
CHAPTER ONE

CONSTRAINTS AND LOGIC PROGRAMMING

IN GRAMMARS AND LANGUAGE ANALYSIS

HENNING CHRISTIANSEN

1.1 INTRODUCTION

Constraints are important notions in grammars and languages analysis, and
constraint programming techniques have been developed concurrently for
solving a variety of complex problems. In this chapter we consider the syn-
thesis of these branches into practical and effective methods for language
analysis. With a tool such as Constraint Handling Rules, CHR, to be ex-
plained below, the grammar writer or programmer working with language
analysis can define his or her own constraint solvers specifically tailored
for the linguistic problems at hand. We concentrate on grammars and lan-
guage analysis methods that combine constraints with logic grammars such
as Definite Clause Grammars and CHR Grammars, and show also a direct
relationship to abductive reasoning,

Section 1.2 reviews background on different but related notions of con-
straints in grammars and programming, and a a brief introduction to Con-
straint Handling Rules is given. The relation between abductive reasoning
and constraint logic programming, most notably in the form of Prolog with
CHR, is spelled out in section 1.3. Sections 1.4–1.5 shows hois materializes
into methods for languages analysis together with Definite Clause Gram-
mars and in the shape of CHR Grammars.

1.2 BACKGROUND

We assume a basic knowledge about the logic programming language Pro-
log and its grammar notation Definite Clause Grammars, DCG. There are



6 CHAPTER ONE

plenty of good standard books on logic programming and resources avail-
able on the internet, Christiansen (2010) gives a brief introduction intended
for linguist students.

1.2.1 DIFFERENT NOTIONS OF CONSTRAINTS IN GRAMMARS

AND LOGIC PROGRAMMING

The term constraints are being used with many, slightly different but over-
lapping meanings in computation and linguistics. Typically constraints C
appear together with a generative model G , where they serve as a filter re-
duce the extension of G . For example, G may characterize a set of decorated
syntax trees and C accepts only those trees whose decorations reflects cor-
rect inflection. In a Definite Clause Grammar, for example, the unification
of attributes from different subtrees serve as constraints that limits the ex-
tension.

(Typed) feature structures can be seen as extensions to the standard terms
of Prolog and considered more suited for modelling grammatical and se-
mantic features of languages; they require a separately programmed unifi-
cation algorithm when used with, say, Prolog-based grammars. There is a
flourishing tradition for many sorts of such unification-based grammars or
constraint-based grammars (where constraints typically are realized through
a sort unification); we shall not go more details but refer to Pereira and
Shieber (1987); Gazdar and Mellish (1989); Shieber (1992); Francez and
Wintner (2012) for more information. Formally, these grammars are special
cases of Knuth’s attribute Grammars (1968).

However, attributes and constraints imposed on them are informative
themselves and should not only be seen as devices to rule out syntactically
wrong phrases or analyses thereof (or, strictly speaking, phrase-like struc-
tures). Syntactic features and semantic representations given as attributes
may represent the desired the results of an analysis.

Another notion of constraints comes in from the tradition of constraint
programming, in which a mathematical or logical problem concerns the as-
signment of values to variables that satisfies a number of constraints speci-
fied by a collection of predicates, where unification or its special case of syn-
tactic equality are just examples of such predicates. For a general overview
of this field, see Apt (2003), and for an introduction to its incarnation in
logic programming, Jaffar and Lassez (1987). As a simple example, we may
consider a constraint problem in the variables x and y in the domain of inte-
ger numbers given as x ≤ y∧ y≤ x. This constraint problem has an infinite



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 7

number of solution characterized by the reduced or solved constraint x = y.
The device that performs this reduction is an algorithm called a constraint
solver. In linguistic terms, we may consider a grammar for a language about
mathematical entities, so that the analysis of two sentences produces the in-
equalities shown, one for each sentence, and we take x= y as the meaning of
the discourse consisting of those two sentences: we show this below in ex-
ample 1.2.1 using the combined notations of DCG and Constraint Handling
Rules.

Whereas as the aforementioned unification- or constraint-based gram-
mars such as DCGs communicate meanings and features through the links
and nodes of syntax trees, constraint logic programming allows to commu-
nicate through a global structure, typically called a constraint store. Thus
an analysis may produce a syntax tree together with a constraint store in re-
duced form, by a cooperation between a parsing algorithm and the constraint
solver. In case the constraint solver identifies a constraint violations, it may
force the parser to try another decomposition strategy, perhaps leading to
a rejection of the entire phrase being analyzed. While a constraint store in
principle can be implemented as an attribute carried along the branches of
a syntax tree, and thus provides no extension in a strict mathematical sense
to the previous, the notion of a global store of information collected in an
incremental way points in the direction of discourse analysis, i.e., the knowl-
edge from one sentence is available for the analysis of the next one and so
on, and the constraint solver serves as maintain constraint store, which new
takes the role of a knowledge base.

1.2.2 CONSTRAINT HANDLING RULES, CHR

The programming language of Constraint Handling Rules (CHR) is an ex-
tension to Prolog that makes it possible to write specialized constraint solvers
in a rule-base fashion. CHR consists of rewriting rules over constraint
stores, and each time a new constraint is called, the given CHR program
will accommodate it into the evolving constraint store (or perhaps produce
a failure, leading to a shift of control in a driver process such as a parser).
CHR is now available as an integrated part of several major Prolog systems.
Here we give only a very brief introduction; a comprehensive account on
CHR and its applications can be found in the book by Frühwirth (2009).
CHR has three sorts of rules of the following forms.



8 CHAPTER ONE

Simplification rules: h1, . . . ,hn <=> Guard | b1, . . . ,bm
Propagation rules: h1, . . . ,hn ==> Guard | b1, . . . ,bm
Simpagation rules: h1, . . . ,hk \hk+1, . . .hn <=> Guard | b1, . . . ,bm

The h’s are head constraints and b’s body constraints, and Guard is a guard
condition (typically testing values of variables found in the head). A rule
can be applied when its head constraints are matched simultaneously by
constraints in the store and the guard is satisfied. For a simplification rule,
the matched constraints are removed and the suitably instantiated versions
of the body constraints are added. The other rules execute in a similar way,
except that for propagation, the head constraint stays in the store, and for
simpagation, only those following the backslash are removed. Prolog calls
inside the body are executed in the usual way.

The indicated procedural semantics is consistent with a logical seman-
tics based on a reading of simplifications as bi-implications, propagations as
implications. A simpagation H1 \H2<=>G | B is logically considered equiv-
alent with the simplification H1,H2<=>G | H1,B, although it is executed in
a different way.

Example 1.2.1 In section 1.2.1 we discussed informally a constraint solver
for inequalities. In the following, we define a constraint solver with the
described behaviour, using the constraint predicate leq(x,y) to represent
x≤ y.

:- chr_constraint leq/2.
leq(A,B), leq(B,A) <=> A=B.

Solving inequalities is a standard introductory example for CHR; see Früh-
wirth (2009) for the few aditional rules necessary to handle all combinations
of inequalities correctly. The CHR program can be tested from the Prolog
system’s command line as follows. A collection of constraints is given as a
query, and the interpreter returns the result.

?- leq(X,Y), leq(Y,X).
X=Y?

In case the execution of a rule body leads to failure, it means that the con-
straints in the query are considered to be inconsistent with respect to the
knowledge embedded in the current program. This may happen if a unifica-
tion fails, e.g., 1=2, or when the built-in predicate fail is called.



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 9

1.3 ABDUCTIVE REASONING IN LOGIC PROGRAMMING

WITH CONSTRAINTS

Abductive reasoning was formulated as a principle by C.S.Peirce (1839–
1914) as a third fundamental form to complement deduction and induction.
Abduction has been studied in the context of logic programming, and it is
also an important principle and a general metaphor for discourse analysis,
so therefore it is relevant here to discuss this notion in a little details.

There are different formulations of what abduction means, but here we
stay with the simplest form namely that abduction is the process of suggest-
ing a suitable set of facts, which serves as a hypothesis, which, when added
to our current knowledge, can explain an unexpected observation. Unex-
pected means here, not explainable from our current knowledge base with-
out additional hypotheses added. Furthermore, the new hypothesis must not
conflict with our current knowledge.

In symbols, when our current knowledge base is called K and the ob-
servation O , we need to find a hypothesis or explanation H such that
K ∪H ⇒ O but not K ∪H ⇒ false.

Discourse analysis can be understood as abduction as best known from
the seminal paper by Hobbs et al. (1993): a listener A wants to figure out
the new (to A) knowledge embedded in a discourse produced by a speaker
B. For A, the discourse is an observation O , and when he concludes, based
on his current knowledge K “Aha, now I understand, B wants to convey
the message or knowledge H – this makes sense and can explain why he is
telling this story O .” This fits the general pattern of abduction shown above.
One of the advantages of viewing discourse understanding as abduction – as
opposed to a compositional assembly process from the bits of meanings
embedded in each word – is that presupposed knowledge can be extracted:
The utterance of the sentence “Now her husband is drunk again", if assumed
to be true, can only be explained if 1) the husband is drunk, and 2) that this
is a regularly recurring event. A more detailed analysis might also add (if
it was not known), that 3) the husband suffers from alcoholism, and 4) has
access to alcohol. If, furthermore, the general setting new to the listener,
he may conclude further “hmmm, there are a female and a male character
involved, and they happen to be married”.

To understand abduction in logic programming, we may consider a situ-
ation where a person has a formalized a knowledge base in terms of a logic
program, call it P , and makes an observation O . He wants to check if O
is really the case according to P by asking the query ?- O – and receives



10 CHAPTER ONE

Prolog’s laconic answer no. However, it may be the case that if the program
is extended with a set of additional facts, which we call H to conform with
the pattern above, that O will succeed in the extended program P ∪H ;
thus H may be a proposal for an abductive explanation. However, this ar-
gument may not be sufficient as knowledge about the general setting puts
some restrictions on which combinations of facts that can co-exists. For ex-
ample, if the problem is a detective problem, i.e., O is an observed crime, a
hypothesis such as did_it(the_ butler) may be rejected, if this im-
plies was_at(misty_london, the_butler) and it is a known fact
that was_at(sunny_brighton, the_butler). This conflicts with
the world knowledge that a person cannot be two different places at the same
time. Thus, to do abduction in logic programming, it maybe suggested to
add an additional component of so-called integrity constraints I C to put
restrictions on which sets of facts that are acceptable as explanations. To fit
the general characterization of abduction above, we may set K =P∪I C .

An abductive logic program can be defined as a triplet 〈P,I C ,A 〉
where A is a collection of predicates called abducibles, from which expla-
nations can be composed, and P and I C as above. Abducible predicates
are usually assumed not to occur in the head of any clause of P .

Console et al. (1991) formalized in an elegant way how the execution
of abductive logic programs can be understood as an extension to Prolog’s
standard goal-directed recursive descent style: instead of failing when it
runs an abducible atom not mentioned in P , it simply adds it to the grow-
ing explanation. A consistency check with respect to I C needs to be incor-
porated, ideally in an incremental way in order to reduce the search space.
When Prolog is combined with CHR, this is exactly what CHR is doing:
when a constraint is encountered during the execution of a query, it is added
to the constraint store, and the constraint solver – i.e., the current set of
rules – will apply, thus serving as an incremental test of consistency. This
relationship between abduction and CHR was discovered by Abdennadher
and Christiansen (2000) and its combination with Prolog as just described
by Christiansen and Dahl (2005a). The idea is elucidated by the following
example.

Example 1.3.1 (Christiansen, 2009) The following program consist of two
Prolog rules describing different ways that someone can be happy, together
with a CHR component that defines a constraint solver for three predicate
which may be understood as abducible.



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 11

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.
professor(X), rich(X) ==> fail.

The single CHR rules formalizes the real world experience that the salary
payed to professors do not make them rich. The following query asks for
how a certain professor may become happy, is shown together with the an-
swer produced by the combined Prolog and CHR interpreter.

?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

The presence the additional information in the query, that the person is a
professor, triggers the CHR rule when the hypothesis rich(henning) is
suggested by the Prolog program, thus rejecting this alternative. Above, the
semicolon is typed by the user with the meaning of asking for alternative
answers, and the system’s no assures there are no more solutions than the
one reported.

As appears, the implementation of abductive logic programming with CHR
requires no program transformation or additional interpretation overhead.
The approach may be summarized as translation of terminology from one
computational domain to another.

Abductive logic programming Constraint logic programming with CHR
Abductive logic programs Prolog programs with a little bit of CHR

Abducible predicate Constraint predicate
Integrity constraints CHR Rules

Program rules Program rules
Explanation Final constraint store

The precise details for this equivalence are spelled out in Christiansen (2009).
Most other approaches to abductive logic programming are based on

metainterpreters written in Prolog, see Denecker and Kakas (2002) for an
overview and a later approach by Mancarella et al. (2009). Several of these
can handle negation, which is not possible in our CHR-based approach de-
scribed above, but our favours in terms of efficiency and the flexibility from



12 CHAPTER ONE

using an existing, fully instrumented programming system. The similar-
ity between constraint programming and abduction was also observed in an
early paper by Maim (1992) before the appearance of CHR.

1.4 USING CHR WITH DEFINITE CLAUSE GRAMMARS

FOR DISCOURSE ANALYSIS

Definite Clause Grammars, DCG, play well together with CHR for dis-
course analysis as discussed very briefly in section 1.2.1. While, techni-
cally speaking, this way of using CHR to gradually collect the knowledge
contained in a discourse is an application of abductive reasoning, its use
with DCG appears to fairly easy to understand also for students without any
knowledge about abduction. This approach to discourse analysis is demon-
strated by a simple example adapted from Christiansen (2014b).

Example 1.4.1 We consider a constraint solver to be used for the analy-
sis of stories about the students at small university at some fixed moment
of time. The university has a number of rooms and other places, where
students are allowed to come. A section of those are two lectures halls en-
coded in the program below as lectHall1, lectHall2; a reading room
rRoom, student bar bar, a garden garden, etc. There are currently two
courses going on, programming in lectHall1 and linguistics in
lectHall2. The following constraint predicates are introduced, in(s,r)
indicating that student s is in room r, attends(s,c) that student s attends
course c, can_see(s1,s2) that student s1 can see students s2, and finally
reading(s) indicating that student s is reading. A student can only be in
one room at a time, and reading can take place in any room but the lecture
halls. A constraint solver for this can be expressed in CHR as follows; the
constraint diff(x,y) is a standard device indicating that x and y must be
different (easily defined in CHR; left out for reasons of space).

:- chr_constraint attends/2, in/2, reading/1.

attends(St, programming) ==> in(St, lectHall1).
attends(St, linguistics) ==> in(St, lectHall2).
in(St, R1) \ in(St, R2) <=> R1=R2.
reading(St) ==> in(St, R),

diff(R, lectHall1), diff(R, lectHall2).



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 13

A rule body may provide alternative suggestions for explaining different ob-
servations, so for example for for student x to see student y, they must be
in the same room or they may see each other througg a video call using
skype. The two additional constraints and a rule are introduced to capture
this as follows; the semicolon stands for Prolog’s disjunction (which is im-
plemented by backtracking).

:- chr_constraint can_see/2, skypes/2.

can_see(St1,St2) ==> in(St1,R), in(St2,R)
; skypes(St1,St2), in(St1,R1), in(St2,R2),

diff(R1,R2).

The CHR declarations shown so far define a constraint solver that can be
used together with any parsing algorithm in order to collect knowledge from
a discourse. Here we show a DCG in which the constraints are called di-
rectly from within the grammar rules.

story --> [] ; s, [’.’], story.
s --> np(St1), [sees], np(St2), {can_see(St1,St2)}.
s --> np(St), [is,at], np(C), {attends(St,C)}.
s --> np(St), [is,reading], {reading(St)}.
np(peter) --> [peter].
np(mary) --> [mary].
np(jane) --> [jane].
np(programming) --> [the,programming,course].
np(linguistics) --> [the,linguistics,course].

Consider now a query phrase(story,[peter,· · ·]) for the analysis
of the text Peter sees Mary. Peter sees Jane. Peter is at the programming
course. Mary is at the programming course. Jane is reading. It yields the
following answer, i.e., the final constraint store when the sequence text has
been traversed by the grammar.

attends(mary,programming) can_see(peter,jane)
attends(peter,programming) can_see(peter,mary)
in(jane,X) reading(jane)
in(mary,lectHall1) skypes(peter,jane)
in(peter,lectHall1) diff(X,lectHall1)

diff(lectHall2,X)

Referring to the discussion of discourse interpretation as special case of ab-
duction, section 1.3 above, we may say that this constraint store is a knowl-
edge base – or explanation – necessary for the discourse to be correctly



14 CHAPTER ONE

produced. The variable written as “X” stands for Jane’s location which is
not determined from the discourse; it is only known not to be one of the
lecture halls.

The example above displays an incremental analysis of the text, in which
the knowledge learned up to a certain point is available for the analysis
of the next sentence. Furthermore, the use of constraint techniques delays
choices that cannot be resolved currently, but may be resolved later when
new knowledge is introduced.

As an example of this methodology, we refer to Christiansen et al.
(2007), who applied DCG and CHR in a similar way to analyze use case text
(use cases as applied in software development) for producing UML class di-
agrams. This involved an approach to pronoun resolution expressed as CHR
rules based on which persons has been mentioned so far and in which dis-
tance from the pronoun under consideration. This paper uses CHR also to
generalize properties mentioned for specific person into properties for the
class to which this person belongs.

This combination of CHR with Prolog has been presented initially as an
language called HYPROLOG (Christiansen and Dahl, 2005a) with special
tools for declaration of abducible predicates, which in addition to the CHR
constraint declarations shown above, also generates facilities of a weak form
of negation of abducible predicates plus some other utilities. It includes
also a notion of assumptions (Dahl et al., 1997) that are very much like
abducibles, but are explicitly produced and possibly consumed; declarations
of assumptions are also compiled into CHR,

1.5 CHR GRAMMARS

A DCG as we demonstrated above together with CHR executes as a top-
down parser that uses backtracking when examining different alternative
parses. CHR itself can be used in a straightforward way for bottom-up pars-
ing which, as is well known, is more robust of errors and less restrictive
on the context-free backbone of the grammars that can be used (e.g. Aho
et al., 1988). Christiansen (2005) has introduced a grammar notation, CHR
Grammars, that is compiled into CHR analogously to the way that DCGs
are compiled into Prolog. CHR Grammars features different kinds of con-
text dependent rules having an expressive power that goes far beyond DCGs
and other logic programming based grammar systems. The following ex-
ample demonstrates how CHR can be used for bottom-up parsing. Each
nonterminal in the grammar is represented as a constraint predicate with



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 15

two additional attributes to indicate the location of each occurrence in the
entire string to be analyzed.

Example 1.5.1 We consider a small language of which “Peter likes Mary”
is a typical sentence. The languages has nonterminal symbols np, verb and
sentence. The string shown can be encoded by the following set of CHR
constraints.

token(0,1,peter), token(1,2,likes), token(2,3,mary)

Each single token or phrase recognized carries indices corresponding the
point immediately before, respectively after, the token or phrase in the input
string. The lexical part of the grammar that classifies each single token is
given by the following rules.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary) ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

The rule to recognize a sentence is a follows.

np(N0,N1), verb(N1,N2), np(N2,N3)
==> sentence(N0,N3).

In order to analyze a text, a set of token constraints as shown above is en-
tered as a query, and the rules will apply as many times as possible, and
for this example leaving the following final constraint store, that describes
the recognized phrases, including all subphrases; we do not repeat the token
constraints but they will also be present.

np(0,1) verb(1,2)
np(2,3) sentence(0,3)

The example may be varied using simplification rules instead, leading to the
removal of intermediate nonterminals. However, when propagation rules
are used in case of an ambiguous grammar, all the different possible parses
will automatically be produced. Notice also that is straightforward to add
additional attributes to each constraint (=nonterminal) symbol to hold other
interesting syntactic, semantic or other properties associated with a phrase.
The use of additional CHR constraints and rules for abductive interpretation
as demonstrated with DCGs as shown in section 1.4 above can be used here,
by calling constraints corresponding to abducibles in the right-hand sides of
the rules.



16 CHAPTER ONE

CHR Grammars support a wide range of grammatical patterns that can
be translated into conditions on the position indices. This includes gaps be-
tween subphrases or requirements that certain subphrases must be present
immediately before or after, or in an arbitrary distance, from the symbols
being matched. For example, to express that a nonterminal a followed im-
mediately by nonterminal b can be reduced into an ab if followed by a c in
a distance between zero and ten positions, can be expressed in the following
way.

a(N0,N1), b(N1,N2), c(N3,_)
==> N3 >= N2, N3 =< N2+10 | ab(N0,N2).

However, as these indices are tiresome to write and easy to get wrong,
CHR Grammars offer a high-level notation, and the CHR Grammar com-
piler translates this into the right constraints, index variables and guards to
form CHR rules as the one just shown. The CHR rule shown above can be
written as the following CHR Grammar rule.

a, b /- 0...10, c ::> ab.

The symbol written as three dots is a pseudo-nonterminal that can be given
with or without limits for the length of the substring that it spans. The ma-
terial to the right of the “/-” symbol indicates what is called a left context,
and there is a similar marker “-\” for indicating left context. Such gaps are
highly relevant for biological sequence analysis, e.g., for gene finding and
protein structure prediction.

Another of CHR Grammar’s features is parallel matching, indicated by
an operator “$$”, so the following rule will recognize an a phrase as a
special_a if it has a length between 10 and 20 and that a b has been
recognized inside the substring spanned by a.

a $$ 10...20 $$ ...,b,... ::> special_a.

A detailed description of all options can be found in (Christiansen, 2005)
and at the CHR Grammar website (Christiansen, 2002) that has a compre-
hensive users’ guide, several example grammars and source code that runs
under the SWI and SICStus Prolog systems. The CHR grammar systems in-
cludes the same utilities for abduction and assumptions as the HYPROLOG
system explained at the end of section 1.4 above.

CHR Grammars have been used for biological sequence analysis by,
among others, Bavarian and Dahl (2006), for modeling various phenom-
ena in natural language, e.g., (Aguilar-Solis and Dahl, 2004; Dahl, 2004).



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 17

CHR without the CHR Grammar notation has been used for variants of the
bottom-up parsing method for analysis of hieroglyph inscriptions (Hecksher
et al., 2002) and for analysis of time expressions in pre-tagged biographic
texts (van de Camp and Christiansen, 2012). The latter used multiple in-
dices that located each token according to its occurrence its position as well
as which sentence in which paragraph and in which document. The Chinese
Word Segmentation Problem was approach with CHR Grammars by Chris-
tiansen and Li (2011); see also paper by these authors in the present volume.

1.6 CONCLUSION

The use of constraints as devices in grammars and as programming tools
have been discussed with an emphasis on the amalgamation into practical
tools for language analysis. The programming language of Constraint Han-
dling Rules, CHR, was demonstrated as a tool for representation and eval-
uation of semantic and other information being extracted from a text under
analysis. It has been argued elsewhere Christiansen and Dahl (2005b) that
this approach may provide an integration of the semantic and semantic as-
pects of language analysis. The relation to abductive reasoning was shown,
in that a straightforward use of constraints together with Definite Clause
Grammars and CHR Grammars is an instance of abduction.

We have shown only fairly simple examples, but it should be emphasized
that constraint solvers that model very complex semantic domains can be
written in CHR; see (Frühwirth, 2009) and the growing literature on appli-
cations of CHR. As an example of this, we may mention a solver written in
CHR for handling different sorts of calendric expressions, including resolv-
ing relative time expressions (Christiansen, 2014a) from partial information.

BIBLIOGRAPHY

Abdennadher, S. and Christiansen, H. (2000). An experimental CLP
platform for integrity constraints and abduction. In Proceedings of
FQAS2000, Flexible Query Answering Systems: Advances in Soft Com-
puting series, pages 141–152. Physica-Verlag (Springer).

Aguilar-Solis, D. and Dahl, V. (2004). Coordination revisited - a constraint
handling rule approach. In C. Lemaître, C. A. R. García, and J. A.
González, editors, IBERAMIA, volume 3315 of Lecture Notes in Com-
puter Science, pages 315–324. Springer.



18 CHAPTER ONE

Aho, A. V., Sethi, R., and Ullman, J. D. (1988). Compilers: Principles,
Techniques and Tools. Addison-Wesley.

Apt, K. (2003). Principles of Constraint Programming. Cambridge Univer-
sity Press.

Bavarian, M. and Dahl, V. (2006). Constraint based methods for biologi-
cal sequence analysis. Journal of Universal Computing Science, 12(11),
1500–1520.

Christiansen, H. (2002). CHR Grammar web site; released 2002.
http://www.ruc.dk/~henning/chrg.

Christiansen, H. (2005). CHR Grammars. Theory and Practice of Logic
Programming, 5(4-5), 467–501.

Christiansen, H. (2009). Executable specifications for hypothesis-based rea-
soning with Prolog and Constraint Handling Rules. J. Applied Logic, 7(3),
341–362.

Christiansen, H. (2010). Logic programming for linguistics: a short intro-
duction to prolog, and logic grammars with constraints as an easy way to
syntax and semantics. TRIANGLE, 1, 31–64.

Christiansen, H. (2014a). Constraint logic programming for resolution of
relative time expressions. In A. Beckmann, E. Csuhaj-Varjú, and K. Meer,
editors, Computability in Europe 2014, Lecture Notes in Computer Sci-
ence. Springer. To appear.

Christiansen, H. (2014b). Constraint programming for context comprehen-
sion. In P. Brézillon and A. Gonzalez, editors, Context in Computing. To
appear.

Christiansen, H. and Dahl, V. (2005a). HYPROLOG: A new logic pro-
gramming language with assumptions and abduction. In M. Gabbrielli
and G. Gupta, editors, ICLP, volume 3668 of Lecture Notes in Computer
Science, pages 159–173. Springer.

Christiansen, H. and Dahl, V. (2005b). Meaning in Context. In A. Dey,
B. Kokinov, D. Leake, and R. Turner, editors, Proceedings of Fifth Inter-
national and Interdisciplinary Conference on Modeling and Using Con-
text (CONTEXT-05), volume 3554 of Lecture Notes in Artificial Intelli-
gence, pages 97–111.



CONSTRAINTS AND LOGIC PROGRAMMING IN GRAMMARS AND LANGUAGE

ANALYSIS 19

Christiansen, H. and Li, B. (2011). Approaching the chinese word segmen-
tation problem with CHR grammars. In CSLP 2011: Proc. 4th Intl. Work-
shop on Constraints and Language Processing, volume 134 of Roskilde
University Computer Science Research Report, pages 21–31.

Christiansen, H., Have, C. T., and Tveitane, K. (2007). Reasoning about
use cases using logic grammars and constraints. In CSLP ’07: Proc. 4th
Intl. Workshop on Constraints and Language Processing, volume 113 of
Roskilde University Computer Science Research Report, pages 40–52.

Console, L., Dupré, D. T., and Torasso, P. (1991). On the relationship be-
tween abduction and deduction. Journal of Logic and Computation, 1(5),
661–690.

Dahl, V. (2004). An abductive treatment of long distance dependencies
in chr. In H. Christiansen, P. R. Skadhauge, and J. Villadsen, editors,
CSLP, volume 3438 of Lecture Notes in Computer Science, pages 17–31.
Springer.

Dahl, V., Tarau, P., and Li, R. (1997). Assumption grammars for processing
natural language. In ICLP, pages 256–270.

Denecker, M. and Kakas, A. C. (2002). Abduction in logic programming. In
A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Program-
ming and Beyond, volume 2407 of Lecture Notes in Computer Science,
pages 402–436. Springer.

Francez, N. and Wintner, S. (2012). Unification grammars. Cambridge
University Press, New York, NY.

Frühwirth, T. (2009). Constraint Handling Rules. Cambridge University
Press.

Gazdar, G. and Mellish, C. (1989). Natural Language Processing in Prolog:
An Introduction to Computational Linguistics. Addison-Wesley Publish-
ing Co., Reading, Massachusetts.

Hecksher, T., Nielsen, S. T., and Pigeon, A. (2002). A CHRG model of the
ancient Egyptian grammar. Unpublished student project report, Roskilde
University, Denmark.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. A. (1993). Inter-
pretation as abduction. Artificial Intelligence, 63(1-2), 69–142.



20 CHAPTER ONE

Jaffar, J. and Lassez, J.-L. (1987). Constraint logic programming. In POPL,
Conference Record of the Fourteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Munich, Germany, January 21-23,
1987, pages 111–119.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical
Systems Theory, 2(2), 127–145.

Maim, E. (1992). Abduction and constraint logic programming. In ECAI,
pages 149–153.

Mancarella, P., Terreni, G., Sadri, F., Toni, F., and Endriss, U. (2009). The
ciff proof procedure for abductive logic programming with constraints:
Theory, implementation and experiments. Theory and Practice of Logic
Programming, 9(6), 691–750.

Pereira, F. C. N. and Shieber, S. M. (1987). Prolog and Natural-Language
Analysis, volume 10 of CSLI Lecture Notes Series. Center for the Study
of Language and Information.

Shieber, S. M. (1992). Constraint-Based Grammar Formalisms. MIT Press.

van de Camp, M. and Christiansen, H. (2012). Resolving relative time ex-
pressions in Dutch text with Constraint Handling Rules. In D. Duchier
and Y. Parmentier, editors, CSLP, volume 8114 of Lecture Notes in Com-
puter Science, pages 166–177. Springer.


