
Assumptions and Abduction in Prolog

Henning Christiansen1 and Veronica Dahl2

1 Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: henning@ruc.dk

2 Dept. of Computer Science
Simon Fraser University
Burnaby, B.C., Canada

E-mail: veronica@cs.sfu.ca

Abstract. Abduction is agreed upon as a powerful technique in logic
programming but its actual use in practice appears to be rather limited
since most available systems are research prototypes implemented using
inefficient metaprogramming techniques. Assumptive logic programming
is related to abduction but provides explicit creation and consumption
of hypotheses plus scoping principles inspired by linear logic. We show
how a class of abductive logic programs (and assumptive logic programs)
can be executed directly in Prolog using a trivial extension for abducible
predicates (assumptions) written in Constraint Handling Rules; this ver-
sion of assumptions extends earlier approaches with integrity constraints.
The motivation behind the present work is to show that abduction and
assumptions can be integrated with traditional Prolog programs with-
out any significant slow-down in execution speed or other burdens for
the programmer.

1 Introduction

Assumption-based reasoning in general, or hypothetical reasoning is defined
by [17] as a logic system in which a set of facts and a set of possible hypotheses
are given. Its instances can be assumed if they are consistent with the facts. Both
abduction (the unsound but useful assumption of B given A and given that B
implies A) and linear and intuitionistic logic inspired assumptions [20] fall into
that general category. Their formalization within, respectively, Abductive Logic
Programming [14] and Assumptive Logic Programming [9] refines this general
notion by for instance requiring in the first case consistency with a special type of
facts: integrity constraints. Both allow us to move beyond the limits of classical
logic to explore “possible cause” and “what-if” scenarios. They have proved use-
ful for diagnosis, recognition, difficult human language processing problems, and
many other applications. However in practice, abduction in particular has not
been used to its full potential owing to implementation indirections. Assump-
tions can be more efficiently implemented through continuation based processors

such as BinProlog, but there is no Prolog in existence which efficiently provides
both capabilities at the same time.

In this paper we show that, rather than introducing an extensive implemen-
tation apparatus, we can achieve a very direct while efficient implementation
in Prolog as a programming language, through simply extending it with a few
lines of CHR code (Constraint Handling Rules [12]) to handle the abducibles or
assumptions. This provides an optimal combination, in which programs can be
written and executed directly, with only a small extra overhead involved when
needed. The price paid is a limited use of negation. Yet even with this restriction,
many useful examples are made possible.

Another way of viewing our present contribution is as an extension of ear-
lier approaches to assumptive logic programming with integrity constraints and
integrating it with abduction into a paradigm that we may call A2LP.

Our implementations use SICStus Prolog [18] and its CHR library; we refer
to the proper sections of the referenced manual for a detailed description of the
facilities that we use; in addition we use an undocumented feature for improved
efficiency which we will explain.

Overview

Section 2 explains how a class of Abductive Logic Programs is represented in
our methodology, a small example is given and the limitations are pointed out.
Assumptive Logic Programs are treated in a similar way in section 3. In section 4,
we show how the two paradigms become useful for language processing when
combined with Definite Clause Grammars. The final section 5 gives conclusion
and discussion of related work.

2 Abduction

An abductive logic program [14] is usually specified as a triplet 〈P,A, C〉 where
P is a logic program, A a set of abducible predicates that do not occur in the head
of any clause of P, and C a set of integrity constraints assumed to be consistent.

Assume additionally that P and C can refer to a set of built-in predicates that
have a fixed meaning identified as a theory B; a predicate in P that is neither
abducible nor built-in is called defined. A typical built-in is dif/2 stating that
two terms are syntactically different and for which SICStus Prolog provides a
correct implementation. We assume for simplicity in the following that C refers to
abducible and built-in predicates only. In the following we use Prolog notation for
logic programs and CHR propagation rules for integrity constraints; we use the
implementation syntax indicating each abducible atom by a prefix exclamation
mark (not to be confused with Prolog’s cut).

In the context of an abductive logic program 〈P,A, C〉, we define for pairs of
sets of abducibles and built-in atoms 〈A,B〉, a consistent ground instance to be
a common ground instance 〈A′, B′〉 of 〈A,B〉 so that

– B |= B′ (the instance of built-ins is satisfied)
– A′ |= C (the instance of abducibles respects the integrity constraints)

Example 1. Consider abducible predicates !a/1 and !b/1 and an abductive pro-
gram that contains the integrity constraint !a(X), !b(X) ==> fail. Let S be
the pair of sets 〈{!a(X), !b(Y)}, {dif(X,7)}〉. Then a consistent ground instan-
tiation of S is obtained by substitution X=1,Y=2, whereas X=1,Y=1 or X=7,Y=1 do
not give rise to consistent ground instantiations.

For simplicity and without loss of generality, we consider only ground queries;
an abductive answer to a query Q is a pair of finite sets of abducible and of
built-ins atoms 〈A,B〉 such that

– 〈A,B〉 has at least one consistent ground instance 〈A′, B′〉,
– for any such 〈A′, B′〉, we have P ∪ A′ |= Q.

We now turn our attention to our implementation and define a negation-free
abductive logic program as one which has no application of negation, whose
abductive predicates are distinguished by prefix exclamation marks (so, e.g., p
and !p refer to different predicates), and whose integrity constraints are written
as CHR propagation rules whose head atoms are abducibles and whose body
atoms are abducibles or built-ins (or possibly fail).

Example 2. The following is a standard example of integrity constraints that are
written in the syntax of CHR’s propagation rule.

!in_buenos_aires(X), !revolution ==> !school_cancelled(X).
!in_vancouver(X), !snow ==> !school_cancelled(X).
!revolution, !snow ==> fail.

Example 3. The following integrity constraint concerns a predicate for marriages
m(husband, wife); it uses the built-in predicate for unification to ensure that any
man can only have one wife.

!m(X,Y), !m(X,Z) ==> Y=Z

The implementation in Prolog with CHR is simple: Abducibles are viewed as
constraints in the sense of CHR, the logic program is executed by the Prolog
system and whenever an abducible is called it is added automatically by CHR
to the constraint store and CHR will activate integrity constraints whenever rel-
evant. The complete implementation in SICStus Prolog is provided by including
the following lines in the start of a the program file.3

:- use_module(library(chr)).
:- op(500,fx,!).
handler abduction.
constraints ! /1.

3 The prefix exclamation mark is used as a “generic” abducible predicate. This is
mainly for simplicity of the presentation, and it is obvious that an additional speed-
up can be gained by compiling a specialized version of the machinery below for each
individual abducible predicate.

Example 4. Consider the integrity constraints of example 2 and a Prolog pro-
gram which, as part of solving its task, calls abducibles at certain points. In case
!revolution is entered as the first abducible, it is added to the constraint store
but no integrity constraint is activated. If subsequently !in buenos aires(P)
is called, it is added to the constraint store and CHR figures out to call the
first integrity constraint, thus introducing the additional abducible !school -
cancelled(P); notice that the method handles correctly abducibles that are
parameterized by variables without any extra machinery (this was a problem in
some early abduction algorithms). If, furthermore, abducible !snow is called, this
triggers the third integrity constraint producing a failure which in turn forces the
Prolog program to backtrack. In example 3, the sequence of calls !m(peter,A),
!m(peter,mary) will trigger the integrity constraint so that variable A is unified
with mary.

The correctness of this implementation of negation free abductive programs is
inherited from the correctness properties of the underlying Prolog plus CHR
systems. For any program without occurs-check problems, the implementation
produces correct abductive answers as defined above; if the program (including
integrity constraints) does not loop, we also have that the total set of answers is
complete.

It is interesting to notice that the approach can interact with an arbitrary
constraint solver by considering its constraints as built-ins (applied in bodies of
clauses and integrity constraints). Possible soundness and completeness of such
a combination will mirror the properties of the applied constraint solver.

Minimality

It is often required that an abductive answer be minimal measured in the num-
ber of abduced literals (or, alternatively, in a subset relation or subsumption
ordering). Most published abduction algorithms include a device that tries to
unify a new abducible with one already produced during the construction of
a proof, and tries out different alternatives under backtracking. This does not
guarantee minimality if, say, the chosen proof needs !a and !b but another proof
may need only !a. Minimal answers can be selected by a post-processing of all
answers found in this way.

There are, however, examples in which the minimal explanations produced
by compaction of nonminimal ones by unification seem overconstrained. If, say,
my wallet is stolen in one city and my car in another city, it is groundless to
assume the thief is the same unless, of course, there is special evidence for the
fact (which may be imposed by an integrity constraint).

Nevertheless, we can easily provide a device that dynamically tries to unify
a new abducible with an existing one. Add the following rule to the program
(the empty guard appearing as “true |” can be ignored but is needed due to a
syntactic peculiarity in SICStus Prolog’s version of CHR).

!A , !B ==> true | (A=B ; dif(A,B)).

The rule implements the compaction principle correctly but has a few disad-
vantages. If A and B are identical at the time of the call, it results in keeping
the two identical abducibles in the state (which may cause later applications to
repeat the same work twice) plus setting up a useless choice point. If A and B
are nonunifiable at the time of the call, the execution of the body will be waste
of time. The following rule provides an optimal behaviour:

!A , !B#X ==> true |
(A==B -> remove_constraint(X)
; ?=(A,B) -> true
; (remove_constraint(X), A=B ; dif(A,B)))

pragma passive(X).

The pragma passive annotation ensures that the rule is not applied twice when
a new abducible atom shows up. The use of the “#X” notation to provide a
dynamic handle to the matched CHR constraints (B) is undocumented but serves
a good purpose here. In the last case, when A and B are unifiable but not identical
so that both branches are possible, we remove one of the constraints before the
unification in order to avoid the duplicate, and under backtracking the constraint
is put back into the store after the unification has been undone.

Negation

A limited version of explicit negation can be implemented by means of an in-
tegrity constraint. Extend the code shown so far with the following:

:- op(499,fx,[not]).
!A, !not A ==> fail.

Now a program clause as well as integrity constraints can refer to negated ab-
ducibles, and the above CHR rule will prevent the creation of an abducible and
its negation.

Example 5. We can extend the integrity constraints in example 2 with the fol-
lowing that uses negation to state that revolutions are not possible in Vancouver.

!in_vancouver(X) ==> !not revolution.

If the controlling Prolog program has generated abducible !revolution, and
then !in vancouver(v), firstly the integrity constraint above produces !not
revolution which immediately forces the generic rule for explicit negation to
produce a failure that corresponds to the inherent inconsistency. Notice that the
only code involved in the execution is some Prolog program (not shown) and
the CHR rules shown. The CHR system (with whatever indexing techniques it
may use under the surface) guarantees an optimal handling of the abducibles
and integrity constraints.

Although useful for many applications, this implementation covers only one part
of negation “you cannot have P and ¬P at the same time”; the condition saying
that “either you have P or ¬P” cannot be expressed in a straightforward way.

It is possible in many cases to achieve this effect by a transformation of
integrity constraints.

Example 6. Consider an abductive program with the following integrity con-
straints (and the “!A, !not A ==> fail” above).

!a, !b ==> fail.
!not b, c ==> fail.

Clearly the sequence !a, !c ought to result in failure, but our implementation
explained so far will return the two abducibles. The desired effect can be obtained
by a translation of the integrity constraints illustrated for the example as follows.

!a ==> true | (find_constraint(!not b) -> true ; !not b).
!b ==> true | (find_constraint(!not a) -> true ; !not a).
!not b ==> true | (find_constraint(!not c) -> true ; !not c)
c ==> (find_constraint(!b) -> true ; !b).

However, this translation principle explodes in numbers of special cases with
more complicated integrity constraints and it is not clear that it can be extended
to cover all cases with variabes. [We will give more precise statements at this
point in the final version of this paper].

If a program clause includes a negated call that refers to abducibles directly
or indirectly, we inherit the dubious semantics of Prolog. So with definition
p(X):-!a(X), a call \+p(Z) (where Z is a currently uninstantiated variable)
may succeed in case the abduction of !a(Z) triggers a failure producing integrity
constraint.

The problem is that Prolog’s negation as failure removes any trace of what
took place inside the call; a correct implementation should export the knowledge
!not a(Z). We currently have no suggestion for improvement at this point and
it is also clear that a restriction to “safe negation” (delaying the call until it
becomes ground) will still be problematic. However, a recent paper [15] provides
a variant of constructive negation [4] that may be useful in some cases.

3 Assumptive logic programming

Assumptive logic programs [9] are logic programs augmented with a) linear,
intuitionistic and timeless implications scoped over the current continuation,
and b) implicit multiple accumulators, useful in particular to make the input and
output strings invisible when our program describes a grammar (in which case we
talk of Assumption Grammars [11]). Hidden accumulators allow us to disregard
the input and output string arguments, as in DCGs, but with no preprocessing
requirement. More precisely, we use the kind of linear implications called affine
implications, in which assumptions can be consumed at most once, rather than
exactly once as in linear logic.

We apply here a later and more homogeneous syntax for assumptions intro-
duced in [7]; we do not consider accumulator and Assumption Grammars can be
obtained applying the operators below in a DCG as we show in section 4.

+h(a) Assert linear assumption h(a) for available for
subsequent text.
Linear means “can be used once”.

*h(a) Assert intuitionistic assumption for subsequent
proof steps. Intuitionistic means “can be used any
number of times”

-h(X) Expectation: consume/apply existing assumption.
=+h(a), =*h(X), =-h(X) As above but the time of assertion and application or

consumption can be arbitrary
expections satisfied Tests whether all expectations has been met by

an assumption; should be applied as the last thing
in a query.

These operators are defined as constraints in CHR and can be called from the
body of program rules; no sort of negation is possible. Integrity constraints can
be written as any sort of CHR rules.

Assumption grammars have been used for natural language problems such
as free word order, anaphora, coordination, and for knowledge based systems
and internet applications. Assumptive logic programs are useful, among other
things, for simulation of producer-consumer and resource allocation systems as
illustrated by the following example.

Example 7. Consider a local area network which has a fixed number of printers,
each characterized by its name its printing speed. This is represented by Prolog
facts such as the following.

seconds_per_page(epsmark1993, 20).
seconds_per_page(lexon2000, 10).
seconds_per_page(pewhack2004, 2).

At any time, the status of each printer is represented by an assumption +printer(
name, ready-time). If ready-time is less than or equal to the current time it
means that the printer is idle and can be give a job; if ready-time is greater
that current time it means that the printer is currently occupied. The following
Prolog program applies these to simulate a print scheduler that receives a list
of print jobs and distributes it to the different printers (for simplicity we ignore
arrival times for jobs); a list describing the job history is generated.

run([],_,[]).

run([(Id,Np) | Js], T, [printed(Id,P,FinAt)|Ds]):-
-printer(P,ReadyAt),
ReadyAt=<T,
seconds_per_page(P,Spp),

FinAt is T + Np*Spp,
+printer(P, FinAt),
run(Js,T,Ds).

run(Js,T,Ds):- % busy wait if no printer ready
\+ (-printer(_,ReadyAt), ReadyAt=<T),
T1 is T+1, run(Js,T1,Ds).

The last clause employs Prolog’s negation-as-failure to check assumptions with-
out affecting the state. Before running a list of jobs, the printers must be ini-
tialized as in the following query and answers produced by our implementation
described below.

?- +printer(epsmark1993,0), +printer(lexon2000,0),
+printer(pewhack2004,0),

run([(file1, 10),(file2,6),(file3,100), (file4,5)],0,H).
H = [printed(file1,pewhack2004,20),printed(file2,lexon2000,60),

printed(file3,epsmark1993,2000),
printed(file4,pewhack2004,30)],

+(printer(lexon2000,60)),
+(printer(epsmark1993,2000)),
+(printer(pewhack2004,30)) ?

Notice that the final state also includes final status for the printers. We can
illustrate the use of integrity constraints for assumption sketching an extension
of the example. Assume all printers are covered by the same undersized electrical
fuse that will melt down in case all three printers are running at the same time.
This is ensured by the following integrity constraint; assumptions have been
extended with starting time for most recent job and the guard refers to an
auxiliary predicate that holds if and only of all three indicated time intervals
have a point in common.

+printer(lexon2000,S1,F1), +printer(epsmark1993,S2,F2),
+printer(pewhack2004,S3,F3) ==>
overlapping((S1,F1),(S2,F2),(S3,F3)) | fail.

(A few modifications of the scheduler predicate run is needed.)

Assumptions and expectation operators are implemented in CHR in a way sim-
ilar to abduction, but need extra care for scoping and matching of expectations
with assumptions. Each operator is implemented by one single-headed CHR rule
that employs the constraint store as container in a straightforward procedural
way. Consumed assumptions and expectations are removed when relevant by the
remove_constraint device. In case of backtrack, they will be added back to the
constraint store so that other matches can be tried out.

Assumptions made by “*” and “+” are just added to the store and an ex-
pectation by “-” will retrieve all possible assumptions in the store and set up

a control structure that can try out all of them upon backtracking. This is im-
plemented by the following CHR rule and auxiliary predicate; in this case the
expectation can be removed using a simplification rule as it does not need to be
added on backtrack.

-B <=> findall_constraints(+C,PlusList),
findall_constraints(*C,StarList),
append(PlusList,StarList,List),
choice(-B,List).

choice(-B,[(+A) # X | More]):-
(remove_constraint(X), A=B ; choice(-B,More)).

choice(-B,[(*A) # _| More]):- (A=B ; choice(-B,More)).

As it appears, an intuitionistic assumption is removed when matched with an
expectation (and potentially put back into the store upon backtracking); linear
ones stay in the store so they can possibly apply to other expectations. Timeless
assumptions and expectations are implemented in a similar, but slightly more
complicated way since a new assumption must be compared with any possible,
pending expectation. The straightforward code is given in the appendix.

4 Abduction and assumptions in DCGs

Language analysis is an area in which both abduction and assumptions have
proved to be useful. Here we show how our versions of the two paradigms, sep-
arately and combined, work smoothly together with Definite Clause Grammars
(DCGs) [16]; recall that most Prolog systems include this notion and compile it
into Prolog when a source file is loaded.

Abduction for still life analysis

Abduction is especially useful for extracting information about the semantic
context it which a discourse takes place. We show an example adapted from [5]
that analyzes sentences about still life images such as “The flower is on the
table” which can be interpreted in three different ways: that the flower is lying
on the table or, what is the normal case, that the flower is placed in a container
object (typically a vase) where the latter is in physical contact with the table
(literally “on”), or finally that the flower is lying on an object which is placed
on the table (may or may not be a container).

From the point of view of abductive interpretation, a sentence such as “The
flower is on the table” can only by uttered truthfully if necessary facts (some
or other) hold for the still life under consideration. Notice that the intuitive
meaning of a nonterminal changes compared with a purely syntactic analysis:
sentence refers to a true sentence and thing refers to a thing depicted in the
given still life.

We use abducibles !in/2 and !on/s to refer to immediate physical relation-
ships, and !thing and !container to existence of given kinds of objects. The
following set of integrity constraints describes general properties of the world.

!in(X,Y), !on(Y,X) ==> fail. !in(X,X) ==> fail.
!on(X,Y), !in(Y,X) ==> fail. !on(X,X) ==> fail.
!on(X,Y), !on(Y,X) ==> fail. !container(C) ==> !thing(C).
!in(X,Y), !in(Y,X) ==> fail. !in(the_box,the_vase) ==> fail.
!on(the_flower,_) ==> !not normal(the_flower).
!on(_,the_flower) ==> !very_flat(the_flower).

The grammar is as follows; notice that the arrow of the DCG notation goes in
opposite direction of the logical implication.

sentence --> thing(A), [is, on], thing(B),
{!thing(A), !thing(B),
(!on(A,B)
; ((!container(X),!in(A,X);!thing(X),!on(A,X)),!on(X,B)))}.

thing(T) --> [T], {!thing(T)}.

The analysis initiated by phrase(sentence, [the flower,is,on,the table])
gives the three different interpretations indicated above.

Assumptions for coordination and anaphora

The following example has been adapted from [11, 7] and shows two applications
of assumptions, for resolving pronoun references and for a simple coordination
problem. In a sentence “Peter likes her” the pronoun is expected to stand for a
female character who has been mentioned earlier in the discourse. The following
rule defines how the mentioning of a proper name produces an assumption that
makes the individual available for future reference.

np(X,Gender) --> name(X,Gender), {*acting(X,Gender)}

Assume for the moment the following rule for a sentence and sequences of sen-
tences.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_).
sentences((S1,S2)) --> sentence(S1),sentences(S2).
sentences(nil) --> [].

The following rules define how a pronoun can appear in a sentence with its
meaning given by an expectation.

np(X,Gender) --> {-acting(X,Gender)}, pronoun(Gender).
pronoun(fem) --> [her].

The following query and answers show the behaviour.

?- phrase(sentences(S), [peter,likes,martha, mary,hates,her]).
S = (s(peter,like,martha),s(mary,hate,mary),nil) ? ;
S = (s(peter,like,martha),s(mary,hate,martha),nil) ? ;
no

The second answer expresses the interpretation we would expect, and the first
one is an undesired consequence of the specification so far; we show it can be
suppressed below.

The discourse “Peter likes and Mary hates Martha” contains two coordinat-
ing sentences in the sense that the first incomplete one takes its object from
the second one. This can be described by having an incomplete sentence to put
forward a timeless expectation that may be satisfied by a later assumption pro-
duced by a complete sentence; the following two grammar rules are sufficient.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_), {=*obj(B)}.
sentence(s(A,V,B)) --> np(A,_), verb(V), [and], {=-obj(B)}.

Grammars with both abduction and assumptions

Abduction and assumptions can be mixed freely which we can use to provide a
better solution to the pronoun resolution problem above. We modify the gram-
mar rule for sentences such that semantic interpretation is made abductively,
i.e., the sentence can be told honestly provided the semantic context contains
the necessary facts.

sentence --> np(A,_), verb(V), np(B,_), {!s(A,V,B)}
!s(X,hate,X) ==> fail.

With this modification, the analysis of “Peter likes Martha, Mary hates her”
gives only one solution. This grammar is interesting as it shows how different
layers of analysis can assist each other, semantic knowledge about the hating
relation is applied for guiding pronoun resolution.

It is also possible to have integrity constraints that refers to both abducibles
and assumption/expectations at the same time although we have not developed
interesting examples yet.

5 Conclusion and related work

We have described a methodology and implementation which make Abductive
and Assumptive Logic Programming (A2LP) available as useful programming
paradigms with an execution speed comparable to traditional Prolog programs.

The approach avoids the heavy computational overhead associated with known
metainterpreter based implementations of abduction (for instance, [13]) has the
overhead of alternating abductive steps with resolution steps. The component
of an A2LP program that corresponds to a logic program is executed directly
as a Prolog program, and its integrity constraints directly as CHR rules. This

means that A2LP programs can be run through existing optimizing compilers
for Prolog and CHR. It is interesting to point out that coroutining of integrity
constraints is taken care of automatically by virtue of CHR rules.

There are existing, efficient implementations of Assumptive Logic Programs
but the present work extends the paradigm with integrity constraints and the
option to combine with abduction in a common framework.

The price paid for this efficiency and flexibility is a limitation on the use of
negation. Some examples in the literature of abduction involving Event Calculus
do not work in the approach but others, such as [19] on robot planning seems
possible (has been implemented in CHR in an early experiment, but not tested
in the present framework). The small examples in the present paper are intended
to indicate that A2LP covers a spectrum of interesting programs, and the fact
that the paradigm can immediately be combined with any other constraint solver
available in the Prolog version at hand substantiates this viewpoint.

The first observation of the similarity between CHR and abductive logic pro-
gramming was made by [1] showing that abducible predicates can be represented
as constraints in CHR’s sense and integrity constraints as rules in CHR. The ref-
erenced work describes a translation of a class of abductive logic programs with
limited use of negation (similar to the present paper) into CHR∨ [2] which is a
languages the formalizes the use of disjunctions (Prolog semicolon) in rule bod-
ies; the main difference is that [1] also translates the logic program component
into CHR∨ so that the efficiency of having Prolog to do the resolution steps
is lost. CHR based abduction for language processing is applied in the CHRG
system (for CHR Grammars) [6, 7] which is based on bottom-up parsing in CHR.

A proposal for emulating abductive logic programming with assumptions was
done in [10]. While less efficient than the present proposal, it allowed the same
(abducible) predicate to be either proved normally, if this was possible, or ab-
duced if not. It also put the ability to examine unconsumed assumptions to use
in combining for instance defeasible reasoning with abductive logic program-
ming, and in suggesting novel extensions such as conditional abductive logic
programming—this latter, by abducing not only predicates, but also clauses.

The idea of abducing clauses was also useful in a grammatical context: [8]
simulate abduction of grammar correction rules from a user defined input gram-
mar in order to dynamically correct syntactic errors in sentences being analyzed;
this approach is also described using CHR.

As we have noticed, negation is the more complicated part to which we have
no solution; [3] sketches an extension of [1]’s method intended for a full use of
negation-as-failure in program clauses and integrity constraints; as for [1], no
integration with Prolog is provided. Unfortunately, it has not been possible to
reconstruct the code from the description in [3] in order to test the method and
there appears to inherent looping problems.

The Demo system described in [5] seems to be the first application of CHR
to abduction and similar problems, in the shape of a general metainterpreter for
logic programs which is reversible in the sense that it can generate programs that
make specified goals provable; this property is made possible using a constraint

solver written in CHR for semantic primitives. In terms of efficiency this system
is by no means comparable to what is described in the present paper.

Acknowledgements The authors want to thank Michael Cheng for exper-
imentation with an early version of the methods and for helpful discussions.
This work is supported by the CONTROL project, funded by Danish Natural
Science Research Council; the first author is partly supported in part by the IT-

University of Copenhagen, and the second author gratefully acknowledges support
from Canada’s NSERC Discovery Grant program.

Appendix: Source code for implementation of assumptions

:- use_module(library(chr)). :- use_module(library(lists)).

:- op(500,fx,[*,=+,=-,=*]).

handler assumptions.
constraints =* /1, =- /1,=+ /1, * /1, - /1, + /1.

-B <=> findall_constraints(+C,PlusList),
findall_constraints(*C,StarList),
append(PlusList,StarList,List),
choice(-B,List).

=-B # ThisId ==>
findall_constraints(=+_,PlusList),
findall_constraints(=*_,StarList),
append(PlusList,StarList,List),
choice_timeless(=-B,ThisId,List).

=+B # ThisID ==>
findall_constraints(=-C, List),
choice_timeless(=+B, ThisID, List).

=*B # ThisID ==>
findall_constraints(=-C, List),
choice_timeless(=*B, ThisID, List).

expections_satisfied:- \+ find_constraint(-_,_), \+ find_constraint(=-_,_).

choice(-B,[(+A) # X | More]):- (remove_constraint(X), A=B ; choice(-B,More)).
choice(-B,[(*A) # _| More]):- (A=B ; choice(-B,More)).

choice_timeless(=-B,ThisId, [(=+A) # X | More]):-
(remove_constraint(ThisId), remove_constraint(X), A=B
; choice_timeless(=-B,ThisId,More)).

choice_timeless(=-B,ThisId, [(=*A) # _ | More]):-
(remove_constraint(ThisId), A=B
; choice_timeless(=-B,ThisId,More)).

choice_timeless(=+B,ThisId, [(=-A) # X | More]):-
(remove_constraint(ThisId), remove_constraint(X), A=B
; choice_timeless(=+B,ThisId,More)).

choice_timeless(=*B,ThisId, [(=-A) # X | More]):- % ThisId not used
(remove_constraint(X), A=B ; true),
choice_timeless(=+B,ThisId,More).

choice_timeless(_,_,[]):- true. % Puts back constraint and continues

References

1. Abdennadher, S., and Christiansen, H., An Experimental CLP Platform for In-
tegrity Constraints and Abduction. Proceedings of FQAS2000, Flexible Query An-
swering Systems, pp. 141–152, Advances in Soft Computing series, Physica-Verlag
(Springer), 2000.

2. Abdennadher, S., and Schütz, H. CHR∨: A flexible query language. Proc. FQAS’98,
Lecture Notes in Artificial Intelligence 1495, pp. 1–14, Springer, 1998.

3. Badea, L., and Tilivea D.: Abductive Partial Order Planning with Dependent Flu-
ents KI 2001: Advances in Artificial Intelligence, Joint German/Austrian Confer-
ence on AI, Baader, F., Brewka, G., Eiter, T., (eds.) Lecture Notes in Artificial
Intelligence 2174 p. 63-77, Springer, 2001.

4. Chan, D., Constructive negation based on the database completion, Proc. of Fifth
International Conference and Symposium on Logic Programming , (eds. Kowalski,
Bowen), pp. 111–125, MIT Press, 1988.

5. Christiansen, H. Automated reasoning with a constraint-based metainterpreter,
Journal of Logic Programming, Vol 37(1–3) Oct–Dec, pp. 213–253, 1998.

6. Christiansen, H., Abductive Language Interpretation as Bottom-up Deduction. In:
Natural Language Understanding and Logic Programming, Proceedings of the 2002
workshop, ed. Wintner, S., Datalogiske Skrifter vol. 92, Roskilde University, Comp.
Sci. Dept., pp. 33–47, 2002.

7. Christiansen, H., CHR grammars. To appear in International Journal on Theory
and Practice of Logic Programming, special issue on Constraint Handling Rules,
expected publication date medio 2005.

8. Christiansen, H., and Dahl, V., Logic Grammars for Diagnosis and Repair. Inter-
national Journal on Artificial Intelligence Tools, Vol. 2, no. 3 (2003), pp. 227–248.

9. Dahl, V., and Tarau, P. From Assumptions to Meaning. Canadian Artificial Intel-
ligence 42, Spring 1998.

10. . Dahl, V., and Tarau, P. Assumptive Logic Programming. Technical report, Simon
Fraser University, 1999].

11. Dahl, V., Tarau, P., and Li, R., Assumption grammars for processing natural lan-
guage. Proc. Fourteenth International Conference on Logic Programming. pp. 256–
270, MIT Press, 1997.

12. Frühwirth, T.W., Theory and Practice of Constraint Handling Rules, Journal of
Logic Programming, Vol. 37(1–3), pp. 95–138, 1998.

13. Kakas, A.C., Michael, A., and Mourlas, C. ACLP: Abductive Constraint Logic
Programming, The Journal of Logic Programming, vol 44, pp. 129–177, 2000.

14. Kakas, A.A., Kowalski, R.A., and Toni, F. The role of abduction in logic program-
ming, Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5,
Gabbay, D.M, Hogger, C.J., Robinson, J.A., (eds.), Oxford University Press, pp.
235–324, 1998.

15. Muñoz-Hernández, S., Mariño, J., and Moreno-Navarro, J.J., Constructive Inten-
sional Negation. In: Functional and Logic Programming, 7th International Sympo-
sium, FLOPS 2004, Kameyama, Y., Stuckey, P.J., (eds.), Lecture Notes in Com-
puter Science 2998; Springer-Verlag, pp. 39-54, 2004.

16. Pereira, F.C.N., and Warren, D.H.D., Definite clause grammars for language anal-
ysis. A survey of the formalism and a comparison with augmented transition gram-
mars. Artificial Intelligence 10, no. 3–4, pp. 165–176, 1980.

17. Poole, D., Mackworth, A., and Goebel, R. Computational Intelligence, Oxford Uni-
versity Press, 1998.

18. SICStus Prolog user’s manual. Version 3.11, SICS, Swedish Institute of Computer
Science, 2004. Most recent version available at http://www.sics.se/isl.

19. Shanahan, M., Reinventing Shakey. Logic-Based Artificial Intelligence, Minker, J.
(ed). Kluwer Academic, pp. 233–253, 1999.

20. Tarau, P., Dahl, V., and Fall, A. Backtrackable State with Linear Affine Implica-
tion and Assumption Grammars. In: Concurrency and parallelism, Programming,
Networking, and Security, Jaffar, J. and Yap, R. (eds.). Lecture Notes in Computer
Science 1179, Springer Verlag, pp. 53–64, 1996.

