sortally ambigu-
ous at the sentence level. The human reader is perfectly able to interpret the
nominalization as an event or as an object - at the latest when he considers
a larger context window than one sentence. Obviously, there are cases where
human readers are not able to disambiguate the sortal interpretation of the
nominalization (cf. sentence 4). However, these seem to be cases where it is not
relevant for the comprehension of the text.

(4) Die
The

Schiffahrt
navigation

profitiert
benefits

von
from

den
the

aktuellen
current

Messungen
measurements

über
over

Windgeschwindigkeit
wind speed

und
and

Wellenhöhen.
wave heights.

’The navigation benefits from the current measurements of wind speed and
wave heights.’

On the other hand, there are examples that show that some contextual phe-
nomena enforce a certain interpretation which leads to a misinterpretation of a
sentence such as sentence 5.

70

(5) Da
Since

die
the

Messungen
measurements

vor
in front of

den
the

Fenstern
windows

der
the

vom
of the

Lärm
noise

Betroffenen
persons concerned

vorgenommen
carried out

wurden,
were,

hat
has

ihnen
them

die
the

Gemeinde
municipality

Schallschutzfenster
soundproof windows

angeboten.
offered.

’Since the measurements were carried out in front of the windows of the
persons concerned of the noise, the municipality offered them soundproof
windows.’

4.2 The Incremental Process of Sortal Specification

What determines the sortal interpretation at the sentence level is the underly-
ing syntactic reading. Due to syntactic ambiguity we get most often more than
one syntactic reading. Different syntactic readings may lead to different sortal
interpretations of one and the same sentence.
The sortal interpretation depends on the syntactic reading insofar as the indica-
tors of a given sentence may appear in different places of the according syntax
tree. Since indicators of different sortal readings may be present in one and the
same sentence, we assume that the interpretation process works strictly incre-
mentally, i.e. the indicators “enter” the context used for interpretation one after
the other. Depending on what context window is considered the sortal inter-
pretation may vary; if the context window grows the sortal interpretation may
change.
The interpretation that is accessible for a context larger than one sentence is the
one at the sentence level. So, in order to come up with the sortal interpretation
of the nominalization at the sentence level we start with the nominalization in
the null context and walk up the syntax tree. The considered context grows step
by step walking through the syntax tree.
The sortal interpretation of the nominalization is “defeasible” as long as there
is a larger context that is relevant for the interpretation process; in its current
context, the sortal interpretation is “indefeasible”. As regards our concept of
“defeasible” and “indefeasible” sortal interpretations, we lean on Alshawi and
Crouch’s concept of “believed” vs. ”unbelieved” in their monotonic semantic in-
terpretation (cf. [1]). The sortal interpretation of a nominalization is explicitly
called into question until there is no larger context relevant for the interpreta-
tion process. That means, the sortal interpretation of a nominalization actually
is a disjunction of all possible sortal types with the “contextually active” sortal
type “underlined”. Therefore, the interpretation process is a monotonic process
nevertheless.
The core idea of this specification process is that the reading indicators that
enter the context while it grows incrementally introduce constraints that can
be applied to a nominalization in its current context. The specification process
follows the algorithm given below:

71

• The “bare” -ung-nominalization (i.e. the nominalization in its null context)

which, obviously, is sortally ambiguous gets the sortal type <e
+
∪ non-e>5.

• Then, all sibling nodes are considered: before a sibling node is added to the
“active” context6, it is checked whether it dominates an indicator.

• If so, the indicator introduces a constraint over the interpretation of the
-ung-nominalization in its current context.

• The constraint is applied, and the sibling node is added to the context of
the nominalization.

• The procedure is repeated until the sentence node is reached.

The Main Constraint and a Type Conversion Function Supposed:

• U = {x, x is a -ung-nominalization}
• m ∈ U
• ung-sort = {e, sres, non-e/sres}
• α, β ∈ ung-sort

We define a constraint C
<α

+
∪β,α>

that has the following two properties:

1. C
<α

+
∪β,α>

(m
α

+
∪β

) = mα

2. C
<α

+
∪β,α>

(mβ) = mα

In order that the constraint be applicable to mβ we define a type conversion
function τ :

• τ(mβ) = m
α

+
∪β

5 Four Syntactic Readings and their Corresponding
Sortal Readings

In order to demonstrate how the specification algorithm works, we will ana-
lyze sentence (3): Die Geologen beschreiben Messungen auf den Seychellen, die
Anzeichen des Klimawandels zeigen.

5.1 Four Syntactic Readings

Sentence (3) has at least four syntactic readings since there are two possible
attachment points for the prepositional phrase auf den Seychellen and two for
the relative clause die Anzeichen des Klimawandels zeigen. These four most
obvious syntactic analyses are given below (our syntax trees exclusively reflect
the dominance relations and we abstract away from linear surface order):

1. Die Geologen is the subject, Messungen is the direct object of beschreiben,
the relative clause is attached to den Seychellen, and the emerging complex
prepositional phrase is an adjunct of beschreiben (cf. figure 2).

5 <e
+
∪ non-e> reads event or object.

6 “Active” context is used in the sense of “active” edges in chart parsing.

72

S

NPSUBJ

die Geologen

VP

V

beschreiben

NPOBJ

Messungen

PPADJUNCT

P

auf

NP

NP

den Seychellen

RelCl

die Anzeichen
des Klimawandels
zeigen

Fig. 2. Reading (1) of Sentence (3)

2. Die Geologen is the subject, Messungen is modified by the relative clause,
and the resulting complex noun phrase is the direct object of beschreiben.
The prepositional phrase is an adjunct of beschreiben (cf. figure 3).

3. Messungen is modified by the prepositional phrase. The emerging complex
noun phrase is modified by the relative clause and constitutes the direct
object of beschreiben; there is no verbal adjunct (cf. figure 4).

4. The relative clause is attached to den Seychellen, and the resulting complex
prepositional phrase is attached to Messung. The emerging complex noun
phrase is the direct object of beschreiben; there is no verbal adjunct in this
syntactic analysis (cf. figure 5).

5.2 The Incremental Sortal Specification of Sentence (3)

In the following, we will show that depending on which syntactic reading we
choose, we may end up with different sortal interpretations. To this end, we will
analyze in detail reading (3) (cf. figure 4). In all other cases, we only present the
result of the specification process.

The Reading Indicators and the Constraints they Introduce In sen-
tence (3), we find two competing reading indicators (cf. 4.1) which introduce the
following constraints7:
7 Again, for the sake of convenience we do without non-sres.

73

S

NPSUBJ

die Geologen

VP

V

beschreiben

NPOBJ

NP

Messungen

RelCl

die Anzeichen
des Klimawandels
zeigen

PPADJUNCT

auf den
Seychellen

Fig. 3. Reading (2) of Sentence (3)

1. The local PP auf den Seychellen introduces a constraint that yields a lin-
guistic object of the event-type <e>: C

<e
+
∪non−e,e>

.

2. The relative clause with the predicate zeigen introduces a constraint that
yields a linguistic object of the object-type <non-e>: C

<e
+
∪non−e,non−e>

.

The Sortal Interpretation of Reading (3)

1. Messungen in the null context is considered; it is assigned the type < e
+
∪ non− e, e >.

2. All sibling nodes of Messungen are considered: i.e. the prepositional phrase
auf den Seychellen.

3. Does the PP-node dominate an indicator ?
Yes: The indicator introduces a constraint that yields a linguistic object of
the event-type: C

<e
+
∪non−e,e>

.

4. The constraint is applied to Messungen, the active context grows, and Mes-
sungen in its “new” active context is of the type <e>: [Messungen auf den
Seychellen]<e>.

5. All sibling nodes of Messungen auf den Seychellen are considered: i.e. the
relative clause die Anzeichen des Klimawandels zeigen.

6. Does the RelCl-node dominate an indicator ?
Yes: The indicator introduces a constraint that yields a linguistic object of
the object-type: C

<e
+
∪non−e,non−e>

.

74

S

NPSUBJ

die Geologen

VP

V

beschreiben

NPOBJ

NP

NP

Messungen

PP

auf den Seychellen

RelCl

die Anzeichen
des Klimawandels
zeigen

Fig. 4. Reading (3) of Sentence (3)

7. The constraint should be applied to Messungen auf den Seychellen, but this
noun phrase is of the wrong type: it should be of the type < e

+
∪ non− e, e >,

but is of the type < e >.
8. The type conversion function τ is applied: τ(NP<e>) = NP

<e
+
∪non−e>

.
9. Now, the constraint is applied to Messungen auf den Seyhellen, the active

context grows, and Messungen auf den Seychellen in its “new” active context
is of the type <non-e>: [Messungen auf den Seychellen, die Anzeichen des
Klimawandels zeigen]<non−e>.

10. The predicate beschreiben as well as the subject die Geologen do not in-
troduce constraints into the context. We reach the sentence level and the
interpretation process is finished.

⇒ If the underlying syntactic analysis is reading (3), the sortal interpretation
is the obejct-interpretation.

The Sortal Interpretations of Readings (1), (2), and (4) Following the
same algorithm, we end up with an ambiguous sortal interpretation of Messungen
in case of reading (1), reading (2) leads to an event-interpretation, and reading
(4) enforces an object-interpretation.

6 Conclusions and Future Work

We have shown that the sortal interpretation of -ung-nominalizations is highly
context-dependent: the sentence context introduces indicators which can trigger
a sortal reading. The interpretation is also dependent on syntactic ambiguity, as
different syntactic readings of a sentence may give rise to different sortal inter-
pretations.
We specified an algorithm for the incremental sortal specification of -ung-nominalizations
which uses context-derived constraints in order to determine the sortal interpre-
tation at the sentence level.

75

S

NPSUBJ

die Geologen

VP

V

beschreiben

NPOBJ

NP

Messungen

PP

P

auf

NP

NP

den Seychellen

RelCl

die Anzeichen
des Klimawandels
zeigen

Fig. 5. Reading (4) of Sentence (3)

For an implementation in the framework of data extraction from corpus text,
we will assess which syntax formalisms and parsing grammars provide adequate
input for the specification process.
To be able to provide all possible syntactic readings and the pertaining sortal
interpretations, we are developing an underspecified representation that should
assemble all possible syntactic readings (cf. [14] for ideas that possibly can be
adopted).

References

1. Alshawi, Hiyan, Crouch, Richard S.: Monotonic Semantic Interpretation. Proceed-
ings of the 30th Annual Meeting of the Association for Computational Linguistics
(1992) 32–38

2. Bach, Emmon: The Algebra of Events. Linguistics and Philosophy 9(1) (1986) 5–16
3. Ehrich, Veronika, Rapp, Irene: Sortale Bedeutung und Argumentstruktur: ung-

Nominalisierungen im Deutschen. Zeitschrift für Sprachwissenschaft 19(2) (2000)
245–303

4. Esau, Helmut: Some facts about German nominalization. Neophilologus 55(1)
(1971) 150–156

5. von Heusinger, Klaus: The Interface of Lexical Semantics and Conceptual Structure:
Deverbal and Denominal Nominalizations. In: Nominalisierung. Zimmermann, I. and
Lang, E. (eds.). Zentrum für Allgemeine Sprachwissenschaft, Berlin (2002) 109–124

6. Knobloch, Clemens: Zwischen Satz-Nominalisierung und Nennderivation: -ung-
Nomina im Deutschen. Sprachwissenschaft 27(3) (2002) 333–362

76

7. Lakoff, George: Linguistics and Natural Logic. In: Approaches to Natural Language.
Davidson, Donald/Harman, Gilbert (eds.), Reidel, Dordrecht/Boston (1972) 545–665

8. McCawley, James D.: Lexical Insertion in a Grammar without Deep Structure.
Papers from the 4th Regional Meeting of the Chicago Linguistic Society (1968) 71–
80

9. Moens, Marc, Steedman, Mark: Temporal Ontology and Temporal Reference. Com-
putational Linguistics 14(2) (1988) 15–28

10. Osswald, Rainer: On Result Nominalization in German. Proceedings of Sinn und
Bedeutung 9 (2005) 256–270

11. Reckman, Hilke, Cremers, Crit: Deep parsing semantic interpretation of nominal-
izations and their expressed and unexpressed arguments. Leiden Working Papers in
Linguistics 4(1) (2007) 40–55

12. Scheffler, Tatjana: Nominalization in German. Unpublished Manuscript, University
of Pennsylvania (2005)

13. Shin, Soo-Song: On the event structure of -ung nominals in German. Linguistics
39(2) (2001) 297–319

14. Spranger, Kristina: Combining Deterministic Processing with Ambiguity-
Awareness – The Case of Quantifying Noun Groups in German. PhD Thesis, Uni-
versity of Stuttgart (2006)

15. Vendler, Zeno: Facts and Events. In: Linguistics in Philosophy, Cornell University
Press, Ithaca (1967) 122-146

77

Constraint-based Analysis of Discourse
Structure

Antoine Widlöcher and Patrice Enjalbert

Laboratoire GREYC, CNRS UMR 6072, Université de Caen, France
{Antoine.Widlocher,Patrice.Enjalbert}@info.unicaen.fr

Abstract. Recent works in the NLP community show an increasing
interest for the analysis of discourse structure, leading to a variety of
models and applications. We claim that a constraint-based approach al-
lows a high level, abstract, description of various discourse structures,
together with the design of an operative framework for generic analysis
methods. The CDML formalism (Constraint-based Discourse Modelling
Language) presented in this paper is devoted to these tasks.

1 Introduction

The notion of constraint has proved very useful in different areas of NLP, both as
a unifying theoretical framework, and as a common ground for various constraint-
based formalisms such as GPSG, HPSG, or Blache’s Property Grammars [1].
In the present paper we want to address the question of application of the
constraint-based methodology at discourse level. Indeed, recent works in the
NLP community show an increasing interest for the analysis of discourse struc-
ture. Motivations may be purely linguistic, NLP tools being useful for corpus
study and experimentation of linguistic theories. But there is also a wide range
of applications where automated discourse analysis can help: thematic indexa-
tion, especially at inner document level, automated summarisation, document
browsing, etc.

The approaches of discourse structure analysis are many. Several of them are
oriented towards the description of so called ”discourse relations” between sen-
tences or clauses, of which they attempt to give organised inventories, together
with criteria allowing to establish those links: RST [2], SDRT [3], LDM [4], D-
LTAG [5] are such well established theories. Others consider texts at a coarser
grain and focus on its segmentation in ”homogeneous” blocks: typical exam-
ples are provided by the so-called text-tiling technique, following Hearst [6] and
Teufels’ argumentative zoning [7]. In both case one tries to capture the overall
organisation of a text. Another major, ubiquitous question concerns anaphora
resolution, i.e. coreferential links between (mostly nominal) expressions.

At present each approach develops its own description format and (possibly)
analysis procedures. At first sight this may look unavoidable, because precisely
of the diversity of linguistic phenomena under consideration. However, we can-
not either forget the deep interactions between them and the fact that, at the

78

end, the different kinds of structures all contribute to the reader’s or hearer’s
perception of the coherence of a text, and finally to its understanding. This re-
mark immediately raises the problem of defining some common format where
several (if not all) kinds of structures could be described and processed. This
format would be a useful device for comparing various approaches and taking
benefit of the complementary analyses they each offer.

In order to make some steps in that direction, we present a formalism named
CDML [8], which can be described as a ”fully Constraint-based Discourse struc-
ture Modelling Language”. Indeed, we claim that the notion of constraints, al-
ready widely used at sentential level, provides an adequate general framework for
discourse structure description and analysis. The main reason is that it provides
just the right level of abstraction to cope with different kinds of structures, and
hence to combine different analyses, in a unified way. Moreover, constraint-based
formalisms are highly declarative - which is good for description - and altogether
allows efficient computation methods - good for processing.

The paper is organised as follows. In section 2, we go more deeply in the
specifications of what can be a generic approach of discourse analysis. Section 3
outlines the syntax and intuitive semantics of CDML, examplified in section 4,
while section 5 gives the basis of a formal semantics. In section 6 we present the
current implementation and first experimental results, and finally we conclude
with further research perspectives.

2 Elements for a generic approach

Let us consider a bit more precisely the what ”discourse structure” is, focusing
on approaches leading - or potentially leading - to automated processing.

A major notion is that of discourse relation. This can be understood in a
rather semantic way as synonymous of ”rhetoric relations”: narration, explana-
tion, elaboration... Rhetorical Structure Theory (RST) [2] and Segmented Dis-
course Representation Theory (SDRT) [3] are important theories in this area.
Others like the Linguistic Discourse Model (LDM) [4] or D-LTAG [5] on con-
trary tend to extend syntactic relations at a supra-sentential level. In both cases,
authors take for granted that propositions (or other phrasal units) are the basic
constituents of discourse which have to be related. Their approach is ”ascending”:
starting form basic units, one tries to establish a ”discourse tree” (or ”graph”).
Connectives, cue phrases, as well as syntactic structure and semantic information
or even world knowledge can be invoked as responsible for the various links.

Other approaches centrally focus on text segmentation in blocks of a certain
amplitude, covering several sentences. In thematic segmentation the problem
is to part the text into thematically homogeneous segments, and (possibly) to
give a representation of what these segments are about. Following Hearst [6],
such works are often based on the notion of lexical cohesion [9] and use statis-
tical, Information Retrieval inspired, methods to detect break points between
lexically homogeneous segments. However certain inventories of cue-phrases or
other specific patterns (such as frame introducers, see below) can also help. An-

79

other significant approach is Teufel’s argumentative zoning [7], where different
text zones correspond to different moves in the rhetorical intentions of authors.
In both cases, the segments are assumed to partition the whole text, while in
Charolles’ discourse framing theory [10], only certain specific segments, intro-
duced by by detached adverbials, are identified (see section 4.1 below). All these
approaches are rather ”top-down”, using ”surface” indices or global effects rather
than progressive composition of elementary units.

Another kind of structures consists in various possible chaining between dis-
tant expressions. A major example is the notion of co-reference chain constituted
by a series of expressions that refer to the same object or event in the discourse
domain (”anaphora resolution”). A variety of criteria operate, using morpholog-
ical, lexical, syntactic, semantic information, and possibly also world knowledge.
Other quite different kinds of chaining exist such as lexical (or semantic) chain-
ing, which relate series of terms which are semantically bound together.

It is readily seen that these different kinds of structures are irreducible to one
another. Nevertheless they are also deeply linked together, since they are different
forms of discourse organisation that contribute to the reader’s understanding of
a same text, to produce its cohesion and coherence. The notion of ”texture”
(Halliday) nicely evokes this intertwining. Moreover a specific analysis often
needs to take in consideration other dimensions of discourse organisation. For
instance referential and semantic chaining contribute to thematic segmentation;
discourse framing plays an important role in theme identification; argumentative
relations often link whole segments rather than mere propositions so that text
segmentation and rhetoric analysis can be co-dependant; and so on.

At present, each approach develops its own description format and (possibly)
analysis procedures. However, if no ”universal discourse grammar” is probably
to be expected, it looks quite relevant to design formal models that can mix
several kinds of analysis. In order to take in account these dependencies, first.
But also because such unifying models could be beneficial, at a theoretical level,
to compare different approaches and finally to produce a better understanding
of ”discourse structure”. Let us analyse more closely the requirements for such
a generic approach, that lead us to propose a constraint-based formalism.

Segments and relations. We observed that some approaches are rather segment-
oriented and other relation-oriented, but both are relevant of discourse descrip-
tion. Moreover, segments themselves should not be considered as ”one block”
units, but subject to hierarchical decomposition.

Granularity. Some approaches (RST, LDM...) focus on sentential or phrasal text
units, but others consider a coarser grain like paragraphs or ad-hoc segments.
Moreover the same discursive phenomena may appear at different levels. The
formalism should allow changes or underspecification of granularity.

Clues. As illustrated above, the different theories make use of a great diversity of
methods in order to detect discourse structures including explicit connectors or
characteristic cue phrases, as well as syntactic or positional criteria. One of the

80

most challenging problem for a general approach of discourse structure analysis
is to deal with this variety of linguistic clues.

Sequentiality and linearity. A sequential (word by word) analysis of text is often
not relevant; relations between distant, non consecutive, expressions must be
considered, as it is already the fact at sentential level. Moreover, the linear order
itself may even be irrelevant, and some more global (or synthetic) mechanisms
are also very important, for example in lexical cohesion phenomena.

”Soft” structures and computing. Another major feature of discourse structure
is its soft nature. For example, two readers will not in general fully agree on the
delimitation of thematic segments, and indeed transitions are often progressive.
Moreover, a given discourse structure is hardly the unequivocal product of a
simple, clearly identifiable, criterion, but rather of a set of indices, some being
concordant and other discordant, producing in fine a dominant impression.

From this enumeration (which should certainly be refined) the immediate
conclusion draws that no ”specific algorithm” can take in charge all aspects of
discourse structure. We need some more abstract, high level, and ”soft” specifi-
cation tool. This tool could rely on specific algorithms for specific limited tasks,
but cannot reduce to one. Without being any ”magic wand” we think that the
constraint paradigm is a good candidate to fulfill those requirements. CDML, to
be presented now, is an attempt in this direction.

3 CDML syntax and intended semantics

3.1 Discourse structure and its representation

In CDML the description of discourse structure relies on three basic notions:

Discourses Units (DU) correspond to well delimited text zones, at arbitrary lev-
els of granularity: for example thematic segments or ”à la Teufel” argumentative
zones as well as simple clauses.

Discourse Relations (DR) are relations between DU’s. They can be defined by
a set of constraints on the constitutive DU’s. Examples are rhetorical relations,
as in RST or SDRT, or hierarchical constituency relations.

Discourses Schemes (DS) are high-level patterns defined by constraints on both
DU’s and DR’s. A typical example would be an enumerative structure consisting
of an initialisation and a sequence of items.

The term ”discourse element” is a generic for DU, DR and DS. Different
collections of units, relations and schemes have to be considered according to
the linguistic theories (or practical applications) in view. The aim of CDML
grammars is to provide a high-level, synthetic, framework allowing their formal
definition.

81

A CDML grammar takes as input a discourse which may have been annotated
from different points of view: morphological tagging, syntactic analysis... The
grammar expresses constraints on available elements and annotations. As output
it provides a new discourse representation in which described discourse elements
are annotated.

Before entering the description of CDML grammars, we must say how dis-
course elements are represented. The notion of discourse schemes being not ma-
ture enough, from now on, we will only consider DU’s and DR’s. The delicate
point concerns the representation of text segments. A first remark is that a text
is not necessarily seen as a sequence of words. Often, we want to abstract from
this ”first layer”, and consider it as a sequence of sentences, for example, or
even at higher grain, as a succession of ”parts” if we focus on its overall or-
ganisation. We can even want to mix different levels, considering for example
certain phrasal and certain sentential units. We therefore introduced the notion
of extended token (or simply token for short) to refer to any kind of contiguous
linguistic expression, considered as a whole, hiding its constituents. The user can
define what will be considered as ”tokens” for a given analysis: it is part of the
notion of ”analysis perspective” described below.

The second important notion is that of segment boundaries. Boundaries of a
segment are ”brackets” surrounding that segment, in order to mark its beginning
and end. Consider for example the notion of frame introducer (cf. section 4.1),
defined as a prepositional phrase at initial position in a sentence. The simplest
way to express this position criterion is to say that the left boundary of the PP
coincides with the left boundary of a sentence.

Discourse input is then seen as a sequence of text objects (TO) consisting
in (extended) tokens or boundaries. TO’s corresponds to the atomic ”events”
thrown by textual flow. Their size may vary as well as their linguistic sta-
tus: morpho-syntactic units, syntagmatic elements, propositions... They can also
overlap or be embedded. They represent all available information on discourse
content and may arise from any preliminary analyses.

We can associate TO’s with pieces of information of any kind (syntactic
nature or function, semantic values...) by means of (recursive) feature structures
(FS). We use the following sequential notation for FS’s:

{a:{b:X, c:{d:Y, e:Z}}}

where a, b... are feature names and X, Y feature values.
A DU is then represented as a sequence of contiguous TO’s, marked by

boundaries denoting its opening and ending positions in text. With any DU a FS
is associated, representing its ”semantics”, the ”visible” part possibly involved
in constraints for the definition of structures of higher level. DR’s are undirected
binary relations between DU’s. They also are associated with a FS.

3.2 CDML grammars

Grammar. A CDML grammar consists in a set of rules. Each rule is devoted to
the description of a particular element of discourse. Every rule is typed according
to the kind of element it is concerned with.

82

Rule. The general form of a rule is:
RuleType [RuleName] fs [Dependencies]:

[Perspective]
Constraints

RuleType may be Unit or Relation; RuleName is the name of the rule. Per-
spective defines a view on the discourse structure, allowing some operations of
selection and abstraction; Constraints is a list of constraint calls, belonging to
a set of available ones according to the rule type (i.e. to the targeted discourse
element). fs is a feature structure, representing information to be associated with
the detected element. If the rule is satisfied, a discourse element is generated,
which can, in turn, be considered by other rules in order to apply constraints of
a higher order. Dependency relations between rules can be specified if necessary.

Constraint call. A constraint call has the following form:
constraint-name(arg-1:val-1, arg-2:val-2...)

where arg-1, arg-2... are argument names, and val-1, val-2... are parameters.
The order is meaningless and the values are implicitly typed (as boolean, integer,
string, FS). When a constraint possesses a FS argument p, the intended meaning
is generally to select one or several objects matching p. For example, the rule:

Unit void:
start(pattern:{type:"sentence"})

specifies a discourse unit beginning with an element whose FS unifies with the
indicated pattern, i.e. an element typed as ”sentence”.

We distinguish two kinds of unifications: standard, noted ∼, and strong, noted
≈ (pattern matching). Standard unification only imposes compatibility of two
FS’s, while the strong one considers the first FS as a model for the other. Hence,
{a : b} ∼ {c : d} but {a : b} !≈ {c : d}. The comparison between a ”pattern”
argument of a constraint and the FS of a TO works with strong unification. Pat-
terns can include variables. Variable sharing is authorised. It allows transmission
of information, both for compatibility checking (between variables shared by sev-
eral constraints in the same rule) and information synthesis (in the output FS
of the rule). For example:

Unit segment {firstSentenceLength:$a}:
start(pattern:{type:"sentence", size:$a})
end(pattern:{type:"sentence", size:$a})

selects text segments beginning and ending by sentences of the same ”size”, and
return this value in the $a variable.

Meta-constraint. We distinguish simple and meta constraints. A simple con-
straint expresses a first order relation between its arguments. A meta-constraint
expresses a relation between an object o and a set S. Intuitively, S will be a
set of already selected candidates, and o will be any of them having a ”special
position” in S. For example the rule:

Unit frame {type:"frame", sub-type:"temporal"}:
... Constraints ...
longest()

83

only keeps units with maximal length among all those satisfying Constraints.
Meta-constraints can be seen as the CDML analogue of optimisation constraints
in numerical constraint systems: in both cases, the problem is to compare differ-
ent candidates and to select one, or several, which are in some sense ”prefered”.

Relation. A discourse relation (DR) is defined by constraints on the two DU’s
it relates, called its targets. The following grammar captures relations between
elements known as subject and verb, ignoring order and distance between them:

Relation {type:"subject-verb"}:
target(pattern:{type:"subject"})
target(pattern:{type:"verb"})

Comparator. Constraints may use comparators as parameters in order to spec-
ify complex relations between text objects. For example, the homogeneity con-
straint is satisfied if all conditions defined by its comparator are satisfied. The
following grammar, which will be further explained in section 4.1, defines units
called ”discourse frames”, in which all verbs must have the same tense.

Unit frame {type:"frame", sub-type:"temporal"}:
... homogeneity(comparator:scope) ...

Comparator scope ({type:"verb"} as $v1, {type:"verb"} as $v2):
$v1/tense = $v2/tense

Variables ($v1, $v2) represent TO’s matching {type:"verb"}. Expressions like
$v1/tense express pathes within FS’s.

Perspective. Every rule may include what we call its analysis perspective, de-
fined by a set of directives which specify a particular view on textual data. The
Maximal Relevant Unit (MRU) directive restricts the search space in such a way
that all objects considered by a rule should belong to the same MRU. For ex-
ample, since the subject-verb relation is inner to a sentence, we can write:

Relation {type: "subject-verb"}:
@mru:[’sentence’]

target(pattern:{type:"subject"})
target(pattern:{type:"verb"})

It is also possible to filter some elements of the textual flow, by ignoring
unwanted elements or by listing exhaustively accepted ones. An illustration is
provided in section 4.2. Finally, we can transform a discourse unit into a single
token. Its constituents become then invisible. It is the case of subordinate clauses
in the following example, so that only the tense of the verb of the main clauses
is captured.

Unit {type: "present-sentence"}:
@tokens:[’subordinate-clause’]

contains(pattern:{type:"verb", tense:"present"})

84

4 Examples of CDML grammars

4.1 Temporal discourse frames.

The discourse framing theory [10] describes a specific mode of discourse organ-
isation, identifying textual segments called discourse frames. These frames are
homogeneous according to a semantic criterion given in a detached, sentence-
initial expression called discourse frame introducer. We focus here on temporal
frames. In the following example1, the phrase From 1965 to 1985 is an introducer
which constrains the temporal localisation in a large subsequent text span.

From 1965 to 1985 the number of high-school students has increased by 70%, but at different
rythms and intensities depending on academies and departments. Lower in South-West and Massif
Central, moderate in Brittany and Paris, the rise has been considerable in Mid-West and Al-
sace. [...] Also occurs the schooling duration increase which was more important in departments
where, in the middle of the 60’s, study continuation after primary school was far from being
systematic. [...]

We may assume that temporal expressions have been detected and given a
semantic analysis, by means of local grammars. The most challenging problem
is then to detect their scope i.e. the end of the frames. Different clues can be
invoked [11], of which three will be considered here: semantical coherence of
temporal expressions within the frame, tense homogeneity, and structural con-
straints, like the fact that frames contains complete sentences and cannot span
over several paragraphs. This is expressed by the following CDML grammar:

Unit frame {type:"frame", sub-type:"temporal"}:
start(pattern:{type : "introducer"})
end(pattern:{type : "sentence"})
not absolutePresence(pattern:{type:"introducer"}, amount:2)
homogeneity(comparator : scope)
longest()

Comparator scope ({type : "verb"} as $v1, {type : "verb"} as $v2):
$v1/tense = $v2/tense

Comparator scope ({type : "introducer"} as $i, {type : "temporal"} as $t):
(($i/start >= $t/start) and ($i/start <= $t/end))

or
(($i/end >= $t/start) and ($i/end <= $t/end))

We are looking for a textual unit starting with a discourse object identified as
an introducer and ending with a sentence. It cannot contain two introducers
(the second would open a new frame), and is homogeneous w.r.t. two criterions,
expressed by the two signatures of the ”scope” comparator: 1) two verbs must
have the same tense and 2) every temporal expression must denote a period that
overlap with the period of the introducer. Finally, among all admissible candi-
dates, we keep the longest segment. Textual units satisfying these constraints
are marked with the type ”frame” and sub-type ”temporal”.

1 Excerpt from: Hérin, R. and Rouault, R., Atlas de la france scolaire de la maternelle
au lycée. Our translation.

85

4.2 Contrast and structural parallelism.

The following example focuses on constrast effect resulting from structural par-
allelism. Figure 12 illustrates such a configuration: similar (or parallel) struc-
tures introducing three textual segments result in contrastive relations between
these segments. We can characterise these introducing structures as composed
of ”non consecutive n-grams”, whose components belong to some set of ”rele-
vant words” (2-grams of verbs in our example, such as (”résister”, ”être”) which
appears three times). The repetition of such n-grams (2, 4, 6 on our example)
results in relations of parallelism between them. Textual segments such as 1, 3
and 5, introduced by such parallel n-grams become in consequence important
components of discourse structure, supporting a contrastive relation whose effect
constitues a well known rhetorical device. The following grammar detects such
a structure.

Fig. 1. Contrast and structural parallelism

Unit nGram {type:"nGram", length:2, elements:{lemma-1:$l1, lemma-2:$l2}}:
@mru:[’sentence’]
@accept:[’relevantWord’]

consecution(patterns:[{type:"relevantWord",lemma:$l1}, {type:"relevantWord",lemma:$l2}])

Relation parallelism {type:"parallelism"} requires nGram:
@mru:[’document’]

leftTarget(pattern:{type:"nGram",elements:{lemma-1:$l1, lemma-2:$l2}})
rightTarget(pattern:{type:"nGram",elements:{lemma-1:$l1, lemma-2:$l2}})

Unit structuringNGram {type:"structuringNGram"} requires parallelism, nGram:
@mru:[’document’]

is(pattern:{type:"nGram"})
inRelation(pattern:{type:"parallelism"})

Unit segment {type: "segment"} requires structuringNGram:
start(pattern: {type:"structuringNGram"})
end(pattern: {type:"sentence"})
not absolutePresence(pattern: {type:"structuringNGram"}, amount:2)
longest()

2 Excerpt from Le Monde Diplomatique.

86

”Plain” words (verbs, nouns...) are supposed to be already annotated as
relevantWords and represented by a FS providing their lemma. In order to
describe (non consecutive) n-grams, we only consider these relevant words (@ac-
cept:[’relevantWord’]). Only sequences of such words present in the same
sentence are taken into account (@mru:[’sentence’]). FS’s associated with n-
grams provide information about the lemmatized forms of their components. The
parallelism relation whose distance can be maximal (@mru:[’document’]) links
n-grams whose components share the same lemma (as required by unification).
All n-grams occurring in a parallelism relation are considered as structuring-
NGrams. Segments are defined as units composed of full sentences, introduced by
a structuring element, and which do not contain any other structuring element.

5 Formal semantics of CDML grammars

The semantics of CDML grammars is defined in an incremental, constructive,
way. At a given stage, we have a set of discourse elements (DU’s and DR’s),
whose projection on text is given as a sequence of TO’s. This sequence contains
all necessary information on existing elements. We assume an initial state of
discourse, represented by an initial TO sequence. Each rule will be applied in
turn, according to some specified order. It looks in the current discourse state for
objects that can be gathered and related, according to its set of constraints, in
order to identify new elements (units or relations). If it succeeds, these elements
are created (and materialised by new TO’s), resulting in a new discourse state.

In fact, a bit more precisely, each rule, before applying its constraints, builds
its own view of the discourse state. This is the role of the Perspective part of
the rules (cf. section 3.2). In particular the @mru directives may cut the text in
successive blocks, to be treated one by one in turn. However, for sake of simplicity,
we will omit this question in order to focus on constraints themselves.

Definitions and notations: A text object (TO) is a token or a boundary. Each
object o has an associate feature structure (FS), noted fs(o). F denotes the set
of feature sets. TO’s can be gathered in sequences (TOS). The resulting order
relation is noted ≤. Boundaries are organised as couples of opening and ending
ones, in this order, with the same FS. A text T is a particular TOS which
represents a state of discourse.

5.1 Constraints: units

Definition: A candidate unit u is a subsequence of T . It can also be seen as
an interval in T , identified by its lower and upper bounds, i.e. its first and last
TO’s. Let U(T) be the set of unit candidate for the text T . Hence:

U(T) = {[a, b]
∣∣ a, b ∈ T, a ≤ b}

where [a, b] = {c
∣∣ a ≤ c ≤ b}. We note s(u) and e(u) resp. the first and last

element, so that, for instance, fs(s(u)) will denote the FS associated with the
beginning TO of u.

87

Remember that a CDML constraint call has the form:
constraint-name(arg-1:val-1, arg-2:val-2...)

We consider first the case of simple constraints. With each constraint-name a
constraint is associated:

Const(unit : u, arg1 : val1, arg2 : val2...)

Const is a computable relation relating arguments of the appropriate types. We
keep the ”argument naming” convention. Observe the introduction of an extra
argument u of type unit. This argument is implicit in the syntax and made
explicit in the semantics.

Let us consider some examples of constraint definitions. The Start constraint
checks that a unit candidate u begins with a TO matching (by strong unification)
a given pattern f ∈ F according to the following condition :

Start(unit : u, pattern : f) ≡ (fs(s(u)) ≈ f)

The AbsolutePresence constraint (AP for short) checks that the number of
elements of a unit u matching a given pattern f is greater or equal to some given
integer q:

let S = {i
∣∣ s(u) ≤ i ≤ e(u), fs(i) ≈ f}

AP (unit : u, pattern : f, amount : q) ≡ |S| ≥ q

where |S| denotes the cardinality of S.
Let us turn now toward meta-constraints. Their intended semantics is to

select one (or more) units in a set U . Hence, the semantics of a meta constraint
call:

meta-constraint-name(arg-1:val-1, arg-2:val-2...)

is a constraint with the following signature:

MConst(unitSet : U, unit : u, arg1 : val1, arg2 : val2...)

For example, the Longest constraint is a meta constraint that, in a set of
candidates U , only keeps the longest for inclusion order.

Longest(unitSet : U, unit : u) ≡
∣∣{v

∣∣ v ∈ U, u # v}
∣∣ = 0

Consider now the set of constraint calls defining a (unit) rule. For sake of
simplicity, we assume first that it contains at most one meta constraint µ and
that no variable appears in the parameters of constraint calls. By the above
process, we get a set of constraints:

C = {c1(unit : u, p1), ..., cn(unit : u, pn), µ(unitSet : U, unit : u, pµ)}

where µ(unitSet : U, unit : u, p) ≡ True if there is no meta constraint at all.
A solution of C for a text T is the set S defined by:

S0 = {u
∣∣ u ∈ U(T),∀i ∈ [1, n], ci(unit : u, pi) is satisfied}

S = {u
∣∣ u ∈ S0, µ(unitSet : S0, unit : u, pµ) is satisfied}

88

If there is more than one meta constraint, we separate the set of constraint
calls in successive parts consisting of 0 or more simple constraints, followed by
one meta constraint. We apply the previous process to the first part; then to the
second, replacing U(T) by S; and so on: the set of solution at one stage is the
range of units considered for the following one.

In the general case, variables appear in the parameters. We assume then
that the associated constraints compute a binding σ for which satisfiability is
ensured. Writing (t σ) as usual for the instance of a term t by σ, the definition
of a solution becomes:

S0 = {(u, σ)
∣∣ u ∈ U(T),∀i ∈ [1, n], ci(unit : u, (pi σ)) is satisfied)

S = {(u, σ)
∣∣ u ∈ S0, µ(unitSet : S0, unit : u, (pµ σ)) is satisfied}

with σ being the empty binding in the no-variable case.

5.2 Constraints: relations

Definitions: A candidate relation r links two discourse units. We note l(r) and
r(r) resp. the left and right targets of r. These units are two TOS’s (text object
sequences), that is to say two intervals in a text T . Let a1, b1 (and a2, b2) be
the opening and ending boudaries of the first unit (resp. the second unit). Let
R(T) be the set of relation candidates for the text T :

R(T) = {([a1, b1], [a2, b2])
∣∣ a1, a2, b1, b2 ∈ T, a1 ≤ b1 ≤ a2 ≤ b2}

Each constraint-name is associated with a constraint Const:

Const(relation : r, arg1 : val1, arg2 : val2...)

where r ranges in R(T). Let us consider an example of constraint definition.
The Target constraint checks that a relation candidate r links at last one unit
whose FS matches a given pattern f ∈ F. Knowing that a unit’s FS is in practice
supported by both its boundaries (cf. infra), we get:

Target(relation : r, pattern : f) ≡ (fs(s(l(r))) ≈ f) ∨ (fs(s(r(r))) ≈ f)

Meta-constraints on relations may also be defined. Their intended semantics is
to select one (or more) relation in a set of relations. The semantics of a relation
constraints set is defined in the same way as in the unit case.

5.3 Rules

Consider a rule (without Perspective part):
RuleType RuleName fs:

Constraints

Its semantics is defined as the transformation of a discourse state, represented
by a text T , into a new one, T ′, in which new elements of the corresponding
type (unit or relation) have been added.

89

Let S be the solution set of the Constraints. S consists in a set of couples
(u, σ) (resp. (r, σ)) of a unit (resp. relation) candidate u (resp. r) and a variable
binding σ. For each element of S, add to T a discourse element based on u (or r)
with feature structure obtained by instanciating fs with σ, namely: (fs σ). In the
unit case, this is done by inserting pair (i, j) of opening and ending boundaries
around u in T , (fs σ) being their common feature structure. T ′ is the resulting
sequence of TO’s.

5.4 Grammars

Remember again that some rule may need the application of other ones as pre-
requesite:

RuleType RuleName fs requires rule2, rule3:

Assuming that no loop is created in the requires relation, some order compatible
with this relation can be defined on the set of rules. For example we can take
the (only) order which is also compatible with the writing order of the rules in
the grammar. Given an input text T , applying each rule in turn, in this order,
produces a new text T ′. The so defined function is the semantics of the grammar.

6 Implementation and results

The LinguaStream platform. A first implementation of a a CDML analyzer
comes as a component for the LinguaStream platform3 and takes advantage of
its principles [12]. This generic NLP platform, allows complex processing streams
to be designed, by means of successive components of various types and levels:
part-of-speech, syntax, semantics... TO’s on which CDML expresses constraints
can be any objects produced by such aforegoing components.

Constraint satisfaction and optimization. Working at discourse level makes it
necessary to take important complexity problems into consideration. Indeed,
search space initialization and parsing may result in time and memory con-
suming operations. Different elements of our approach intend to address this
problem. First of all, the MRU mechanism presented above makes it possible to
optimize the in-memory discourse representation sent to the constraint solver.
Other perspective directives (accept, reject and tokens) reduce this represen-
tation to really relevant objects for a given rule. In addition, grammar rules are
organized in a dependance tree which makes it possible for independant rules to
work on a same discourse representation.

Furthermore, we saw that constraint satisfaction consists in search space
filtering, which can be costly. However, we can use some strategies in order to
reduce its initial state. For example, in the case of discourse units, insofar as
the search space consists in a set of TOS, a naive (but sometimes unavoidable)
generation of its initial state results in (n(n + 1)/2) candidates, where n is the
3 http://www.linguastream.org.

90

number of TO’s. In order to be more efficient, the system looks for a special,
strongly selective, constraint (such as Start or Target) and applies it first, in
order to generate the search space to which other constraints are applied next.

Results. The meta-model status of the proposed formalism makes it quite dif-
ficult to evaluate from a quantitative point of view. However, specific models,
expressed using CDML, may. For example, we proceeded to an evaluation of the
discourse framing analyzer presented above [13]. Results obtained using CDML
are very similar to those obtained with a dedicated ad hoc software component.
Time needed for scope analysis is about one minute, for a corpus of 65,000
words, on a standard workstation. Moreover, the linguistic modelisation time is
significantly improved thanks to the declarative paradigm of CDML grammars.

7 Discussion and perspectives

It should be clear now what the main distinctive feature of our model is. Namely
that, while current approaches focus on a specific vision of ”what discourse
structure is” with strong theoretical a priori’s (or on some specific phenomena
such as anaphora, discourses frames, etc.), our main objective was to find a
unified framework allowing to describe - and process - a wide range of discursive
structures. Our hypothesis is that a constraint-based approach is fully adapted
to this goal and the CDML language was designed in this spirit.

We think that our first experiments (as illustrated by the few examples given
in the paper) give credit to this hypothesis. They clearly show that it is possible
in CDML to combine the detection of both segments and relations, exploiting a
variety of indices, at different levels of granularity, abstracting from sequentiality
and linearity of text when necessary. All of these were important requirements
we assigned to our undertaking, as sketched out in section 2. Moreover, while one
could have feared or expected to pay these ”good news” relative to expressivity
by ”bad news” on the efficiency side, it appears that the system remains quite
manageable, at least for research purposes, in order to perform experiments,
projecting discourse models on corpora.

However these first applications, besides being still modest in size and num-
ber, concern a certain type of discourse structures, which we can characterise in
a few words: they favour structures at a rather high or medium level of granu-
larity, which can be discovered in a top-down strategy, exploiting combinations
of scattered linguistic markers. This contrast on one side with more global phe-
nomena as lexical cohesion (text-tiling and the like) and on the other with as-
cending approaches, where syntactic sentence structure play an important part
(the various theories of ”discourse relations”: SDRT, D-LTAG...). This choice is
not aimless. In particular, ascending approaches postpone discourse analysis to
previous, difficult, sentential analyses, discarding certain ”global effects” which
can be captured at a least cost. On the other size, methods based on statistical
techniques only detect very rough structures.

Nevertheless the question arises whether CDML can take in charge these ap-
proaches, and there are some hints that it should be feasible. Concerning lexical

91

cohesion, it could be tackled thanks to a new constraint, expressing some kind
of ”homogeneity” between the sets of lexical descriptors of consecutive text seg-
ments. Turning to ”discourse relations” based theories, the constraint paradigm
seems quite relevant inasmuch as some of those theories extend the syntax ”out-
side the sentence” and that constraints have proved their value in syntax de-
scription. The passage from specific algorithm to static declarative description
certainly looks possible and beneficial. We could also invoke the ”rule-based ap-
proach” of [4] where ”each rule is conditioned by a set of constraints”, expressing
lexical, syntactic or semantic information, each having a specific ”weight”.

Exploring such extensions of the range of CDML applications is a major
aspect of our present and future research. The other one addressing the question
of efficiency of the constraint resolution techniques.

References

1. Blache, P.: Property grammars: A fully constraint-based theory. In Christiansen,
H., Skadhauge, P.R., Villadsen, J., eds.: Constraint Solving and Language Process-
ing. Number LNAI 3438, Springer (2005) 1–16

2. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: A theory of Text
Organization. Technical Report ISI-RS-87-190, ISI: Information Sciences Institute,
Marina del Rey, CA (1987)

3. Asher, N.: Reference to Abstract Objects in Discourse. Kluwer (1993)
4. Polanyi, L., van den Berg, M., Culy, C., Thione, G., Ahn, D.: A rule based approach

to discourse parsing. In: Proceeding of SIGDIAL 2004, Boston (2004)
5. Webber, B.: D-LTAG: extending lexicalizer tag to discourse. Cognitive Science

(28) (2004) 751–779
6. Hearst, M.: Multi-paragraph segmentation of expository text. In: Proceedings of

the 32nd. Annual Meeting of the Association for Computational Linguistics, New
Mexico State University, Las Cruces, New Mexico (1994) 9–16

7. Teufel, S.: Argumentative Zoning: Information Extraction from Scientific Articles.
PhD thesis, University of Edinburgh (1999)

8. Widlöcher, A.: Analyse par contraintes de l’organisation du discours. In Mertens,
P., Fairon, C., Dister, A., Watrin, P., eds.: Actes de TALN 2006, Leuven, Belgique,
Presses Universitaires de Louvain (2006) 367–376

9. Halliday, M.A.K., Hasan, R.: Cohesion in English. Longman, London (1976)
10. Charolles, M.: L’encadrement du discours : Univers, champs, domaines et espaces.

Cahier de Recherche Linguistique 6 (1997)
11. Bilhaut, F., Ho-Dac, M., Borillo, A., Charnois, T., Enjalbert, P., Le Draoulec, A.,

Mathet, Y., Miguet, H., Péry-Woodley, M.P., Sarda, L.: Indexation discursive pour
la navigation intradocumentaire : cadres temporels et spatiaux dans l’information
géographique. In: Proceedings of TALN 2003, Batz-sur-Mer, France (2003) 315–320

12. Bilhaut, F., Widlöcher, A.: LinguaStream: An Integrated Environment for Com-
putational Linguistics Experimentation. In: Proceedings of the 11th Conference
of the European Chapter of the Association of Computational Linguistics (EACL)
(Companion Volume), Trento, Italie (2006) 95–98

13. Ferrari, S., Bilhaut, F., Widlöcher, A., Laignelet, M.: Une plate-forme logicielle et
une démarche pour la validation de ressources linguistiques sur corpus : application
à l’évaluation de la détection automatique de cadres temporels. In: Actes des 4èmes
Journées de Linguistique de Corpus, Lorient, France (2005) To be published.

92

Making sense out of nonsense:
The acceptability of repairs

Barbara Hemforth*, Joël Pynte*, Emmanuel Bellengier**

* LPNC, CNRS, Université Paris Descartes
**LPL, CNRS, Université Aix en Provence

Abstract

Acceptability judgments are very often taken to be a central empirical resource of
grammaticality. However, it has been shown that grammaticality has to be considered
as graded (e.g., Blache, Hemforth, & Rauzy, 2006; Bresnan, Cueni, Nikitina, &
Baayen, 2005; Keller, 2000), such that not all constructions that used to be considered
as ungrammatical are judged alike in every possible context. In this paper, we will
present two experiments on disfluency–based repairs in French. We will show that
non-linguistic constraints such as the current content of an individuals working
memory play an important role for acceptability judgments.

In our first experiment, applying a speeded end of the sentences acceptability task
with speeded auditory presentation we found that in French versions of sentences like
(1,2) the inconsistent continuation is much more acceptable when a compatible but
repaired constituent has been mentioned before, thus still influencing sentence
interpretation.

(1)
I will go to the baker, uh no, the butcher on my way home. I need meat /bread.
(2)
I will go to the butcher on my way home. I need meat /bread

In our second experiment, we show that this effect is not due to the negation or the

simple fact that the repaired constituent has been mentioned, since in French versions
of sentences like (3), the inconsistent continuation is no more acceptable than in
sentences like (2).

(3)
I will not go to the baker but to the butcher on my way home. I need meat /bread.

Introduction

The human sentence processing system has to be extremely robust because it does
not only have to cope with highly standardized and edited to correct input, but very

93

often also with deficient input caused by various non-linguistic situational factors. In
this paper, we will look at the comprehension of disfluent utterances. We will see that
disfluencies lead to changes in acceptability of sentences which are semantically
incorrect.

Disfluencies are highly frequent in natural language production. They include
editing terms such as uh and um as well as repeats (“I – uh - I wouldn’t”, e.g. Clark &
Wasow, 1998) and revisions. Typically, in spoken language, disfluencies can be
found in about six out of 100 words (Fox Tree, 1995). In the corpus used by Levelt
(1983), 25 % of the annotated disfluencies were repairs as the structures under
investigation here. Of these, 62 % had editing expressions like Dutch versions of “I
mean” or “that is” or mostly (30 % of all repairs) the Dutch version of “uh”. Since
disfluencies in general and repairs in particular are so frequent, listeners have to find
ways to process them, they have to detect the disfluency, see what the problem is, and
edit out the part of speech to be repaired to arrive at the intended utterance.

However, recently it has been claimed that this process of editing out may not
always work perfectly well. Lau and Ferreira (2005, see also Bailey & Ferreira, 2003,
Ferreira, Lau, & Bailey, 2004) claim that the reparandum (the to be repaired
constituent) in repetitions and corrections introduces lexical content and local
syntactic structure which are not fully overwritten by the correction. They looked at a
disfluency involving the repair of a verb (like chosen vs. selected) in sentences like (4
a, b).

(4)

a. The little girl chosen-uh selected for the role celebrated with her parents and

friends.
b. The little girl picked-uh selected for the role celebrated with her parents and

friends.

Sentences like these with verbs like “selected” which are ambiguous between a

main verb and a past participle reading usually lead to comprehension difficulty (e.g.,
increased reading times), on the disambiguating prepositional phrase (“for the role”),
in particular when the verb is biased for a simple main verb imperfect reading. This
garden-path disappeared when the ambiguous verb was preceded by an unambiguous
past participle (“chosen”).

Although verb replacement is not very frequent (0,7 % of all repairs), it is highly
interesting, because verbs immediately project syntactic structure that can be used for
further syntactic integration. The structure projected by the replaced verb form (e.g.
the past participle “chosen”) apparently influences further processing, in that it
reduces the garden-path in sentences like (4a) but not in (4b).

In our experiments, we investigated the influence of more frequent repairs on

listeners' on-line processing of speech: repairs involving NPs as in (1). For French,
corpus studies on radio interviews (Boula de Mareüil et al., 2005) show that revisions
very often include a preposition (from 22%; to 7%) or a determiner (30 %). This
means that at least 30% of the revisions include noun phrases, probably more, since a
large part of the prepositions heads a prepositional phrase including a noun phrase.

94

This makes noun phrase revisions a fairly frequent phenomenon in spoken language.
Another important difference between verb revisions and NP revisions is that the
latter at least in our study do not involve the projection and possibly revision of
syntactic structure. Since the NPs in our experiments did not have these far reaching
syntactic effects, it was quite possible that the repaired NP does not show any
influence on later processing.

Experiment 1: Repairs

In our first experiment, our basic hypothesis follows Bailey and Ferreira in
claiming that the NP reparandum, even though it is different with respect to structure
as well as frequency of occurrence, is not fully deleted just as the verbal reparandum.
If so, it should affect the final interpretation of the sentence containing the
replacement.

Material and Procedure

Participants. 56 native French undergraduate students, from the University of
Aix-en-Provence and the University of Compiègne participated in this experiment in
exchange for credits in a psychology (Aix) or linguistics (Compiègne) class.

Material. We presented participants with synthesized sentences using Elan SaySo

™ (Elan Speech). All utterances were produced at 22 kHz, using the female voice.
Two sentences were synthesized for each item. The second sentence was speeded up
by 30%, using a speed tag that does not change basic parameters like frequency. The
synthesized materials were inspected by all authors and judged as highly natural.

We constructed 16 items each in four conditions as in examples (5a, b) and (6a, b).

(5) Je dois aller chez le boucher sur le chemin du retour. J'ai besoin de a. viande /

b. bread.

I will have to go to the butcher on my way home. I need some a. meat/ b. bread.

(6) Je dois aller chez le boulanger, euh non le boucher sur le chemin du retour. J'ai

besoin de a. viande /b. pain.

 I will have to go the baker uh no the butcher on my way home. I need some a.

meat/ b. bread.

In half of our sentences we included disfluencies in form of an NP replacement.

The second experimental factor was the consistency of the last word of the second
sentence with the contents of the first sentence.

The object of the 2nd sentence made this sentence either consistent (5a, 6a) or
inconsistent (5b, 6b) as a continuation of the first sentence. The inconsistent

95

continuations were however consistent with the reparandum. For half of the
participants, the reparans and the reparandum were exchanged to control for
plausibility effects.

Procedure. Participants were told that they would hear sentences generated by a

computer. For each experimental item, a visual signal indicated that a sentence would
be played. Once the sentence was complete, the participant had to judge its
grammaticality. Judgments were automatically recorded by the experimental software
(PERCEVAL André & al. 2003). Each experimental item was presented in one of the
four experimental conditions across participants. Four randomized lists were prepared
including 32 fillers half of which with disfluencies and 8 training sentences. The filler
sentences varied in syntactic and semantic acceptability.

Predictions: If the reparandum still affects sentence interpretation, it should

influence acceptability judgments in that sentences with an inconsistent continuation,
that is however consistent with the reparandum; should be judged as more acceptable
than sentences without a replacement. We therefore predict an interaction of the
experimental factors (repair vs. no repair, and consistent vs. inconsistent).

Results

These predictions were confirmed in the acceptability judgements (see Fig. 1).
Inconsistent sentences were judged less acceptable than consistent sentences
(F1(1,55) = 111,04; p < 0.001; F2(1,15) = 129,17; p < 0,001). Sentences with repairs
were more acceptable than sentences without repairs (F1(1, 55)=10,07; p<0.01;
F2(1,15)=18,54; p<0;01). However, this main effect resulted from a reliable
interaction between our two experimental factors: Participants judged sentences like
(6b) as being more acceptable than (5b) ((F1(1,55) = 9.40; p < 0.05; F2(1,15) = 8.14;
p < 0;05).

Discussion

Obviously, the reparandum affects the interpretation of the sentence in that
continuations which are compatible with the reparandum but not with the reparans are
still fairly acceptable. However, this effect may not be due to the disfluency but
simply to the fact that the reparandum has been mentioned in the first sentence and is
therefore available for a reinterpretation. Given that comprehenders like to make
sense of whatever linguistic input is given to them, just mentioning the “baker” may
make it easier to integrate “bread” although that information should have been deleted
from the relevant sentential context. In order to test this possibility, we ran a second
experiment.

96

0

20

40

60

80

100

no repair repair

Acceptability
judgements: Repairs

consistent inconsistent

Fig. 1.

Experiment 2

In this experiment, we replaced the repairs from Experiment 1 with negations in
order to test whether the persistence effect observed in Experiment 1 is due to the
disfluency or to a more general effect of negations or even just an effect of the
mentioning of the to be corrected NP..

(7) Je ne dois pas aller chez le boulanger mais chez le boucher sur le chemin du

retour. J’ai besoin de a.viande, b.pain.
I will not have to go to the baker but to the butcher on my way home. I need some

a. meat/ b. bread

Participants. 28 undergraduates of the University of Compiègne participated in

this experiment.

Procedure and materials. We replaced the disfluencies by negations like (7a,b)

for the 16 items used in Experiment 1. Otherwise, procedures as well as fillers were
identical to those of Experiment 1.

97

Results

The factor “plausibility” was highly significant in this experiment (see Fig. 2) as in
Experiment 1 (F1(1,27) = 230,46, p < 001; F2(1,15) = 210,55, p < 0.001). Negated
sentences were slightly less acceptable than non-negated sentences (F1(1,27) = 4,46,
p < 0.05; F2(1,15) = 4,24, p < 0.05). However, there was no reliable interaction of
plausibility and negation (ps > .20).

0

50

100

no negation negation

Acceptability
judgements: Negations

consistent inconsistent

Fig. 2.

Experiment 2 shows that the “lingering” effect is not simply a consequence of the
to be corrected NP having been mentioned, and thus not just an effect of priming. It is
apparently specific for the processing of repairs.

Discussion

Disfluencies obviously do have a very specific effect on sentence processing. The
fact that a non-negated discourse entity has been processed and stored in working
memory at some point leaves a trace that can later be re-used to integrate linguistic
material that should be judged as inconsistent with the sentence. An important
differences between the disfluencies and the negations is that the to be corrected NP
has at some point been positively integrated as part of the discourse model whereas
this is not the case for the simple negations.

98

As Fodor and Inoue (1995) state:

“When a syntactic analysis is revised, it is essential that any semantic interpretation

based on the initial incorrect analysis be erased. But it appears that the human
sentence comprehension routines are not perfect; once a chunk of semantic
representation is constructed and stored in working memory, it tends to persist unless
obliterated by a new one overlaid on it.”

How to account for the disfluency effects?

Obviously a parser that relies only on what a linguistic operation (such as a repair)
is supposed to do cannot fully account for actual human performance data. To account
for these effects, not only linguistic, but also cognitive constraints have to be taken
into account. One of the general strategies is Fodor and Inoue’s (2000) strategy
“attach anyway” or even more generally “process anyway”, a very general tendency
to make sense of whatever input the human sentence processor is confronted with.
This is in most cases a very useful strategy, since we are so often confronted with
only approximately correct input.

Konieczny, Hemforth, Scheepers, and Strube (1996), for example, show how
human comprehenders cope with input from a supposedly foreign speaker: In these
experiments on German word order ambiguities, participants tended to interpret
sentences with unconventional object<subject ordering as subject<object sentences, in
particular, when they assumed that these sentences were produced by a non-native
speaker (in this case an Irish student with a clearly noticeable accent). Taking the
assumed imperfections of a foreign speaker into account, they also accepted
ungrammatical sentences with two nominative marked subject NPs or two accusative
marked objects more easily (mostly interpreting them as canonical subject<object
sentences).

Obviously, the human sentence processor takes linguistic information - even if it is
fully unambiguous - as more or less soft constraints depending on the context of the
utterance that may be overridden in the interest of making sense out of nonsense.

References

Altmann, G.T.M., & Kamide, Y. (1999). Incremental interpretation at verbs:
Restricting the domain of subsequent reference. Cognition, 73, 247-264.

André, C., Ghio A., Cavé C., & Teston B. (2003). "PERCEVAL: a Computer-Driven
System for Experimentation on Auditory and Visual Perception", Proceedings of
XVth ICPhS, Barcelone, Espagne, p. 1421-1424.

Bailey, K.G.B, & Ferreira, F. (2003). Disfluencies influence syntactic parsing. Journal
of Memory and Language, 49, 183-200.

99

Bailey, K., & Ferreira, F. (2007). The processing of filled pause disfluencies in the
visual world. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray and R. L. Hill,
Eye Movements: A Window on Mind and Brain, Elsevier LTD, 486-500.

Philippe Blache, Barbara Hemforth & Stéphane Rauzy (2006), "Acceptability
Prediction by Means of Grammaticality Quantification" , in proceedings of COLING-
ACL 06.

Boula de Mareüil, P., Habert, B., Bénard, F., Adda-Decker, M., Barras, C., Adda, G.,
& Paroubek. P. (2005). A quantitative study of disfluencies in French broadcast
interviews. In Proceedings of Disfluency In Spontaneous Speech (DISS) Workshop,
Aix-en-Provence, September 2005.

Brennan, S.E., & Schober, M.F. (2001). How listeners compensate for disfluencies in
spontaneous speech. Journal of Memory and Language, 44:274-296.

Bresnan, J., Cueni, A., Nikitina, T., & Baayen, H. 2007. Predicting the Dative
Alternation. In Cognitive Foundations of Interpretation, ed. by G. Boume, I. Kraemer,
and J. Zwarts. Amsterdam: Royal Netherlands Academy of Science, pp. 69-94.Clark,
H. H., & Wasow, T. (1998). Repeating words in spontaneous speech. Cognitive
Psychology , 37, 201-242.

Corley, M., & Hartsuiker, R.J. (2003). Hesitation in speech can. . . um. . . help a
listener understand. In Proceedings of CogSci2003, 2003.

Ferreira, F., Lau, E.F., & Bailey, K.G.D. (2004). Disfluencies, parsing, and tree-
adjoining grammars. Cognitive Science, 721-749.

Fodor, J. D., & Inoue, A. (1994). The diagnosis and cure of garden-paths. Journal of
Psycholinguistic Research, 23, 407-434.

Fodor, J. D. and A. Inoue (2000) “Garden Path Re-analysis: Attach (Anyway) and
Revision as Last Resort,” in M. de Vincenzi and V. Lombardo, eds., Cross-linguistic
Perspective on Language Processing, Kluwer, Dordrecht.

Fox Tree, J. E. (1995). The effects of false starts and repetitions on the processing of
subsequent words in spontaneous speech. Journal of Memory and Language, 34, 709–
738.

Keller F. (2000) Gradience in Grammar. Experimental and Computational Aspects of
Degrees of Grammaticality, Phd Thesis, University of Edinburgh.

Konieczny, L., Hemforth, B., Scheepers, C. & Strube, G. (1996). Reanalysen vs.
interne Reparaturen beim Sprachverstehen. In C. Habel, S. Kanngießer & G. Rickheit
(Eds.), Perspektiven der kognitiven Linguistik: Modelle und Methoden (pp. 161-183).
Opladen: Westdeutscher Verlag, 161-184.

100

Lau, E., & Ferreira, F. (2005). Lingering effects of disfluent material on
comprehension of garden path sentences, Language and Cognitive Processes, 2005,
20 (5), 633–666.

Levelt, W. J. M. (1983). Monitoring and self-repair in speech. Cognition, 14(1):41-
104.

Smith, V. L., & Clark, H. H. (1993). On the course of answering questions. Journal of
Memory and Language, 32, 25–38.

Tanenhaus, M.K., Spivey-Knowlton, M.J., Eberhard, K.M. & Sedivy, J.E. (l995).
Integration of visual and linguistic information in spoken language comprehension.
Science, 268, 1632-1634.

van Dyke, J., & Lewis, R. (2003). Distinguishing effects of structure and decay on
attachment and repair: A cue-based parsing account of recovery from misanalyzed
ambiguities. Journal of Memory and Language, 49 (2003) 285–31.

101

R
U

/C
S

/R
R

#113
C

H
R

IS
TIA

N
S

E
N

&
V

ILLA
D

S
E

N
(E

D
S

.):
C

O
N

S
TR

A
IN

TS
A

N
D

LA
N

G
U

A
G

E
P

R
O

C
E

S
S

IN
G

(C
S

LP
2007)

1

RECENT RESEARCH REPORTS

#116 Marco Baroni, Alessandro Lenci, and Magnus Sahlgren, editors. Proceed-
ings of the 2007 Workshop on Contextual Information in Semantic Space
Models: Beyond Words and Documents, Roskilde, Denmark, August 2007.

#115 Paolo Bouquet, Jérôme Euzenat, Chiara Ghidini, Deborah L. McGuinness,
Valeria de Paiva, Luciano Serafini, Pavel Shvaiko, and Holger Wache, edi-
tors. Proceedings of the 2007 workshop on Contexts and Ontologies Rep-
resentation and Reasoning (C&O:RR-2007), Roskilde, Denmark, August
2007.

#114 Bich-Liên Doan, Joemon Jose, and Massimo Melucci, editors. Proceedings
of the 2nd International Workshop on Context-Based Information Retrieval,
Roskilde, Denmark, August 2007.

#113 Henning Christiansen and Jørgen Villadsen, editors. Proceedings of the 4th
International Workshop on Constraints and Language Processing (CSLP
2007), Roskilde, Denmark, August 2007.

#112 Anders Kofod-Petersen, Jörg Cassens, David B. Leake, and Stefan Schulz,
editors. Proceedings of the 4th International Workshop on Modeling and
Reasoning in Context (MRC 2007) with Special Session on the Role of
Contextualization in Human Tasks (CHUT), Roskilde, Denmark, August
2007.

#111 Ioannis Hatzilygeroudis, Alvaro Ortigosa, and Maria D. Rodriguez-Moreno,
editors. Proceedings of the 2007 workshop on REpresentation models and
Techniques for Improving e-Learning: Bringing Context into the Web-based
Education (ReTIeL’07), Roskilde, Denmark, August 2007.

#110 Markus Rohde. Integrated Organization and Technology Development
(OTD) and the Impact of Socio-Cultural Concepts — A CSCW Perspective.
PhD thesis, Roskilde University, Roskilde, Denmark, 2007.

#109 Keld Helsgaun. An effective implementation of k -opt moves for the Lin-
Kernighan TSP heuristic. 2006, Roskilde University, Roskilde, Denmark.

#108 Pernille Bjørn. Virtual Project Teams — Distant Collaborative Practice and
Groupware Adaptation. PhD thesis, Roskilde University, Roskilde, Den-
mark, 2006.

#107 Henrik Bulskov Styltsvig. Ontology-based Information Retrieval. PhD the-
sis, Roskilde University, Roskilde, Denmark, 2006.

#106 Rasmus Knappe. Measures of Semantic Similarity and Relatedness for
Use in Ontology-based information Retrieval. PhD thesis, Roskilde Univer-
sity, Roskilde, Denmark, 2006.

#105 Davide Martinenghi. Advanced Techniques for Efficient Data Integrity
Checking. PhD thesis, Roskilde University, Roskilde, Denmark, 2005.

