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Abstract. Tabling of structured data is important to support dynamic
programming in logic programs. Several existing tabling systems for Pro-
log do not efficiently deal with structured data, but duplicate part of the
structured data in different instances of tabled goals. As a consequence,
time and space complexity may often be significantly higher than the the-
oretically optimal. A simple program transformation is proposed which
uses an indexing of structured data that eliminates this problem, and
drastic improvements of time and space complexity can be demonstrated.
The technique is demonstrated for dynamic programming examples ex-
pressed in Prolog and in PRISM.

1 Introduction

Tabling in logic programming systems is an established technique which can
give a significant speed-up of program execution and make it easier to write
efficient programs in a declarative style. Basically, tabling means that the system
maintains a table of calls and their answers and each time a new call is entered,
it is checked if it (or a perhaps more general call, cf. [15]) is stored in the table
already; if so, there is no need to execute it again and a previously found solution
is used. It is included in several recognized Prolog systems such as B-Prolog [17],
XSB [13] and YAP [7].

However, we can demonstrate that these systems may waste unnecessary time
and space for copying and matching structures in situations where operations
on single pointers could have been used instead. This can be the case when a
program is called with a huge, ground structure as one of its arguments, and this
argument is decomposed into sub-structures which are tabled independently.

In addition to pointing out the problem, we can show how it can be bypassed
by a straightforward program transformation and a few auxiliary predicates that
can be written in plain Prolog. A significant speed-up is demonstrated for se-
lected test programs. In a longer perspective, we advocate such techniques be
incorporated into logic programming systems with tabling such as those men-
tioned, where it can be implemented at a lower level where machine address
pointers are available rather that using a high-level “simulation” of pointers as
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we do here.



Our own background for working with this problem is work on analysis of
biological sequence data using the probabilistic-logic system PRISM [8] which is
implemented on top of B-Prolog and which is heavily dependent on its tabling
mechanism. Together with another general program transformation based tech-
nique that we have developed [2], which improves the performance of tabling
in the presence of non-discriminatory arguments, the technique described in the
present paper increases significantly the size of sequences that can be meaning-
fully analyzed by means of PRISM programs.

Section 2 introduces the problem with tabling of structured data through
an example. Section 3 describes an indexed representation of structured data
that circumvents the problem, and section 4 demonstrates the effect for two
problems, a dynamic programming problem in Prolog in section 4.1 and a PRISM
program in section 4.2. Section 5 describes a general and automatic program
transformation. Section 6 discuss limitations of our approach. Section 7 describes
related work and section 8 sums up and discuss future work.

2 The Trouble with Tabling Structured Data

In this section we empirically demonstrate that all major Prolog tabling sys-
tems have a problem with structured data. Through the benchmarking of an
implementation of the last/2 predicate — which traverses a list to find the
last element — we observe that when this predicate is tabled, time and space
complexity is far worse than without tabling.

The following is a straight-forward implementation of the last/2 predicate.

last([X],X).

last([_|L],X) :-

last(L,X).

If last/2 is called with a list L of length N , e.g. last(L, ), then the ex-
pected time-complexity of this implementation is clearly O(N). However, if the
predicate is tabled, then the tabling system may have to store N partial copies
of the list, e.g. the first copy will be the full list, the second copy will just store
N − 1 elements, and so on until every possible tail down to the last element of
the list has been tabled. This results in O(N2) tabled list elements.

Naive copying of the lists hence make the tabled version of last/2 (at least)
quadratic — with regard to both time and space consumption — rather than
linear as in the non-tabled version. Tabling systems do employ some advanced
techniques to avoid the expensive copying and which may reduce memory con-
sumption and/or time complexity. For instance, B-Prolog uses hashing of goals
[18], XSB uses a trie data structure [13] and Yap [7] uses a trie structure, which
in [6] is refined into a so-called global trie which applies a sharing strategy for
common subterms whenever possible. This can reduce space consumption, but
since there is no sharing between the trie and the actual arguments of an ac-
tive call, each execution of a call may typically involve a full traversal of its
arguments.



Nevertheless, as can be witnessed from Figure 1, all tabling systems pay a
price for structured data in either time or space. The figure shows time and
space consumption for last(L, ) with varying sizes of L, where L is either a list
of consecutive ones or a list of random numbers generated using the following
simple random number generator.

random_list(0,_,[]).

random_list(N,Prev,[X|L]):-

B is (9381*Prev + 12345) mod 32768,

X is B mod 12,

N1 is N-1,

random_list(N1,B,L).

The nature of the data seems highly relevant. For instance, YAP and XSB
performs better with repeated data and B-Prolog performs better with random
data. As can be observed from Figure 1 plots a and c, time complexity is larger
than linear in all cases, but varies depending the type of data. Space consumption
is linear for repeated data in XSB and YAP, but for B-Prolog it is linear regard-
less of the type of data. The best time complexity is observed for B-Prolog with
random data but as can be observed in plot c it is still super-linear. XSB and
YAP show a different pattern where the time complexity seems to be more closely
coupled to space complexity. For repeated data they are more time-efficient than
B-Prolog but still significantly slower than B-Prolog with random data and still
distinctively super-linear.

3 A Workaround and Its Implementation in Prolog

We present here a workaround that results in O(1) time and space complexity for
table lookups for programs with arbitrarily large ground structured data as input
arguments. A term is represented as a set of facts, each representing a subterm
which is referenced by a unique integer serving as an abstract pointer. Matching
related to tabling is done solely by comparison of such pointers, independently
of the underlying system. The representation is given by the following predicates
which all together can be understood as an abstract datatype.

store term( +ground-term, pointer)
The ground-term is any ground term, and the pointer returned is a unique
reference (an integer) for that term.

retrieve term( +pointer, ?functor, ?arg-pointers-list)
Returns the functor and a list of pointers to representations of the substruc-
tures of the term represented by pointer.

full retrieve term( +pointer, ?ground-term)

Returns the term represented by pointer.

More precisely, it must hold for any ground term s, that the query

store term(s, P), full retrieve term(P, S),
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Fig. 1. Plot a) shows the time consumption of different Prolog engines for running
tabled last/2 with lists of length N and plot b) shows the table space usage. Table
space usage is measured using the statistics/1 predicate (which is different for each
Prolog). In Yap it includes no specific measurement of ”table space” and we measure
instead the ”program space” which is taken to include the table space. Random data
means that the list contained random integers and in the repeated data means that
the lists containing the same integer repeated N times. Plot c) and d) shows time and
table space usage for the curves in a) and b) that looks flat because of the scale, but
expanded for larger values of N . The curve of B-Prolog for repeated data in plot d) is
truncated at 5000 due to its long running time for larger values.



assigns to the variable S a value identical to s. Furthermore, it must hold for
any ground term s of the form f(s1, . . . ,sn) that

store term(s, P), retrieve term(P, F, Ss),

assigns to the variable F the symbol f , and to Ss a list of ground values
[p1,. . .,pn] such that additional queries

full retrieve term(pi, Si), i = 1, . . . , n

assign to the variables Si values identical to si.

Example 1. The following call converts the term f(a,g(b)) into its internal
representation and returns a pointer value in the variable P.

store_term(f(a,g(b)),P).

After this, the following sequence of calls will succeed.

retrieve_term(P,f,[P1,P2]),

retrieve_term(P1,a,[]),

retrieve_term(P2,g,[P21]),

retrieve_term(P21,b,[]),

full_retrieve_term(P,f(a,g(b))).

Example 2. One possible way of implementing the predicates introduced above
is to have store term/2 asserting facts for the retrieve term/3 predicate using
increasing integers as pointers. Then the call store term(f(a,g(b)),P) consid-
ered in example 1 may assign the value 100 to P and as a side-effect assert the
following facts.

retrieve_term(100,f,[101,102]).

retrieve_term(101,a,[]).

retrieve_term(102,g,[103]).

retrieve_term(103,b,[]).

Notice that Prolog’s indexing on first arguments ensures a constant lookup time.

Example 3. In an application for which large numbers of identical subterms are
expected, the representation can exploit this for sharing, so for example the term
h(very(large,sub(term)), very(large,sub(term))) may be represented by
the pointer value 200 and the following facts.

retrieve_term(200,g,[201,201]).

retrieve_term(201,very,[...]).

...

This will increase the time complexity for store term/2 but the advantages are
i) storage consumption is reduced, and more importantly ii) an additional – and
for the right sort of application programs drastic – speed-up may be obtained
from the improved utilization of tabling that this automatically implies.



Finally we introduce a utility predicate which may simplify the use of the rep-
resentation in application programs. It utilizes a special kind of terms, called
patterns, which are not necessarily ground and which may contain subterms of
the form lazy(variable).

lookup pattern( +pointer, +pattern)
The pattern is matched in a recursive way against the term represented by
the pointer p in the following way.
– lookup pattern(p,X) is treated as full retrieve term(p,X).
– lookup pattern(p,lazy(X)) unifies X with p.
– For any other pattern =.. [F,X1,. . .,Xn] we call

retrieve term(p, F, [P1,. . .,Pn])
followed by lookup pattern(Pi,Xi), i = 1, . . . , n.

Example 4. Continuing example 2, we get that

lookup_pattern(100, f(X,lazy(Y)))

leads to X=a and Y=102.

The lookup pattern/2 predicate simplifies the program transformation intro-
duced in section 5 although further efficiency can be gained by compiling it out
for each specific pattern.

4 Examples

The impact of indexing for ground arguments with tabled execution is evaluated
through two experiments. Firstly, we compare the performance of existing Prolog
systems with tabling for a simple edit distance problem. The second experiment
is related to our driving motivation – biological sequence analysis in PRISM,
exemplified for probabilistic inference with Hidden Markov Models. All experi-
ments were run on a MacBook Pro with a 2.53 GHz Intel core 2 Duo processor,
4 GB memory and Mac OS X version 10.6.8 (Snow Leopard).

4.1 Example: Edit Distance

We consider a minimal edit-distance algorithm written in Prolog which is depen-
dent on tabling for any non-trivial problem. Time and space consumption are
measured for increasing problem sizes in the three major tabling systems with
and without our indexed representation.

Edit-distance is the textbook example dynamic programming. In the classic
imperative formulation of the problem, a matrix with N2 values is calculated,
such that the calculation of the value for each cell is a constant time operation
that depends on at most three other cells. The theoretical best time complexity
of edit distance has been proven to be O(N2) [16]. Dynamic programming prob-
lems exhibit optimal sub-structure which implies that partial solutions can be
reused rather than recomputed [1]. Tabling supports dynamic programming since



resolved goals are kept in a table and reused rather than re-derived if the tabled
goals are called again. The following Prolog program implements minimal edit
distance between two lists; given two lists L1 and L2, the call edit(L1, L2,D)

will return the minimal number of edits (substitutions,insertions and deletions)
needed to change one of the lists into the other.

:- table edit/3.

edit([],[],0).

edit([],[Y|Ys],Dist) :-

edit([],Ys,Dist1),

Dist is 1 + Dist1.

edit([X|Xs],[],Dist) :-

edit(Xs,[],Dist1),

Dist is 1 + Dist1.

edit([X|Xs],[Y|Ys],Dist) :-

edit([X|Xs],Ys,InsDist),

edit(Xs,[Y|Ys],DelDist),

edit(Xs,Ys,TailDist),

(X==Y ->

Dist = TailDist

;

% Minimum of insertion, deletion or substitution

sort([InsDist,DelDist,TailDist],[MinDist|_]),

Dist is 1 + MinDist).

Without tabling the edit/3 predicate, the same subgoals are derived again and
again leading to exponential blowup, but it can be shown that the number of
distinct calls are quadratic, which is the actual complexity we may hope for with
optimal tabling.

The program has been transformed manually for this experiment based on
the pointer based representation shown in example 2 above, simplified slightly
for lists. The retrieve_term predicate is applied to resolve pointers during
program execution. For completeness, we include a suitable implementation of
store term/2 and retrieve term/2.

store_term([],Index) :- assert(retrieve_term([],Index)).

store_term([X|Xs],Idx) :-

Idx1 is Idx + 1,

assert(retrieve_term(Idx,[X,Idx1])),

store_term(Xs,Idx1).

The transformed version of the edit distance program is now as follows.



:- table edit/3.

edit(XIdx,YIdx,0) :-

retrieve_term(XIdx,[]),

retrieve_term(YIdx,[]).

edit(XIdx,YIdx,Dist) :-

retrieve_term(XIdx,[]),

retrieve_term(YIdx,[_,YIdxNext]),

edit(XIdx,YIdxNext,Dist1),

Dist is Dist1 + 1.

edit(XIdx,YIdx,Dist) :-

retrieve_term(YIdx,[]),

retrieve_term(XIdx,[_,XIdxNext]),

edit(XIdxNext,YIdx,Dist1),

Dist is Dist1 + 1.

edit(XIdx,YIdx,Dist) :-

retrieve_term(XIdx,[X,NextXIdx]),

retrieve_term(YIdx,[Y,NextYIdx]),

edit(XIdx,NextYIdx,InsDist),

edit(NextXIdx,YIdx,DelDist),

edit(NextXIdx,NextYIdx,TailDist),

(X==Y ->

Dist = TailDist

;

sort([InsDist,DelDist,TailDist],[MinDist|_]),

Dist is 1 + MinDist).

The program is tested for randomly generated sequences of increasing lengths.
We measure the total time for the different Prolog engines to load the program
file, generate two different random sequences of a particular length, assert these
lists using store term/2 and compute edit distance between these sequences, as
follows.

run(N) :-

random_list(N,117,L1), % Generate random list L1 with seed 117

random_list(N,42,L2), % Generate random list L1 with seed 42

store_term(L1,P1),

store_term(L2,P2),

edit(P1,P2,_Dist).

The results, shown in Figure 2, demonstrate that all tested Prolog systems use
more time for the unmodified tabled edit distance program than for the trans-
formed program when applied to large data instances. For XSB and Yap the
major factor impacting time complexity seems to be space consumption. The



transformation has a positive impact space complexity regardless of the under-
lying tabling strategy. For B-Prolog, space consumption is much closer to the
theoretical O(N2). Even though B-Prolog is very space efficient, the transformed
program still uses less memory.

For larger problem instances the transformation has a significant impact on
time complexity. XSB seems to benefit greatly from the transformation, although
it starts out the slowest, it catches up for longer sequences, where it outperforms
the two other Prologs in time efficiency. Yap seems to gain a modest boost from
the transformation strategy and still seems to have a rather high time complexity
although it is significantly faster than without the transformation. For B-Prolog,
the two versions perform more or less the same for sequences of length up to
350, but for longer sequences (not shown in the figure) the transformed version
is significantly faster: for example, with length 1000, the execution times are 7.5
seconds for the transformed and 21.5 seconds for the original version.
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Fig. 2. The first plot shows the time consumption of different Prolog engines for edit
distance with two lists of length N . The second is a plot of the space consumption for
the same calls. The plots for both normal tabled in execution and execution of a trans-
formed program that uses indexing as described in section 3 are shown, e.g. the plot
index(X) shows the performance of the transformed version for Prolog implementation
X.

4.2 Example: Hidden Markov Model in PRISM

PRISM [8] is an extension of Prolog with special goals representing random
variables. A global declaration such as values(coin,[head,tail]) introduces
a so-called multivalued switch which means that an occurrence of the subgoal
msw(coin,C) represents a probabilistic choice of assigning either head or tail



to C. The semantics of PRISM is defined in terms of probabilistic Herbrand
models, which means that a program specifies a probability of any goal G to be
true determined from the possible combinations of msw outcomes that happen
to make G true.

The PRISM system supports various probabilistic inferences, such as find-
ing an optimal derivation, computing the probability for a goal or deriving msw

probabilities by learning from a set of goals. The algorithms behind these in-
ferences are dynamic programming algorithms and PRISM is implemented in
B-Prolog [17], relying heavily on tabling for the efficiency of the probabilistic
inferences.

We consider the example of a Hidden Markov Model (HMM) in PRISM taken
from the PRISM manual [10] and adapted here to accommodate variable length
sequences. In general, an HMM is a probabilistic model for sequential phenomena
based on a finite automaton, which chooses state transitions and emissions by
probabilistic choices; see [5] for a general introduction to HMMs and [3] for an
account on how different HMMs are expressed in PRISM. Our example program
is the following.

values(init,[s0,s1]). hmm(_,[]).

values(out(_),[a,b]).

values(tr(_),[s0,s1]). hmm(S,[Ob|Y]) :-

msw(out(S),Ob),

hmm(L):- msw(tr(S),Next),

msw(init,S), hmm(Next,Y).

hmm(S,L).

The init, out(−) and tr(−) switches determine initial state, state transitions
and emissions. Notice that two last ones are parameterized meaning that they
define a switch for whatever value is substituted in for the parameter, which in
this program always is the present state.

Using the same list encoding as in the previous example, the recursive pred-
icate is rewritten as follows.

hmm(S,ObsPtr):-

retrieve_term(ObsPtr,[]).

hmm(S,ObsPtr) :-

retrieve_term(ObsPtr,[Ob,Y]),

msw(out(S),Ob),

msw(tr(S),Next),

hmm(Next,Y).

The rewritten program can be shown to be semantics preserving wrt a standard
Prolog semantics as well as PRISM’s probabilistic semantics, and thus running
PRISM’s utilities for probability calculations should yield the same results.

When calculating the probability of a given goal, PRISM iterates over all
possible ways to execute the goal using tabling to avoid enumerating the expo-
nential number of different derivations. The same principle applies for PRISMs



version of the Viterbi algorithm which is a dynamic programming algorithm that
finds the most probable derivation. Assuming optimal execution of tabling, these
algorithms should in principle run in linear time.

We measured running times of probability calculations (prob in PRISM
lingo) for both the original and the transformed version of the PRISM HMM
program with sequences of increasing lengths from 100 to 5000. The actual se-
quences used are instances of the pattern [a,b] repeated a number of times. The
results are shown in Figure 3. It is apparent from the figure that indexed lookups
results in approximately linear running time while the running time is at least
quadratic for the unmodified program. The reported times are measured using
prism statistics(infer time,Time), which is a PRISM built-in predicate.

We did not measure running times of sequences longer than 5000 for the
unmodified program, but the transformed program scales up to sequences much
longer than this, for instance, the time for probability calculation for a sequence
of length 100000 takes less than 5 seconds.
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Fig. 3. The running time of the a) the transformed PRISM program and b) the un-
modified PRISM program. While a) shows a linear development as function of sequence
length, the development in b) is a higher-degree polynomial. Notice also the different
scales on the vertical axes.

5 Automatic Program Transformation

The indexed versions of the example programs shown in section 4 can be pro-
duced automatically by a straightforward program transformation. The user
must declare modes for which arguments predicate arguments that should be



indexed. For the HMM program of section 4.2 this may look as follows; plus
means transform the argument, minus means keep it unchanged.

table_index_mode(hmm(+))

table_index_mode(hmm(-,+))

The correctness of the transformation depends on the following properties of the
program.

– The arguments indicated for indexing must be called with ground data only.
– Variables that occur in an indexed argument in the head of a clause, cannot

occur in the body of that clause in both an indexed and a non-indexed
argument.

– Any argument of a goal within a clause body which is declared to be indexed,
must be given as a variable that also occurs in an indexed argument in the
head of that clause.

Each clause whose head predicate is covered by a table mode declaration is
transformed using the procedure outlined in algorithm 1, and all other clauses
are left untouched. The transformation moves any term appearing in an indexed

for each clause H:-B in original program do
if table index mode (M) matching H then

for each argument Hi ∈ H,Mi ∈M do
if Mi =’+’ then

H ′
i ← MarkLazy(Hi, B)

B ← (lookup pattern(Vi, H
′
i), B)

Hi ← Vi

end

end

where MarkLazy is defined as

MarkLazy(Hi,B) :
PotentialLazy = variables in all goals G ∈ B

where G has table index mode declaration
NonLazy = variables in all goals G ∈ B

where G has no table index mode declaration
Lazy = PotentialLazy \NonLazy
for each variable V ∈ Hi do

if V ∈ Lazy then
V ← lazy(V )

end
Algorithm 1: Program transformation.

position in the head of a clause into a call to the lookup pattern predicate,



which is added to the body. Variables in such terms are marked lazy when they
do not occur in any non-indexed argument inside the clause. This transformation
can be shown to be semantics preserving for programs satisfying the requirements
given above.

The translation can be further enhanced by an unfolding of lookup pattern

calls into specialized calls to retrieve term as shown in the examples in the
previous section. This last step gave a speed-up of a factor of 5 for these examples
when comparing with implementations using lookup pattern directly.

6 Limitations

Our transformation assumes ground input arguments. As illustrated by the
examples, this has applications to a lot of interesting problems, in particular
dynamic programming problems. With regard to PRISM, our transformation
is useful for ordinary probability calculation, Viterbi decoding and supervised
learning. For other probabilistic inferences such as sampling, posterior decoding,
unsupervised and semi-supervised learning, arguments containing variables are
required. Sampling is of minor concern, since this can be done in linear time
using the original program.

We currently have no optimization for structured terms in output argu-
ments – they must be handled by the usual tabling mechanism. Structured
terms in output arguments have the same consequences for complexity, which
can be observed for instance with the well-known append/3 predicate. Sup-
pose that append/3 is tabled and transformed using our approach, e.g. with
table index mode(+,+,-). Using our workaround, the space complexity for the
input lists will be kept linear rather than quadratic, but the answers for the
third list is tabled in the usual way which leads to quadratic space complexity
nevertheless. Output arguments that do not contain structured data — as in the
case of edit distance — do not present such a problem since the output argument
is of constant size.

A drawback of our transformation is that it, by replacing the patterns in
the head of rules with pointers, circumvents Prolog own indexing mechanism.
As result, indexing cannot use the pattern of the arguments to determine which
clauses to try. Instead, when multiple clauses with same name and arity exist,
Prolog will have to try each of them in order and creates a choice point each time
it tries a clause. This adds a constant factor — corresponding to the number of
such clauses — to the running time of the program. It most practical programs
it is realistic to assume that this factor will be fairly low, e.g. in the edit distance
program only four such clauses exist.

7 Related work

The hashing employed by B-Prolog and the global trie of YAP [6] address a
related problem. Both methods reduce space consumption and this may lead to
reductions in running time since less copying is needed. However, even with these



mechanisms complexity is sub-optimal as shown in section 2. Furthermore, the
methods have the drawback that the running time depends on the type of data.
In comparison, our approach is data invariant and yields optimal complexity.

Due to restrictions in the Mercury language, input arguments are always
ground, and the tabling system provides an option which identifies arguments
by their pointers [11] (see also more detailed explanations in the reference man-
ual [4]). This yields constant time storing and comparison of tabled arguments,
similar to how any standard tabling mechanism will work for the programs pro-
duced by our program transformation.

The problem with tabling of structured data has addressed in applications
with methods similar to our approach. In particular, in chart-parsing with DCGs
supported by tabling, position indexed facts has been used [12]. A similar ap-
proach has been applied to PCFG parsing in PRISM [9]. This works by splitting
the input list, t1 . . . tN into facts, {pos(1, t1, 2), . . ., pos(N − 1, tn, N)}. XSB
Prolog have special constructions for tabled DCGs, where the standard ’C’/3’

predicate is replaced by a special version that instead of using difference lists,
utilize position indexed facts constructed from the original input list [14]. The
position indexed difference list approach is quite similar to our approach, but is
specific for difference lists. Our approach is more generally applicable and can
be used with various kinds of structured data.

8 Conclusion

We have demonstrated that major Prolog implementations do not efficiently
handle tabling of structured data and we have provided a program transforma-
tion that ensures O(1) time and space complexity of tabled lookups of goals
with structured data in input arguments and is applicable regardless of ineffi-
ciencies with structured data in the underlying tabling implementation. We have
demonstrated the applicability of our transformation using examples from dy-
namic programming in Prolog and PRISM. The transformation makes it possible
to scale to much larger problem instances.

Our program transformation should be seen as workaround, until such op-
timizations find their way into the tabling systems. We hope that Prolog im-
plementors will pick up on this and integrate such optimizations directly in the
tabling systems, so that the user does not need to transform his program, and
need not worry about the underlying tabled representation and its implicit com-
plexity.

Acknowledgements. This work is supported by the project “Logic-statistic mod-
elling and analysis of biological sequence data” funded by the NABIIT program
under the Danish Strategic Research Council.

We would like to thank Neng-Fa Zhou and Yoshitaka Kameya for their en-
couraging comments on a very early draft of this paper. We would also like to
thank to the anonymous reviewers for insightful and constructive reviews.



References

1. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
2. H. Christiansen and J. P. Gallagher. Non-discriminating arguments and their uses.

In P. M. Hill and D. S. Warren, editors, Logic Programming, 25th International
Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, vol-
ume 5649 of Lecture Notes in Computer Science, pages 55–69. Springer, 2009.

3. H. Christiansen, C. T. Have, O. T. Lassen, and M. Petit. Taming the zoo of
discrete HMM subspecies & some of their relatives. In Biology, Computation and
Linguistics, New Interdisciplinary Paradigms, volume 228 of Frontiers in Artificial
Intelligence and Applications, pages 28–42. IOS Press, 2011.

4. F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte, S. Tay-
lor, C. Speirs, T. Dowd, R. Becket, M. Brown, and P. Wang. The
Mercury Language Reference Manual. Version 11.01, 2011. Available at
http://www.mercury.cs.mu.oz.au/information/documentation.html.

5. L.R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

6. J. Raimundo and R. Rocha. Global Trie for Subterms. In S. Abreu and V. S. Costa,
editors, Proceedings of the 11th Colloquium on Implementation of Constraint and
LOgic Programming Systems, CICLOPS’2011, pages 34–48, Lexington, Kentucky,
USA, July 2011.

7. R. Rocha, F. Silva, and V. S. Costa. A tabling engine for the Yap Prolog system. In
Proceedings of the 2000 APPIA-GULP-PRODE Joint Conference on Declarative
Programming (AGP’00), La Habana, Cuba, December 2000.

8. T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In
IJCAI, pages 1330–1339, 1997.

9. T. Sato and Y. Kameya. New advances in logic-based probabilistic modeling, 2007.
10. T. Sato, N.-F. Zhou, Y. Kameya, and Y. Izumi. PRISM User’s Manual (Version

2.0), 2010.
11. Z. Somogyi and K. F. Sagonas. Tabling in mercury: Design and implementation.

In P. V. Hentenryck, editor, Practical Aspects of Declarative Languages, 8th In-
ternational Symposium, PADL 2006, Charleston, SC, USA, January 9-10, 2006,
Proceedings, volume 3819 of Lecture Notes in Computer Science, pages 150–167.
Springer, 2006.

12. T. Swift. Design patterns for tabled logic programming. In S. Abreu and D. Seipel,
editors, INAP, volume 6547 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2009.

13. T. Swift and D. S. Warren. XSB: Extending prolog with tabled logic programming.
Theory and Practice of Logic Programming, 2011. To appear.

14. T. Swift and D. S. Warren. The XSB Programmer’s Manual. Version 3.3, June
2011.

15. H. Tamaki and T. Sato. OLD resolution with tabulation. In E. Y. Shapiro, editor,
ICLP, volume 225 of Lecture Notes in Computer Science, pages 84–98. Springer,
1986.

16. C. K. Wong and A. K. Chandra. Bounds for the string editing problem. J. ACM,
23(1):13–16, 1976.

17. N.-F. Zhou. The language features and architecture of B-Prolog. Theory and
Practice of Logic Programming, 2011. To appear.

18. N.-F. Zhou, Y.-D. Shen, L.-Y. Yuan, and J.-H. You. Implementation of a linear
tabling mechanism. In E. Pontelli and V. S. Costa, editors, PADL, volume 1753
of Lecture Notes in Computer Science, pages 109–123. Springer, 2000.


