
Querying Sentiment Development Over Time

Troels Andreasen, Henning Christiansen, and Christian Theil Have

Research Group PLIS: Programming, Logic and Intelligent Systems
Dept. of Communication, Business and Information Technologies

Roskilde University, Denmark
Email: {troels,henning,cth}@ruc.dk

Abstract. A new language is introduced for describing hypotheses about
fluctuations of measurable properties in streams of timestamped data,
and as prime example, we consider trends of emotions in the constantly
flowing stream of Twitter messages. The language, called EmoEpisodes,
has a precise semantics that measures how well a hypothesis character-
izes a given time interval; the semantics is parameterized so it can be
adjusted to different views of the data. EmoEpisodes is extended to
a query language with variables standing for unknown topics and emo-
tions, and the query-answering mechanism will return instantiations for
topics and emotions as well as time intervals that provide the largest de-
flections in this measurement. Experiments are performed on a selection
of Twitter data to demonstrates the usefulness of the approach.

1 Introduction

Social media are becoming more and more popular in humans’ daily lives and
networking on social media is an increasingly important social activity. With
the evolving social networks and increased media activity the already massive
amount of media data is rapidly growing and so is the potential value of these
data as sources for analysis of structure, relationships and structural trends.
There is also a huge potential for the derivation of valuable and reliable indi-
cations of trends in development of opinions and sentiments from the immense
messaging on social media, but there is still a lack of systematic approaches
for these purposes. However, messaging is target for various new and promising
approaches to data mining and sentiment analysis and this area is undergoing a
rapid development. The present paper emphasizes a new direction for this kind
of analysis where opinions on topics can be investigated, not only for appearance
but also for development over time.

We introduce a language, EmoEpisodes, for hypothesis testing and query-
ing. Hypotheses about sentiments and emotions and their development over time
can be formulated in the language. The language allows for querying on emotions
about specified topics, for instance “fear of asteroids” and the degree to which
an emotion is expressed about a given topic. An emotion about a given topic
can be queried for a specific period, or the period can be left open to investigate
peeks. In addition, consecutive sequences of periods can be enclosed in queries

to investigate development of emotions over time, for instance to query peeks in
shifts from negative to positive attitudes about a given topic. A query can focus
on a specific topic, such as “how did the fear of astroids develop during Christ-
mas” or refer to correlated topics, such as “did the School shooting influence
the opinion against Obama’s policy”. We present a general and flexible language
for formulating hypothesis – and thus queries – about detailed patterns of the
evaluation of emotions over time. This is in contrast to earlier efforts which have
mostly been concerned with measuring specific trends in social media data.

The validity of a given hypothesis in some time interval is measured by
a satisfaction degree which is a number in the unit interval, and the grading
is applied for ranking of best matches for a given hypothesis. Specifically, we
consider here streams of timestamped messages in social media and hypotheses
about fluctuations of emotions related to given topics.

Emotions are characterized and measured for some fixed time granule
adapted to the application at hand. For applications in literature, one year or
one decade may be chosen, for historical studies perhaps centuries. For the ap-
plication chosen here – evolving emotions in social media – we have chosen one
day as the granule. This choice abstracts away variations caused by the rotation
of the earth and the uneven distribution of users around the globe, but allows to
characterize relatively fast changes. In our current implementation, we arbitrar-
ily chose 24h periods starting at 00:00:00 GMT+1, i.e., CET without Summer
Time. Within each time granule we characterize topics by level of emotion
where emotion is a classification of expression and level can be chosen from a
finite set of fuzzy linguistic expressions.

Different applications may require different ways of combining satisfaction
degrees for the constituents of complex hypotheses and as indicated we may
combine topics and evaluate emotions as they appear simultaneously as well
as consecutively over time. We discuss aspects of aggregation of constituent
emotions and introduce a parameterizable function to adapt the different kinds
of aggregations needed as well as for user preference.

The present paper is structured as follows. In section 2 we introduce the
language EmoEpisodes and in section 3 we describe the chosen semantics for
our application at hand – mining trends in social media. In section 4 we describe
experiments and evaluation based on an implementation of the language and on
an application on Twitter data from about 1.5 month from late December to
early February 2013. In section 5 we discuss related work and finally in section
6 we conclude.

2 A Proposal for an Emotional Episode Language,
EMOEPISODES

In the following, a time point refers to a specific time granule having a fixed
position along a time line, and a time interval is a contiguous set of time points.
The symbol T I refers to all such time intervals; below we use letter d to refer
to time intervals (as t will be used for topics; below).

2.1 The Basic Emotional Episode Language

An arbitrary set of topics T I is assumed, e.g., T = {Xmas, love, beer, asteroids, . . .}
and set of emotions, e.g, E = fear, happiness, anger, sadness, . . .}. As mentioned
above, the level of an emotion is described by a finite set of symbols L, ordered
by magnitude; we use for our main example high > medium > low, but more or
less (at least two) steps may be used.

An atomic emotion statement for a given topic associates an emotion and a
level to that topic. Example:

asteroids: fear(high)

The data semantics is given by a satisfaction degree function SD : AS × T I →
[0; 1] where AS is the set of such atomic statements, i.e., a measurement of how
well a given statement characterizes a given time interval.1

A compound statement consists of a collection of atomic ones written with
curly brackets; when more than one atomic statements concerns the same topic,
we may group these also by curly brackets. Examples:

{asteroids: fear(high), doomsday: fear(high)}
asteroids: {fear(medium), excitement(high)}

The second example is a shorthand for a compound consisting of two atomic
statements about asteroids.

A compound statement is understood as a sort of conjunction, i.e., all con-
tained atomic statements influence the satisfaction of the compound; S will
denote the set of all statements, with AS ⊂ S. The satisfaction degree function
is extended to go all statements, SD : S × T I → [0; 1], as follows where

⊗com

is an aggregation function [0; 1]∗ → [0; 1].

SD({φ1, . . . , φn}, d) =

com⊗
i=1..n

SD(φi, d)

A scene is a statement with an associated time constraint. Examples:

asteroids:fear(high)[5 days]
asteroids:fear(high)[> 5 days]
asteroids:fear(high)[2 days, from 2013-02-15]
asteroids:fear(high)[2013-02-15]
asteroids: {fear(medium), excitement(high)}[> 5 days]

The detailed language for time constraints is not specified further; we assume a
natural definition of whether a given time interval is matched by a constraint.
For example, [5 days] matches any interval of exactly 5 days. A time assignment
for a scene is any interval of days that satisfies its time constraint, so, e.g.,

1 As it appears, SD measured over an interval is not a mere aggregation of SD for
each granule in the interval; this provides a freedom to let SD measure, say, relative
frequencies over the entire interval.

the interval consisting of the days from 2013-02-14 to 2013-02-18 can be an
assignment for asteroids:fear(high)[C], where, say, C is ‘5 days’, ‘> 2 days’ or ‘5
days, after 2012-31-12’.

Finally, an episode is a sequence of consecutive scenes, indicated by semi-
colon. Example:

asteroids:fear(medium)[5 days] ;
{meteorites:fear(high), doomsday:fear(high)}[2 days, after 2013-02-15]

A time assignment for an episode is a sequence of assignments of consecutive
intervals for each of its scenes; it is also referred to as a match. An episode
is called inconsistent if no possible match exists, otherwise it is consistent. In
order to allow ‘holes’ in episodes, we introduce the empty statement {} having
SD({},−) = e where e is a neutral element (not specified further).2

The satisfaction degree of an episode with respect to a time assignment is
an aggregation

⊗eps
of the satisfaction degrees for the individual scenes in their

respective, assigned time interval. A best match in a given context is a match
with the highest satisfaction degree.

Notice as a consequence of our definitions that the satisfaction degree of,
say asteroids:fear(medium)[5 days], in a given time interval is independent of the
emotions for asteroids in the days before or after the chosen period.

2.2 EMOEPISODES as a Query Language

The semantics of EmoEpisodes can produce a measure of the satisfaction degree
of a given episode for a specific time assignment, and this is the basis on which we
can form a query language. Here we discuss how EmoEpisodes can be used as
a query language; actual experiments performed on Twitter messages are shown
in section 4, below.

It gives good sense to query with a given episode for the best match within a
larger time interval, i.e., for the best time assignment together with its satisfac-
tion degree. Such a query mechanism can be extended with an a priori defined
threshold and only report a match better than this threshold.

While for many other information retrieval tasks, it is relevant to ask for a
sorted list of the k best matches, this is more dubious for episode matching due
to overlapping matches. To see this, consider the following episode

asteroids: fear(medium)[> 10 days] ; asteroids: fear(high)[> 10 days]

and a data set in which the frequency of observations of asteroids: fear grows
slowly over a period of 1000 days. Here we may expect one optimal match about
two thirds into the data, and it will be surrounded by a cloud of near optimal
matches. It will be even worse in case asteroids: fear varies in very long waves,
having peaks of different magnitudes. Here the sorted list approach may likely

2 A proper formalization of the empty statement would require an extension of the
domain for satisfaction degree to [0; 1] ∪ {e} and a specification of how the different
aggregation operators treats e. These details are not interesting and left out.

report only the highest peak and the cloud around it, and having the second and
third highest peaks outside the k best matches shown to the user, which we do
not consider to be desirable.

If graphical output is an option, the best way to present the result of a query
for an episode E may be as a curve showing, for each time point t, the satisfaction
degree for an occurrence of E starting at t. When textual or symbolic output
is expected, it may be suggested to report islands (defined as contiguous unions
of matches better that a threshold) together with the best match in each island
(the peaks), sorted according to the latter.

We can extend the EmoEpisodes language for queries involving variables
that stands for unknown parts of an episode. The expected answers to a query
with variables is a list of alternative instantiations of the variables, sorted ac-
cording to the satisfaction degrees for their respective best match in the data set.
In an interactive query system, a mouse click may, for each such instantiation,
open a window with a satisfaction degree curve of a list of islands and peaks as
explained above.

In order to obtain efficient query-answering algorithms, we allow only vari-
ables in positions where a topic, an emotion or a degree is expected (and not
for, say, entire statements or time constraints).

EmoEpisodes as a query language can also be used for giving alert when
certain patterns are observed. A journalist may, for example, want a report
whenever the attitude towards the topic president changes. He can do this by
setting up a tenant that sends a report whenever one of the following two queries
have a match in the current data stream.

president: X(high)[3 days] ; president: X(low)[1 day]

president: X(low)[3 days] ; president: X(high)[1 day]

The three day interval indicates a certain stability, but the journalist allows
only one day to see a possible shift, so he may be the first to write about it if it
happens to be interesting.

3 EMOEPISODES Semantics for Mining Trends on Twitter

In this section we show two different semantics for EmoEpisodes by different
choice of data semantics, both considered relevant for the sample applications,
mining trends in Twitter data. We suggest also relevant choices for aggregation
operators, that fit with both data semantics.

The data semantics for atomic scenes (t : e(`), d), with t being a topic, e an
emotion, ` a level, and d a time interval, is defined in terms of the number of
messages tagged with t and classified as e in d. For scenes with compound state-
ments, t1 : e1(`1), t2 : e2(`2), . . . the aggregation is based on counting messages
tagged with all of t1, t2,

3.1 Atomic Statement Semantics

Let T be the set of topics andD the set of duration specifications (time intervals).
Apart from marking some messages with detected emotions, currently among
E = {anger, disgust, fear, joy, sadness, surprise}, the given prototype also
provides a sentiment classification for each message from S = {negative, neutral,
positive}. We want to cover both by the language, but since each of these is a
disjoint classification of messages (where E is partial and S is complete), we
generalize to calculate satisfaction degrees for a specific classification among a
given set C of classifications, where C = {E,S}. For a classification C ∈ C and
d ∈ D, we define δC(d) as the set of all messages during d that are classified by
C, while, for topic t ∈ T and class c ∈ C, δC(t, d) and δC(t : c, d) denotes the set
of all messages during d on topic t and the set of all messages during d on topic
t classified as c respectively.

Based on cardinalities of these sets, we define the relative satisfaction RC of
a statement φ = (t : c) during d for class (emotion or sentiment) c ∈ C (with
C ∈ C = {E,S}) by

RC(φ, d) = RC(t : c, d) =
|δC(t : c, d)|
|δC(t, d)|

, c ∈ C

and measure the satisfaction degree of sentences by way of compliance with
simple fuzzy linguistic terms low ,medium, and high over relative satisfaction.
Membership functions for these terms are defined individually for each classi-
fication such that the membership function for medium is symmetric around
1/n where n = |C|. Figure 1(a) shows definitions of relative satisfaction level
terms low ,medium, high for classifications E and figure 1(b) for classifier S
(notice that |E| = 6 and |S| = 3). For the relative satisfaction level level ∈
{low ,medium, high} the satisfaction degree of a statement φ = (t : e) during d
is defined by:

SD(φ, d) = SD(t : c[level], d) = µlevel(RC(t : c, d)), c ∈ C

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Low
Medium
High

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Low
Medium
High

Fig. 1. Membership functions µlevel for fuzzy linguistic terms over relative satisfaction
with level ∈ {low ,medium, high}. Shown in (a) for classifier E and in (b) for classifier
S (6 and 3 classes respectively).

3.2 Elitist and Populist Data Semantics

Queries are evaluated over time intervals and satisfaction for an individual scene
enclosed in a query is based on the fraction of tweets, in the given time interval,
satisfying the scene. We consider two data semantics that differ in the way this
fraction is derived: elitist and populist data semantics.

When applying elitist semantics SD(t : c[level], d) is measured relative
those tweets that refer to topic t during d. This corresponds to applying the
relative satisfaction as introduced above, that is:

R(φ, d) = R(t : c, d) =
|δ(t : c, d)|
|δ(t, d)|

An alternative is to apply populist semantics where SD(t : c[level], d) rather
is measured relative to all tweets during d, thus based on a relative satisfaction,
which is:

R(φ, d) = R(t : c, d) =
|δ(t : c, d)|
|δ(d)|

As indicated elsewhere we have chosen the elitist for our preliminary experi-
ments. However the choice of semantics could be left to the user as a preference
parameter.

3.3 Compound Statement and Episode Semantics

To complete the semantics of the language we must specify aggregation princi-
ples for compound statements (aggregating multiple simultaneous statements for
a given time interval) as well as for episodes (aggregating statements over contin-
uous time intervals). Intuitively both aggregations should reflect a conjunction
of the statements, but we need to take into account the graded satisfaction of
statements so an obvious choice is to go for a single, but parametrizable, graded
averaging aggregation function. We adopt the Order Weighted Averaging (OWA)
function [13] and introduce a simplification of the parameterization of this – scal-
ing with a single parameter a class of averaging functions with min and max as
extremes. OWA aggregates n values a1, · · · , an by means of an ordering vector
W = [w1, ..., wn], applying w1 to the highest value among a1, · · · , an, w2 to next
highest value, etc. Thus OWA is defined by:

FW (a1, · · · , an) =

n∑
i=1

wibi; wi ∈ [0, 1] ;

n∑
i=1

wi = 1

where bi is the i’th largest among a1, · · · , an and b1, · · · , bn is thus the descend-
ing ordering of the values a1, · · · , an. By modifying W we can obtain differ-
ent aggregations, for instance, W = [1, 0, 0, · · ·] corresponds to the maximum,
W = [1/n, 1/n, · · ·] becomes the average, and W = [0, 0, · · · , 1] the minimum.
Order weights can, independent of n, be modeled by an increasing function
K : [0, 1]→ [0, 1] such that:

wi = K

(
i

n

)
−K

(
i− 1

n

)
Assuming K(0) = 0 and K(1) = 1, aggregations such as max can be modeled
by K(x) = 1 for x > 0, min by K(x) = 0 for x < 1, average by K(x) = x and
for instance a restrictive aggregation (closer to max that min) by K(x) = x3.
Using this principle of prescribing weights by increasing functions, order weight
specification can be further simplified using a single parameter β ∈ [0, 1], as in:

K(x) = Gβ(x) =

{
0 for β = 0

x
1
β−1 for β > 0

where values 0, 1 and 0.5 for β corresponds to min, max and average respec-
tively, while values closer to zero corresponds to more restrictive aggregations
and values closer to 1, to less.

OWA aggregation conveniently adapts intuitive definitions of “linguistic quan-
tifiers”. Using the single-parameter approach above we can define EXISTS by
Gβ(x) with β = 1 and FOR ALL with β = 0, while quantifiers such as A FEW ,
SOME, MOST , and ALLMOST ALL can be modeled by β-values such as 0.8,
0.5, 0.2 and 0.05 respectively.

While compound statement as well as episode aggregation intuitively are
conjunctive, we consider the former as indicating more restrictive quantification
than the latter. We chose, for application in the prototype the MOST aggrega-
tion, setting the corresponding β-value to 0.2.

4 Experiments and Evaluation

We illustrate applications of our query language to the social network Twitter
using our prototype implementation of the query language.

The implementation is realized in Prolog and R (bridged through the R..eal
Prolog library [2]). The system has a grounding component which for each vari-
able and flexible duration generates all possible query variants in which query
variables are replaced by possible values and durations are given as a fixed num-
ber of dates. We refer to a query variant and its associated score as a match.
A query result set contains all matches to a query sorted by their score. Query
evaluation is a recursive procedure which uses fuzzy membership functions for
atomic statements and Order Weighted Averaging for compound statements as
described in section 3. A search for a match of a specific episode runs in time
linear in the size of the data. The number of variables in a query may have dras-
tic influence on the number of query variants and hence on time complexity, but
may be controlled by heuristic score cut-offs. Furthermore, both the independent
scoring of query variants and the recursive matching procedure is well-suited for
parallelization using a map-reduce strategy [5].

To test our implementation we have gathered almost 500GB of data from
Twitter3 over a period of about one month (From December 23, 2012 to February

3 A tweet including meta-data takes about 1 kilobyte.

7, 2013). The data were collected by monitoring the sample firehose [12] – a
service provided by Twitter which gives access to a random subset of Twitter
messages (tweets) as they are produced in realtime. Twitter also provide a search
interface, but unlike the firehose, the returned data are not purely random but
are filtered based on criteria known only by Twitter. Each tweet is provided in
a JSON format, which in addition to the tweet text, provides metadata such as
the language of the of tweet. We consider only tweets for which the language is
indicated to be English.

For each tweet collected, we identify topics and perform sentiment analysis
using the sentiment package for R [6]. We utilize Twitters hashtags as topic
classifications, which has the advantage that we do not have to decide on a
prospective set of topics in advance. Hashtags are words in a tweet that are
prefixed with the # character and serves as a way for users to volunteer a
sort of topic classifications of their tweets. For our purposes, it is not sensible
to consider all hashtags since some are so infrequent that it is not possible to
measure a trend within our time limit. We consider only hashtags which occurs
in at least 500 of the collected tweets (corresponding to an average of at least
ten tweets per day). In our dataset, only 3494 out of 2045318 unique hashtags
occur in at least 500 messages.

4.1 Example 1: Stock Prices and Surprising Events

As a case to illustrate the query language, we are interested in finding sudden
events involving a company which either angers or pleases the public. We use the
company Apple (tag #apple) in this example. Reactions to sudden events may
involve an expression of surprise as well as an indication of attitude towards the
event. To characterize attitude we consider joy and anger rather than positive
or negative sentiment because these are more extreme emotions and more likely
to pertain to surprising events. We expect that sudden events of these kinds can
have an effect on the stock price of a company.

We detect such events with EmoEpisodes using the following two queries:

Q1: apple:{surprise(high), joy(high)}[≥ 1 day]

Q2: apple:{surprise(high), anger(high)}[≥ 1 day]

The first query matches scenes of arbitrary duration for which surprise and
joy for #apple is high and the second matches scenes for which surprise and
anger is high. For each of these two queries we collect all matches.

The matches to a query are likely to overlap. For instance, a match with a
period of three days may be overlapped by (similar) matches with periods of
more than or fewer than three days, but covering some of the same three day
period. Figure 2 shows curves of the maximal scores of any match to Q1 and
Q2 together with a normalized stock prize. Even if the stock price curve is not
a perfect match to either of the query curves, it is easy to spot correlations.

Fig. 2. The solid curve displays the maximal score for query Q1 (surprise and joy) and
the dashed curve displays the maximal score for query Q2 (surprise and anger). The
dotted curve displays Apples stock price normalized to the range [0, 1].

● ●

Dec 24 Dec 31 Jan 07 Jan 14 Jan 21 Jan 28 Feb 04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Date

Sc
or

e
an

d
st

oc
k

pr
ic

e

surprise/joy
surprise/anger
Stock prize

4.2 Example 2: Changes of Attitude

The previous example does not make use of variables which are useful to reason
about unspecified tags, sentiments and emotions. We consider here matching
topics for which a change in attitude has occurred. In particular, we consider a
change from a positive attitude to a negative attitude.

Q3: X:positive(high)[10 days] ; X:negative(high)[10 days]

Four tags achieve perfect score for this query. The most interesting of these
is the tag #14jan (≈ Jan 14–Feb 2) which refer to a march in Pakistan led by
Canadian-Pakistanian Tahir-ul-Qadri in protest of the government. While the
protest march led to an agreement of reforms signed by the government, the
negative sentiments period (Jan 24–Feb 2) contains many critical tweets about
the dual nationality of Tahir-ul-Qadri and about his agenda.

The rest are non-topical tags: #emblemfollowspree (≈ Jan 10–Jan 29), #twit-
terhastaughtme (≈ 29 Dec–17 Jan), #dontbemadatmebecause (≈ 29 Dec–18 Jan).
These are Twitter-specific tags for which there is a high volume of these tweets
for a relatively short duration (trending tags). Tweets using one of these tags
seem to use a sarcastic tone, which explain negative sentiment classifications. In
the first few days of these trends, they receive a lot of positive attention. This is
apparent from tweets using the tag to comment on the tag/trend to indicate, e.g.,
that it is funny. This explains a great deal of positive sentiment classifications.

5 Related Work

Our terminology is inspired by the seminal work of [7] who suggested a way to
define episodes in sequences of discrete events (from a finite alphabet of such)
and gave algorithms to search for a sort of association rules among such episodes.
Before that, [1] described algorithms for mining frequent, sequential patterns in
a transaction database. See a recent survey [8] on later work inspired by [1, 7].

Our work differs from the referenced work in that we present 1) a logical lan-
guage EmoEpisodes for specifying scenes and episodes sequences, and 2) these
episodes refer to measurements over large sets of timestamped objects (exempli-
fied by tweet messages) with associated multi-dimensional features (exemplified
by hash tags and emotions), rather that a finite alphabet. Furthermore, our
episodes can be parameterized in arbitrary ways, we can include very general
time constraints, and we can search for (ranked lists of) instances of the parame-
ters that provides the best match. Our declarative episode specification language
has a well-defined, graduated truth semantics, that is parameterized in a way
that allows different interpretations of the data.

An SQL-based query language for specifying search for sequential patterns of
simple events is introduced in [11]. The queries inherit the generality of SQL, but
examples in the paper gives an impression that formulation of queries may be
a non-trivial task. There is no account for a priority between different answers,
although this may possibly be encoded with aggregate functions and SORT BY
in SQL. A generalization of the query language of [11] to handle episodes specified
in EmoEpisodes does not seem feasible, as all details of the underlying data
semantics and aggregations would need to be unfolded in an SQL style within
each query.

Sentiment analysis of Twitter messages over time has previously been demon-
strate to correlate with public opinion measured by Gallup polls in [9] which,
however, only measures positive/negative sentiment. Another study correlates
tweet sentiments and emotions to socio-economic phenomena [4]. Correlation of
the sentiment of Twitter messages to stock prices is studied in [3], though not in
relation to surprising events. In contrast to the specific nature of these studies,
EmoEpisodes provides the flexibility to adapt to a variety of use-cases.

6 Conclusions

We have presented a language for querying and mining the development of sen-
timents and emotions over time and illustrated its use with Twitter data. The
language gives the ability to answer questions on how and when opinions change.
It is also useful as a data mining tool to discover sequential patterns of sentiments
and emotions associated to topics which may not be known in advance. Being
able to answer queries as those supported by our language can have important
implications for, e.g., social, socio-economical and political science as well as for
market analytics. As a monitoring tool it can discover unexpected events and be
used to alert media and decision makers to events worthy of attention. To our
knowledge, a query language with these capabilities has not been seen before.

Our implementation can be improved in a number of ways, particularly with
regard to the method of sentiment analysis and topic classification. Using hash-
tags as topic classifications is convenient but it is possibly ambiguous and may
be insufficient if tags are non-topical or missing. The use of NLP techniques and
an ontology of tag meaning, i.e., MOAT [10], can be used mitigate the issue.
Similarly, it would be more accurate to classify sentiment in reference to topics
rather than classifying the overall sentiment of a tweet.

Social media data is a multi-faceted, global phenomena which take many
forms. Besides the temporal aspect, social media data also contain a geographical
dimension which provide relevant information to include in a sentiment query
language. In addition, integrating different sources of temporal data such as,
e.g., stock prices and news reports, may further increase utility of the language.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P.
Chen, editors, ICDE, pages 3–14. IEEE Computer Society, 1995.

2. N. Angelopoulos, V. S. Costa, J. Azevedo, J. Wielemaker, R. Camacho, and L. Wes-
sels. Integrative functional statistics in logic programming. Proc. of Practical
Aspects of Declarative Languages, 7752, 2013.

3. J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal
of Computational Science, 2(1):1–8, 2011.

4. J. Bollen, A. Pepe, and H. Mao. Modeling public mood and emotion: Twitter
sentiment and socio-economic phenomena. In Proceedings of the Fifth International
AAAI Conference on Weblogs and Social Media, pages 450–453, 2011.

5. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

6. T. P. Jurka. sentiment: Tools for Sentiment Analysis. Version 0.2.
http://github.com/timjurka/sentiment.

7. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997.

8. C. H. Mooney and J. F. Roddick. Sequential pattern mining – approaches and
algorithms. ACM Comput. Surv., 45(2):19:1–19:39, Mar. 2013.

9. B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From tweets
to polls: Linking text sentiment to public opinion time series. In Proceedings of
the International AAAI Conference on Weblogs and Social Media, pages 122–129,
2010.

10. A. Passant and P. Laublet. Meaning of a tag: A collaborative approach to bridge
the gap between tagging and linked data. In C. Bizer, T. Heath, K. Idehen,
and T. Berners-Lee, editors, LDOW, volume 369 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

11. R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Optimization of sequence queries
in database systems. In P. Buneman, editor, PODS. ACM, 2001.

12. Twitter. The streaming APIs. https://dev.twitter.com/docs/streaming-apis.
13. R. Yager. On ordered weighted averaging aggregation operators in multicriteria

decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18(1):183–
190, 1988.

