
A practical approach to hypothetical database
queries

Henning Christiansen and Troels Andreasen

Roskilde University, Computer Science Dept.,
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: {troels, henning}@ruc.dk

Abstract. Hypothetical queries are queries embedding hypotheses about
the database. The embedded hypothesis in a hypothetical query indi-
cates, so to say, a state of the database intended for the rest of the
query. Thus the answer to a hypothetical query h > q, with a hypothesis
h, is in principle the result of evaluating q against the database revised
with h. In case h is inconsistent with the database, query evaluation
becomes a special case of counterfactual reasoning. However, the possi-
ble worlds semantics usually applied for this notion is not relevant for
database applications due to reasons of inefficiency. In this paper we dis-
cuss and compare different approaches to hypothetical queries, paying
special attention to potentials for efficient evaluation. As a central part
of the paper we present and discuss our own approach “counterfactual
exceptions”, which have the important property of, as opposed to the
other approaches discussed, requiring only minor overhead in query eval-
uation. This approach is thus realistic for practical implementation and
use in environments supporting large databases. The “price” for efficient
evaluation is an altered semantics, as compared to the other approaches.
However, it can be argued that this semantics is at least as appropriate
for database applications as that of the other approaches mentioned.

1 Introduction

The use of hypotheses is common in natural languages and is highly important
in many areas. In legal reasoning, for example, statements such as the following
often show up, “If the suspect had not been guilty, she would have ...”. Linguists,
philosophers and others have been interested in hypothetical expressions and
special attention have been payed to counterfactual reasoning in order to assign a
meaning to such statements and to be able to check the validity of counterfactual
arguments. Hypotheses are used, so to say, to modify reality as a set-up for an
expression, for instance by supposing hypothetically the fact that the suspect is
not guilty.

While premises of implications in classical logic in some cases may play the
role of hypotheses, they are not interesting for counterfacts as any conclusion
follows from a false premise. The most common approach to counterfactual rea-
soning is based on possible worlds models as introduced by Lewis in [17] and

discussed by Ginsberg in [13]. The semantics for a counterfactual expression
in the possible worlds’ models is: A conclusion follows from a counterfactual
premise if it holds in all worlds, satisfiyng the premise and being “sufficiently
close” to the real world.

Our main interest in this paper is counterfactual statements posed as queries
to potentially large databases and we consider the additional requirements that
this implies for a formalization and efficient implementation of the concept.
Firstly, we observe that it is undesirable to update a database in order to evaluate
a hypothetical query. Support of multiple users, simultaneously posing normal
queries will then require locking and roll-back functionality as needed for up-
dating requests. Also from the viewpoint of efficiency, updating the database,
perhaps to several possible states, during evaluation of a query, is problematic
as databases in general must be assumed to contain large amounts of data.

For knowledge base applications, assuming a small size and complex know-
ledge base, it may be reasonable to adapt a model-checking approach to coun-
terfactual reasoning as that of Grahne and Mendelzon in [14]. For database
applications with a large size base and with efficient query-answering as an ulti-
mate feature, it is unrealistic even in optimized implementations to consider all
close possible worlds, cf. the complexity results of [3, 4].

In order to seriously include hypothetical statements in a database query
language, we find it essential that the total amount of time spent on the evalua-
tion of a hypothetical query is comparable to that of a conventional query. This
makes it irrelevant to suggest a semantics which fully complies with a possible
worlds semantics.

In this paper, we compare different approaches to counterfactual reason-
ing, including our own proposal for a query evaluation mechanism intended for
databases [1]. We consider here only a single new “world” which adapts the hy-
pothesis and we do not need to change the database at all, instead we modify
the query evaluation procedure so it behaves as if the relevant changes had been
made.

One important issue in our discussion concerns to what extent the result of
a hypothetical query should reflect the actual structure of the database. The
structure of the database is the means by which the knowledge in the database
is represented in facts, rules and integrity constraints, thus the question is to
what extend a semantics should go beyond a purely model-theoretical interpre-
tation of the database. We argue that hypothetical querying and counterfactual
reasoning in general, in many cases should exploit more than just the model-
theoretical consequences of the database. The actual database structure, espe-
cially the database rules representing the “why’s”, are also of concern, when as-
similating hypothesis. To distinguish on this matter we introduce a logical prop-
erty called structure independence, indicating that the structure is ignored. Our
mechanism takes into account more database structure than other approaches
to counterfactual reasoning, in a way which seems intuitively acceptable for
database applications.

We consider databases consisting of positive rules and facts together with in-
tegrity constraints that limit the possible updates. We define a deductive database
as a finite set of clauses of the form

H ← A1 ∧ . . . ∧An,

where H is either an atom or the special symbol ⊥ and A1, . . . , An are atoms.
If n > 0 and H an atom, the clause is a rule; if n > 0 and H = ⊥, an integrity
constraint; if n = 0 and H an atom, a fact; the case with n = 0 and H = ⊥ is not
allowed. Atoms are first-order without function symbols. We refer to the usual
notions of Herbrand universe, least Herbrand model, and logical consequence. A
database is inconsistent if it has ⊥ as a logical consequence, and in this case we
consider any formula as a logical consequence of the database.

In order to accept something as a database, we assume also a query evaluation
mechanism (for short, an evaluator) which is a device capable of determining
whether or not a member of a certain class of formulas is a logical consequence
of a given instance of the database. One example of such a mechanism is SLD
resolution [15] which is complete for conjunctive queries to consistent databases.

2 Asserting hypotheses in database queries

We will use the notation φ > ψ for the statement “if φ were the case, would ψ
be the case” in the context of some database DB; φ is called a hypothesis, ψ the
(hypothetical) conclusion and the whole construct a hypothetical query. Our main
concern in the present paper is to consider the possible truth values of φ > ψ
and to consider how these values can be evaluated when φ > ψ is posed as a
query to DB. For simplicity, we assume ψ to be an atom, and we will consider
the impact of different choices for φ.

In the discussion, we will refer to a sample database of traveling information
including the following clauses.

travel(X,Y)← link(X,Y)
travel(X,Y)← link(X,Z) ∧ travel(Z, Y)
link(X,Y)← flight(X,Y)
link(X,Y)← bus(X,Y)
link(X,Y)← . . .
f lighttravel(X,Y)← flight(X,Y)
flighttravel(X,Y)← flight(X,Z) ∧ flighttravel(Z, Y)
flight(copenhagen, brussels)
. . .

2.1 Positive hypotheses

For planning purposes, for example, it can be relevant to investigate the effects
of a possible change in the world by means of a hypothetical query involving a
new fact. A query like

flight(leuven, brussels) > flighttravel(leuven,mallorca),

if answered positively, could be an argument for setting up a new flight connec-
tion from Leuven to Brussels.

In the simplified case where we have no integrity constraints and a hypothet-
ical premise consisting of only positive clauses, no potential inconsistency can
arise from adding the hypothetical premise to the database. To obtain a logical
semantics for >, we can observe that > naturally coincides with conventional
implication by considering the classical deduction theorem (see, e.g., [7]),

Γ |= φ→ ψ iff Γ ∪ {φ} |= ψ.

Γ |= φ→ ψ iff Γ ∪ {φ} |= ψ.

Evaluation of a query φ > ψ is performed by extending the database with φ
and evaluating ψ with evaluation method at hand for queries not embedding
hypotheses.1 This principle has been used in the design of several programming
languages, we can refer to [9, 20, 11, 12, 21, 19, 5].

Also in this simplified case, with a semantics as indicated, we can observe a
nice, logical property that we shall call structure independence.

Whenever DB1 and DB2 are logically equivalent databases,
DB1 |= φ > ψ iff DB2 |= φ > ψ.

(UDDYB LOGICAL EQUIVALENT) In other words, the structure indepen-
dence means that the structure of the database do not affect the meaning of hypo-
thetical queries.2 So here, all queries are answered identically when posed to the
structurally different, but logically equivalent, databases {a, b} and {a← b, b}.

In an attempt to generalize the use of positive hypotheses to databases with
integrity constraints, we have to consider the possible inconsistency. Consider
the example above assuming an integrity constraint

⊥ ← noairport(X) ∧ flight(X,Y)

and a fact noairport(leuven). In this case, the hypothetical premise

flight(leuven, brussels)

1 It is not necessary actually to add the hypothesis to the database, as an alternative
the query evaluation method can easily be modified to behave as if the hypothesis
were present in the database.

2 A little digression about the least Herbrand model semantics is relevant here. The
two databases { } and {a ← b} have identical least Herbrand model, the empty
one. However, they are not logically equivalent and the query b > a gives different
results when posed to these two databases. So, although the least Herbrand model
semantics is perfectly suited for reasoning about positive databases with atomic
queries, it should not be trusted in the context of hypothetical reasoning, not even
with positive and atomic hypotheses.

added in a direct way to the database will make the database inconsistent, and
a semantics based on the deduction theorem as above will make any conclusion
hold. In order to assign an interesting meaning to such hypothetical queries, we
should consider (at least conceptually) a revised and consistent database, e.g.,
including a removal of the fact noairport(leuven).

The reference [8] describes a programming language with integrity constraints
and hypothetical implication goals with atomic hypotheses, that deals with this
kind of revision of the database. The inconsistency problem is solved by assigning
a priority to the facts such that an “older” fact that leads to inconsistency should
be ignored; in the example above, flight(leuven, brussels) given as a “new”
hypothesis will take precedence over noairport(leuven), which, thus, is ignored
in the evaluation process.

In this approach, the evaluator provides an illusion of an updated database
such that no restructuring needs to take place. However, the evaluator described
by [8] appears to be far too slow for database application: Each time a database
fact, say a, is used in a proof, consistency needs to be checked by an exhaustive
search, using negation-as-failure, to ensure that ⊥ cannot be proved with a in the
database. In other words, hypothetical queries may execute orders of magnitudes
slower that ordinary ones.3

In order to discuss the structure independence property, we must go a little
into detail with the language of [8]. Rules and integrity constraints belong to a
protected part and facts may appear freely in the protected or another so-called
removable part. A fact in the removable part can only be used in a proof if it
does not cause inconsistency with the database and possible hypotheses in the
query. Facts in or derived from clauses in the protected part can always be used
in a proof, no test for inconsistency is made. This means that a change in the
database structure that moves things between the protected and removable parts,
but does not change the overall logical consequence, can change the outcome of a
hypothetical query. Consider, e.g., a database with protected part {a← b, ⊥ ←
b∧c} and removable part {b}; here c > a fails. Deleting a← b from the protected
part and adding a to the removable part will make c > a succeed.

Structure independence seems to hold when restricting to changes within the
protected part. If we decide to place all database clauses (including facts) in
the protected part, the semantics becomes rather uninteresting: The consistency
check is never activated, which means that the integrity constraints are ignored
and, thus, whether or not the hypothesis is inconsistent with the database has
no influence at all.

2.2 Negative hypotheses

Negative hypotheses can be relevant for investigating the consequences of dis-
carding, say, a given flight connection. It could, for example, be interesting to

3 There are several other problems with the proposed operational semantics, as also
pointed out by [8], including floundering and loops in the consistency check.

investigate possible connections from Copenhagen assuming that the flight be-
tween Copenhagen and Brussels were closed. Negative hypothesis can also spec-
ify that we want to disregard a certain part of the database, which somehow is
undesirable for a given purpose. A person terrified of flying might want to pose
a query such as ¬flight(x, y) > travel(copenhagen, sidney) with the intended
meaning to ask whether there exists a travel between the two destinations in-
volving only means of transportation, that does not include flights. As these
examples indicate, negative hypotheses that may be of interest to embed in
queries to a database tend to be inconsistent with this database.

Semantic optimization and hypothetical reasoning may appear to be notions
with quite different impact. The former leading to an increase in evaluation per-
formance and the latter to a more complicated evaluation involving complex
expressions. However, as the example above indicates, negative hypotheses may
reduce the search space (i.e., the portion of the database that needs to be con-
sidered) and if such hypotheses can be derived from integrity constraints for a
given query and if the evaluation of hypothetical queries is only minimally slower
than for normal queries, the net result can be a speed up. This is the case for
the mechanism, we present in section 4.2 below.

Treatment of negative hypotheses is the issue in the reminder of this paper.
In section 3 we review firstly the work on counterfactual reasoning, which does
not seem to satisfy our needs. In section 4 we introduce a pragmatic “by ex-
ception” treatment of negative hypotheses. We discuss and compare a possible
generalization of the work of [8] to handle negative hypotheses and our own ap-
proach, treating negative hypothesis specifically as exceptions. Apart from our
own work, we are not aware of any treatment of this topic which is relevant for
database applications. In section 5 we compare to the possible-worlds semantics.

3 Counterfactual reasoning

Reasoning including hypothesis that are potentially inconsistent with our knowl-
edge about the real world is quite common in daily life as well as in sciences and
trades. Examples are manifold and well-known and the phenomenon has at-
tracted much attention in a philosophical context. Classical first-order logic is
not equipped for reasoning under inconsistency, despite the fact that we all have
a clear understanding of some counterfactual arguments being more valid than
others.

Lewis’ [17] studies of the phenomenon are central in this area. He describes
a semantics of counterfactual implication based on possible worlds models. A
counterfactual statement φ > ψ holds whenever ψ holds in all worlds where
φ holds, that are sufficiently close to the actual world. The notion of being
“sufficiently close” is based on an accessibility relation among worlds which
is left open, so to speak, as a parameter that confines a given semantics for
counterfactual implications.

For any application of counterfactual reasoning in a computerized context,
we need to decide upon an accessibility relation. Or the other way round, any

claimed implementation of counterfactual reasoning somehow induces an acces-
sibility relation.4 Ginsberg [13] gives a formal treatment of counterfactual rea-
soning in the case of predicate logic. Ginsberg’s construction does not satisfy the
structure independence property as his accessibility relation is based on maxi-
mally consistent subsets of formulas, i.e., a query φ > ψ holds in DB whenever
ψ holds in DB′ ∪ {φ} for all maximal subsets DB′ ⊆ DB with DB′ 6|= ¬φ.5

As an example, the query ¬b > a succeeds in {a, b} but fails in {a ← b, b}
(and similarly for ¬a > b, Ginsberg’s [13] example). Ginsberg discusses this in
depth and concludes that there is no special reason for requiring the property
we have called structure independence. (DET FLGENDE M UDDYBES) We
will actually go a step further, claiming that the database structure expresses an
intention that is abstracted away in the model-theoretical considerations, but
is significant in the context of counterfactual reasoning. We can illustrate what
we mean by a comparison of the two databases considered above. The clause
a← b indicates that if a holds, then this is because of b. This dependency is lost
when going to the model-theoretically equivalent database {a, b}. In our view,
this sort of dependency is highly relevant when changing hypotheses, e.g., by a
removal of b.

Gärdenfors [10] characterizes counterfactual implication by means of revi-
sion of belief sets, i.e., φ > ψ holds if the conclusion ψ holds in a new belief
set revised by the hypothesis φ. By definition, belief sets are closed under logi-
cal consequence so this view of counterfactual implication satisfies a priori the
structure independence property and thus disagrees with [13] and our own view
as discussed above.

Efficiency

It seems inherent in the nature of counterfactual reasoning based on possible
worlds that the only way to evaluate a hypothetical query φ > ψ is to construct
a representation of the required class of possible worlds in which φ holds and
then check the validity of ψ in each of them. Each such world can be repre-
sented as an updated database or as an explicit model, or the set of all these
worlds can be represented as a common structure by means of disjunctions. The
common structure approach is taken in [13] which we discussed above and in
the formulation in a logical programming context by [22] based on an extension
of well-founded model semantics. Important results on the complexity of hypo-
thetical queries can be found in [3, 4]. We will however not go into detail on this
matter because it refers to evaluations involving multible models or worlds, while
our main focus is a practical approach, described in section 4.2 that involves only
one model.
4 The distinction made by [8] between protected and removable program parts can

be seen as a way for the programmer to adjust the accessibility relation otherwise
determined by the interpreter.

5 Ginsberg’s construction can be extended by a refinement of the subset ordering and
an explicit condition to rule out “bad worlds”. However, the characterization given
here is sufficient for our points.

4 Negative hypothesis considered as exceptions

We consider the special case with hypotheses being negated atoms as discussed
in section 2 above, and we will reconsider the following query

¬flight(x, y) > travel(copenhagen, sidney).

In principle, we could represent the hypothesis as an integrity constraint

⊥ ← flight(x, y)

and consider all possible ways to achieve a consistent database using the principle
of [13] outlined in section 3 above and then check the conclusion

travel(copenhagen, sidney)

in each of the resulting databases. We consider below two other alternatives.

4.1 Generalizing an existing evaluation method

We can easily generalize the evaluation method of [8] to handle counterfactual
hypothesis given as integrity constraints. For each hypothesis h that potentially
may appear negated in a hypothetical query

¬h >

add to the protected part of the database an integrity constraint of the following
form,

⊥ ← h ∧ activek,

where k uniquely determines the given integrity constraint, and activek is
not part of the database. If, e.g., the one excluding flights above carries number
17, we can pose the original query as active17 > travel(copenhagen, sidney).

However, as explained earlier the evaluator obtained in this way will be too
inefficient for all but trivial databases, and we will compare with our own mech-
anism, which is considerably more efficient than any of the approaches discussed
earlier.

4.2 A practically relevant “one-world” approximation

The basic idea is to avoid the construction of multitudes of worlds and instead
consider a single world and check validity of the conclusion in it. Furthermore, the
world should be of such a nature that we can evaluate the conclusion efficiently
in it (so it is not acceptable to eliminate alternative worlds or databases by the
introduction of disjunctions).

A thorough introduction to our construction and a series of motivation ex-
amples is given [1]. (OMFORMULER DA FLERE EKSEMPLER MEDTAGES
HERI) We use a special implication arrow →→ to distinguish our specific op-
erator. We consider a restricted form of counterfactual implications which are
closed formulas of the form

∃ · · · (φ→→ ψ)

with

φ = (∀ · · · ¬φ1) ∧ · · · ∧ (∀ · · · ¬φn)

where φ1, . . . , φn are atoms, ψ a conjunction of atoms; each subformula ∀ · · · ¬φi

is called a counterfactual exception. Any variable quantified at the outermost
level is said to be global , all other variables in the φi’s are local . For simplicity
we begin by considering the case without global variables. This simplification
implies that ψ will be ground but we relax this requirement later.

As logical semantics, we can use the following generalization of the traditional
fixpoint semantics for logical programs (see [18]). Given a database DB, we will
recognize a formula φ→→ ψ as true if and only if ψ ∈Mφ

DB where Mφ
DB is least

model for DB under the exceptions φ defined as follows,

Mφ
DB = lfp(Tφ

DB)

that is, as the least fixed point of the function Tφ
DB , where Tφ

DB is the following
generalized consequence operator .

Tφ
DB(I) = {α |DB has a clause with a ground instance

α← β1 ∧ · · · ∧ βk

with βi ∈ I for all i and φ ∧ α is consistent}

In other words, we allow those immediate consequences of clauses in the database
that do not conflict with the exceptions.

As an example, for the database

DB0 = {p(X)← q(X), p(a), q(b)}

we have the following,

M true
DB0

= {p(a), q(b), p(b)},
M

¬p(b)
DB0

= {p(a), q(b)},
M

∀Y ¬q(Y)
DB0

= {p(a)}.

Suppose we have the following instance of the travel database

{travel(X,Y)← link(X,Y),
travel(X,Y)← link(X,Z) ∧ travel(Z, Y),
link(X,Y)← train(X,Y),
link(X,Y)← boat(X,Y),
link(X,Y)← flight(X,Y),
f light(a, b), f light(b, c), f light(d, e), f light(e, a),
train(a, b), train(c, d), boat(b, c) }

To this database we can pose the query “I want to travel from a to d, but I
refuse to sail from b to c”, as

(¬boat(b, c))→→ travel(a, d)

Within the shown instance the query obviously succeeds since

{flight(a, b), f light(b, c), train(c, d)} ⊆M¬boat(b,c)
DB .

The query “I want to travel from a to d, but I refuse to fly”,

(∀X,Y ¬flight(X,Y))→→ travel(a, d)

also succeeds since

travel(a, d) ∈M∀X,Y ¬flight(X,Y)
DB =

{train(a, b), train(c, d), boat(b, c),
link(a, b), link(c, d), link(b, c),
travel(a, b), travel(c, d), travel(b, c),
travel(a, c), travel(a, d), travel(b, d) }.

The following expresses “I want to travel from a to d, but I refuse to sail into
the harbor of c”.

(∀X¬boat(X, c))→→ travel(a, d)

The semantics for hypothetical queries with global variables can be defined
by expressing the existential quantification at the meta-level as follows.

The formula ∃X1 · · ·Xn (φ →→ ψ) follows from a database DB whenever
φ→→ ψ has an instance φ′ →→ ψ′ with ψ′ ∈Mφ′

DB .

We can show the use of global variables in the query “I want to travel from
a to a place where I do not arrive by train”.

∃X((∀Y ¬train(Y,X))→→ travel(a,X))

We should stress that counterfactual exceptions also may concern information
which is not represented as facts in the database but implied from other facts.
The following example may be relevant if you had all your luggage stolen in c
on your last travel. “I want to travel from a to e, but I refuse to pass by c”,

((∀X¬link(X, c)) ∧ (∀X¬link(c,X)))→→ travel(a, e).

Having a careful look at the semantic definition, we observe that it is forbidden
to apply any link(,) via c in the evaluation of travel(a, e) but it is still possible
to use, say, fligth(b, c) for other purposes than “linking” our traveler.

The semantics obtained as illustrated above and explained in more detail
in [1] is equivalent to checking the conclusion in a single, revised database in
which each clause is extended with a “filter” to prevent it from producing con-
clusions that conflict with the exceptions. To express this, we extend the database
formalism with a constraint interpreted as syntactic inequality. The exception
¬p(b) leads to the following modification of DB0.

DB′
0 = {p(X)← X 6= b ∧ q(X), p(a), q(b)}

In [1] this is formalized as a generalized completion construction in the sense
of [6].

4.3 An evaluator for the “one-world” approximation

As we have put forward several times, it is essential to avoid actually constructing
a new database in order to answer a hypothetical query. Instead, the evaluator
will be equipped in such a way that it behaves as if it was executing in the revised
database. We can characterize an evaluator for our construction by means of the
following, modified Vanilla interpreter.

% prove(φ ->> ψ) if and only if φ→→ ψ

prove(->> true):- !.

prove(Cf ->> (A,B)):-
!, prove(Cf ->> A), prove(Cf ->> B).

prove(Cf, A) :-
clause(A,B),
consistent(A, Cf),
prove(Cf ->> B).

The consistent condition means that the selected atom A must satisfy a condi-
tion of non-unifiability with each atom appearing negatively in the exceptions.
To this end, we use a declarative dif(-,-) predicate as it is found in, e.g., Sic-
stus Prolog [23]. A call dif(s,t) will delay a test for syntactic inequality until
the moment that s and t are sufficiently instantiated to tell them either identical
or non-unifiable. Each exception gives rise to a condition derived in the following
way (a straightforward call to dif between two atoms is not sufficient). We have
to distinguish between local and global variables and also take into account any
possible sharing expressed by local variables. We analyze the arguments in each
exception’s atom in the following way.

– An argument which is a constant c or global variable G must always be differ-
ent from the corresponding argument in the selected atom. This amounts to
a test dif(c,X) or dif(G,X) where X refers to the corresponding argument
in the selected atom A.

– A local variable occurring only once will always unify with the corresponding
argument of the selected atom. This corresponds to always fail.

– A local variable which occurs as the ith as well as the jth argument implies
a test dif(Xi,Xj) where Xi and Xj refer to the corresponding arguments of
the selected atom.

Finally, these tests are merged together in a single call to dif(-,-) to express
their disjunction.

Consider, as an example, the exception ∀L1L2 ¬p(a,G,L1, L2, L2) where a
is a constant and G a global variable. When A refers to the selected atom, the
consistency test can be implemented by the following piece of Prolog code.

A = p(X1, X2, X3, X4, X5)
-> dif((X1,X2,X4), (a,G,X5)) ; true

The syntax · · · -> · · · , · · · denotes an if-then-else construction in Prolog.
In case of an “exhaustive” exception such as ∀X,Y ¬flight(X,Y), the con-

sistency test falls down to the following.

A = flight(,) -> fail ; true

The answers provided by this interpreter consist of bindings to variables together
with a (perhaps empty) collection of unresolved dif(-,-) calls.6 Concerned with
completeness, it is easy to prove to following statement: “If it were the case that
Prolog had used breadth-first search when choosing a clause, then this meta-
interpreter would have been logically complete.”

The dif(-,-) primitive is implemented by an efficient message passing method
that does not slow down the Prolog engine, so our metainterpreter executes only
a small constant factor slower than the straightforward Vanilla interpreter eval-
uating a conventional, positive query to an entirely positive database.

In fact, this evaluator embeds an inherent semantic optimization in the sense
that the exceptions effectively reduce the search space as the consistency condi-
tion prevents the evaluator from considering the body of a clause which anyhow
would not lead to new answers. In other words, the evaluation of φ→→ ψ can be
much faster than evaluation of ψ using a conventional evaluator. This implies
that our notion of exceptions can be of interest for semantic optimizations even
in conventional databases without hypothetical queries.

It should also be emphasized that these considerations about correctness
and efficiency are valid for first-order clauses and queries with global variables
as shown in this slightly speculative example,

∃X((∀Y ¬train(Y,X))→→ travel(a,X))

with the intuitive meaning “I want to travel from a to a place where I do not
arrive by train”. In addition, it seems possible to generalize the approach to logic
programs with function symbols.

(HER SKAL INDFJES EKSEMPLER)

5 Exceptions vs. possible worlds counterfactuals

(MSKE BR ARGUMENTATIONEN HERUNDER DREJES S DET IKKE LSES
SOM ET AD HOC APPROACH) The most remarkable difference between our
approach and counterfactual reasoning in the sense of Lewis and Ginsberg [17,
13] is that of efficiency. The restriction to examining a single world together with
an efficient evaluator makes our approach appropriate for practical database ap-
plication, which is certainly not the case for any treatment of the possible worlds
semantics that we are aware of.

The interesting question is, then, whether this single world (that we imi-
tate, but actually do not construct) really represents an intuitively acceptable,
6 If we assume infinitely many (or just sufficiently many) constant symbols, such an

answer, a substitution plus a finite set of inequalities, always represents a nonempty
set of ground answer substitutions.

archetypal representative for the worlds in which the given hypothesis hold — or
at least an acceptable approximation thereof, considering the efficiency gained.

As we have argued in this paper, there is no reason to insist on the struc-
ture independence property, actually we consider it undesirable as it rules out
important intentions embedded in database clauses.

As we have shown, the two model-theoretically equivalent programs {a ←
b, b} and {a, b} are considered to be different in our approach as well as that
of [13] with respect to counterfactual reasoning.

We can indicate a difference between our approach and [13] by another ex-
ample. Consider the two databases

DB1 = {a← b, b← c, c}

and

DB2 = DB1 ∪ {a← c}

With our approach, ¬b →→ a fails in DB1 and succeeds in DB2. With the
mechanism of Ginsberg [13] or our adaptation of [8], it fails in DB1 as well as
in DB2.7

In other words, our approach respects the intentions embedded in the clause
a ← c, stating that if we have c, we must also have a (and this indifferently
of whether some other phenomenon such as b is present or not). We can say,
that if someone decides to put the (model-theoretically redundant) clause a← c
into the database, he should have some reason for doing so, namely to express
such an intention. In the other, referenced works, this dependency is ignored or
abstracted away, and whether this really is based on philosophical grounds or it
is an inadvertent consequence of the technical definitions is difficult to say.

We can strengthen our point by instantiating the example above to something
more intuitive.

DB′
1 = {happy ← cake, cake← money,money}

We have money, we spend it on the cake and we become happy. If there is no cake
to buy, can we then be happy? The query ¬cake →→ happy fails in ours as well
as Ginsberg’s approach expressing the intuitively correct conclusion, that there
is no possibility of being happy without the cake. Consider, now, the following
additional clause

happy ← money.

It states very clearly, that if we have money we are happy no matter whether we
expect to buy something or not. Adding this clause to the database will make

7 Proof: The database DB1 \ {c} is a maximal subset of DB1 which is consistent with
¬b and in which a does not hold, the same thing can be said about DB2 \ {c}.
Referring to the semantics of [8], the hypothesis ¬b implies that c cannot be used
in a proof because it leads to inconsistency due to the presence of b← c in DB1 as
well as in DB2.

¬cake →→ happy succeed in our approach, intuitively correct, the cake is gone,
but we are happy due to our money. With Ginsberg’s approach the query fails
also in the extended database, but why should we be unhappy due to lack of
cake when the database explicitly states that we can be happy with our money?

The approach of [8] is similar to ours in the sense that only a single world (i.e.,
one modified database) is considered when checking the hypothetical conclusion.
Where Ginsberg [13] considers the collection of maximally consist subsets, the
“world” considered by [8] can be understood as the intersection of all such maxi-
mal subsets (however, maximality here with respect to removal of facts only). If,
e.g., consistency can be obtained by removing either a or b, [8] may loose some
conclusions that are found by [13].

The single world considered in our approach can be described by a systematic
change of the formulas in the database. In the propositional case, this world is
equivalent to the maximally consistent subset in which any clause is removed
whose application immediately would produce an inconsistency. Thus we ignore
the possible effects of the counterfactual hypothesis implied “indirectly”, e.g., by
contraposition from the database clauses. For first-order clauses, our approach
is somewhat more precise than deleting entire clauses, we so to speak disable
only the fraction of each clause that can produce inconsistency in this immediate
sense.

Our counterfactual exceptions are related to Kowalski and Sadri’s notion of
Logic Programming with Exceptions [16]. They consider exceptions to predicates
as part of the program and not as hypotheses posed dynamically in the queries.
On the other hand, they can define exceptions by arbitrary clauses which, thus,
implies that answer sets are not unique, as it is the case in our approach. At the
implementation level, our use of the dif(-,-) technology makes queries termi-
nate in meaningful states in cases where the corresponding programs of [16] give
up due to floundering. The flexibility in our approach to have common variables
appearing in the hypotheses as well as in the conclusions has no counterpart in
the language of [16] or any other language we are aware of.

In [1] we describe also a language where implications φ →→ ψ can appear as
goals in program clauses. This is analogous to the way negation-as-failure is used
in Prolog in the sense that essentially metalinguistic statements are moved into
the language and, thus, a model-based semantics has to make use of suitable
modal operators.

The property we have called structure independence is analogous (but not
identical) to the notion called “model-based semantics” by Winslett [24] in order
to characterize approaches to the related problem of database update. “Model-
based” is contrasted with “formula-based”, which means that consistency is re-
established by removal of formulas, analogous to [8, 13] discussed above.

Finally, we will mention that we came over this notion of counterfactual
exceptions due to our interest in the area of flexible query answering systems [2],
where it is often relevant to go beyond a strictly logical semantics in order to
imitate some of the actions that we expect when querying a human domain
expert.

References

1. Andreasen, T., Christiansen, H. Counterfactual exceptions in deductive database
queries. Proc. ECAI’96, 12th European Conference on Artificial Intelligence pp.
340–344, 1996.

2. Andreasen, T., Christiansen, H., and Larsen, H.L., eds. Flexible Query-Answering
Systems, Kluwer, to appear 1997.

3. Bonner, A.J. Intuitionistic Deductive Databases and the Polynomial Time Hierar-
chy. Journal of Logic Programming (JLP), 33(1):1-47,1997.

4. Bonner, A.J. Hypothetical Datalog: Complexity and Expressibility. Theoretical
Computer Science (TCS), 76:3-51, 1990. (FYLDES UD)

5. Christiansen, H., A complete resolution method for logical meta-programming lan-
guages. Lecture Notes in Computer Science 649, pp. 205–219, 1992.

6. Clark, K.L., Negation as failure. Logic and Data Bases, Gallaire, H., and Minker,
J. (eds.), Plenum Press, pp. 293–322, 1978.

7. Enderton, H.B., A Mathematical Introduction to Logic. Academic Press, 1972.
8. Gabbay, D.M., Giordano, L., Martelli, A., and Olivetti, N.,. Hypothetical updates,

priority and inconsistency in a logic programming language. Lecture Notes in Com-
puter Science (LN in Artificial Intelligence) 928, Springer-Verlag, pp. 203–216,
1995.

9. Gabbay, D.M. and Reyle, U., N-Prolog: An extension of Prolog with hypothetical
implications. Journal of Logic Programming 2, pp. 319–355, 1984.

10. Gärdenfors, P., knowledge in the Flux: Modeling the Dynamics of Epistemic States,
MIT Press, 1988.

11. Giordano, L. and Martelli, A., A modal reconstruction of blocks and modules in
logic programming. International Logic Programming Symposium, 1991.

12. Giordano, L., Martelli, A., and Rossi, G., Extending Horn clause logic with impli-
cation goals. Theoretical Computer Science, 1991.

13. Ginsberg, L.M., Counterfactuals. Artificial Intelligence 30, pp. 35–79, 1986.
14. Grahne, G., Mendelzon, A., Updates and subjunctive queries. Information and

computation 116(2), pp. 241–252, 1995.
15. Kowalski, R.A., Predicate logic as a programming language. Information Process-

ing 74, pp. 569–574, 1974.
16. Kowalski, R.A., and Sadri, F., Logic programming with exceptions. Proc. of Eighth

International Conference on Logic Programming, MIT Press, pp. 598–613, 1991.
17. Lewis, D, Counterfactuals. Harward University Press, 1973.
18. Lloyd, J.W., Foundations of logic programming, Second, extended edition.

Springer-Verlag, 1987.
19. Miller, D., Lexical scoping as universal quantification, Proc. of Sixth International

Conference on Logic Programming, MIT Press, pp. 268–283, 1989.
20. Monteiro, L. and Porto, A., Contextual Logic Programming, Proc. of Sixth Inter-

national Conference on Logic Programming, MIT Press, pp. 284–302, 1989.
21. Nait Abdallah, M.A., Ions and local definitions in logic programming, Lecture Notes

in Computer Science 210, pp. 60–72, Springer-Verlag, 1986.
22. Pereira, L.M., Apaŕıcio, J.N., and Alfares, J.J., Counterfactual reasoning based

on revising assumptions. Logic Programming, Proceedings of the 1991 Internal
Symposium, MIT Press 1991.

23. SICStus Prolog user’s manual . Version 3 #5, SICS, Swedish Institute of Computer
Science, 1996.

24. Winslett, M., Updating Logical Databases. Cambridge Tracts in Theoretical Com-
puter Science, vol. 9, Cambridge University Press, 1990.

