
Constraint Programming for Context
Comprehension

Henning Christiansen

Abstract A close similarity is demonstrated between context comprehension, such
as discourse analysis, and constraint programming. The constraint store takes the
role of a growing knowledge base learned throughout the discourse, and a suit-
able constraint solver does the job of incorporating new pieces of knowledge. The
language of Constraint Handling Rules, CHR, is suggested for defining constraint
solvers that reflect “world knowledge” for the given domain, and driver algorithms
may be expressed in Prolog or additional rules of CHR. It is argued that this way of
doing context comprehension is an instance of abductive reasoning. The approach
fits with possible worlds semantics that allows both standard first-order and non-
monotonic semantics.

1 Introduction

There is a striking similarity between constraint logic programming and context
comprehension. In both cases, a given structure is traversed, and bits of information
are accumulated in a growing knowledge base. Constraint programming usually
deals with structures that encode complex mathematical problems to be solved, and
context comprehension with observed phenomena such as a spoken or written dis-
course, streaming sensor data from an industrial plant or a transport network, etc. As
more knowledge is accumulated, the possible solution space in the constraint logic
programming case and the set of possible worlds that represents context, will de-
crease, i.e., become more and more specific. For each step of computation in either
paradigm, the adding of a new piece of information may involve a normalization
and consistency check with respect to previous knowledge, and in case of an incon-
sistency, the overall process may change its control path, e.g., by backtracking.

Henning Christiansen
Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark e-mail: henning@ruc.dk

1



2 Henning Christiansen

Constraint logic programming is typically based on a hardcoded set of constraint
predicates with a fixed semantics, tailored for a specific class of mathematical prob-
lems (as described, e.g., by [4, 25]) and may not be of much use for context com-
prehension from, say, linguistic utterances. However, a declarative programming
language for defining constraint solvers such as Constraint Handling Rules [19, 20],
for short CHR, changes the picture. With this “white box” approach to constraint
solving, it becomes feasible to define constraint domains and solvers for specific
knowledge representations, especially tailored for representing context.

In this chapter, we summarize and exemplify how a combination of CHR and
Prolog, the latter used for driver algorithms such as linguistic parsers or other struc-
tural scanners, can be used to specify and implement different tasks of context com-
prehension. However, the overall architectural principles are not tied to these spe-
cific programming languages, but can be integrated with, say, more advanced sys-
tems for linguistic parsing, or – instead of using constraint solvers written in CHR
– other knowledge management tools and representation formalisms may be used.

By context, we refer to the set of circumstances in which a particular phe-
nomenon φ is observed and to which φ may owe its existence. For example, it is
difficult to observe a hole in a doughnut (an example of a φ ) without its context,
the doughnut. For a given discourse, its context may be represented as a knowledge
base about the particular circumstances explained. References to context in the dis-
course may be given explicitly in factual form or indirectly assumed. For example
“He likes Mary”, presupposes that there is a male character in the context as well
as a female one named Mary (as “Mary” is usually a female name) plus a fact about
the relationship between those to characters. Context may be static when the given
discourse describes universal properties (such as a math textbook) or some state of
affairs in a stable period of time; in this case, the dynamic aspects are limited to the
sequential traversal of the text (i.e., the reader’s mental time) during which more and
more information is recognized. A discourse may involve further dynamic aspect.
It may describe developments in past times as in a history textbook, or the time of
each utterance may be essential as in a psychological drama or a running commen-
tary on a football match. In such cases context may be seen as a knowledge base
of timestamped facts (as for the history book), or we may be interested in main-
taining a representation of the a current “now” context, which means that each new
observation may give rise to a revision of previous knowledge. The framework and
analysis methods introduced below can handle these different modes of context.

The focus on context comprehension, rather than a purely compositional analysis
of the observed phenomena, displays a similarity with abductive reasoning (in the
sense of C.S. Pierce; see [3] for a modern exposition): the task is to figure out a feasi-
ble context in which a given phenomenon may be observed, or in logical terms, that
the observation must be deductively derivable from the inherent background knowl-
edge and the context to be identified. As spelled out in more details in section 4.1, it
can be shown that Prolog with CHR is an instance – and efficient implementation –
of so-called Abductive Logic Programming, and in this way our approach to context
comprehension confirms the metaphor of “Interpretation as abduction” introduced
in the often cited paper [24].



Constraint Programming for Context Comprehension 3

In section 2, we define constraints and constraint solving in a precise way with
possible worlds semantics, and section 3 introduces CHR and demonstrates how
it can be used for defining semantics and solvers. Section 4 describes driver algo-
rithms in Prolog, elaborates on the relation to abduction and shows an example of
Prolog’s grammar notation used with CHR for context comprehension from. Finally,
section 5 discusses related work and background sources, and section 6 provides a
summary and conclusions.

2 Constraints and Constraint Solving

Traditional constraint programming is concerned with finding values for variables
that will satisfy logically specified conditions about those variables. As an informal
example, let us consider constraint predicates “∈N ” indicating a natural number,
and > for the usual ordering relation. The conjunction

x ∈N ∧ x > 5∧ x < 7 (1)

is a constraint problem in x, and it has as solution x = 6. This short formula is in
solved or normalized form: it is accepted as a standard format for delivering so-
lutions. A solved form may express intensional answers, providing a finite repre-
sentation of a perhaps infinite set of solutions. For example, the constraint problem
x ∈N ∧x > 5∧x > 7∧x 6= 3 may have the solved form x ∈N ∧x > 7, that repre-
sents the infinite set of solutions {x = 8,x = 9, . . .}.

When constraints are used for representing context, we also pay attention to
variable-free constraints as having important content themselves, being statements
about the world. So if “raining” is a constraint predicate, we may consider the for-
mula raining as being true in any world where it is actually raining, and false in
all other worlds. It can be read as an intensional representation of an infinite set of
worlds in which it is definitely raining, some in which the sky is densely covered
with clouds and yet others with a bit of sunshine and maybe a rainbow. We may
still be interested in using variables, so for example “tall-person(x)” may designate
a collection of contexts or worlds in which there exists a tall person, although we do
not know anything more specific about this person.

What we define below as a standard semantics complies with first-order logic,
but we present our definitions in a more general way that also allows for non-
monotonicity. A formula or other object is ground if it contains no variables; substi-
tutions and grounding substitutions are defined in the usual way.

Definition 1. A constraint framework F = 〈C ,W ,W 〉 consists of a set of constraint
predicates C , a set of possible worlds W and a semantic function W . The constraint
predicates are assumed (without mention) to include the zero-ary predicates true and
false; an atom whose predicate is in C is referred to as a constraint. A constraint
store is a finite set of constraints, which may be written as a conjunction c1∧·· ·∧cn;
the empty store is identified with true, and false will be used also as a prototypical



4 Henning Christiansen

inconsistent constraint store (below). The symbol S (with subscript F understood)
refers to the set of all constraint stores and S specifically to the ground ones. The
semantic function is given by a mapping W : S → 2W with

• W (true) = W ,
• W (s1∧ true∧ s2) =W (s1∧ s2) and
• W (false) =W (· · ·∧ false∧·· ·) = /0.

The semantics is generalized to nonground constraint stores as follows.

W (s) =def
⋃

σ a grounding subst. for s

W (sσ) (2)

In case w∈W (s), we may write w |= s (F understood). A constraint store s is consis-
tent if there is a world w such that w |= s; any other constraint store is inconsistent.

Notice that formula (2) corresponds to an implicit existential quantification of a con-
straint store at the outermost level. In practice, not all conjunctions of constraints
will appear as constraint stores in which case we may leave their semantics unspec-
ified or implicitly /0.

Definition 2. A standard semantics W is one in which W (s1∧ s2) =W (s1)∩W (s2)
for any ground constraint stores s1,s2.

Standard semantics includes first-order logical theories, in which W may be iden-
tified with a class of first-order models. Non-standard semantics include non-
monotonic semantics in which certain constraints can be understood as update in-
structions, e.g., by deleting or replacing information.

Example 1. We consider a constraint framework whose constraints are of the form
in(i, `), where i is an individual in {1,2,3} and ` a location in {a,b,c}. A possible
world is any set of three ground atoms of the form {in(1, `1), in(2, `2), in(3, `3)},
`1, `2, `3 ∈ {a,b,c}, i.e., each world represents a scene in which each individual
is placed in some location. We assume a standard semantics in which a store s is
mapped into the set of worlds in which s holds, more precisely W (s) = {w | s⊆ w}.
This yields, for example,

• W (in(1,a)∧ in(2,b)) = {{in(1,a), in(2,b), in(3, `)} | ` ∈ {a,b,c}},
• W (in(1,a)∧ in(1,b)) =W (in(1,a))∩W (in(1,b)) = /0.

In other words, the semantics has the inherent limitation that an individual can only
be in one location at a time, but a given location may host any number of individuals,
from 0 to 3.

In the following we give a definition of constraint solving that merges one constraint
at a time into a developing, normalized store, rather that crunching a huge bunch of
constraints in one go. There are several reasons for this.

• It fits well with discourse and text analysis, in which utterances arrive sequen-
tially and the decomposition and translation into constraints of each utterance
can exploit the context learned so far (very much like we humans do).



Constraint Programming for Context Comprehension 5

• It corresponds to the way a Prolog interpreter enhanced with constraint solv-
ing typically works: A proof is built in Prolog’s traditional, recursive and goal-
directed manner, but whenever a constraint is encountered, the constraint solver
incorporates it into the growing constraint store, and if this succeeds, Prolog con-
tinues in the usual way.

• The sequential order of processing constraints is essential for implementing non-
standard semantics.

Definition 3. Given a constraint framework F = 〈C ,W ,W 〉 a set of normalized con-
straint stores is assumed, which includes particularly true and false. A normalized
constraint store s′ is a normalized form of s whenever, for any substitution σ for
variables of s′ and s, that W (s′σ) =W (sσ).1

A constraint solver for a semantics W is a mapping, denoted s1,c ` s2, from a
normalized constraint store s1 and a new constraint c into a new normalized con-
straint store s2 where s2 is a normalized form of s1∧ c. A constraint solver is sound
if the normalized form of any inconsistent constraint store is false (meaning that the
constraint solver recognizes inconsistency immediately, signaling this by the result
false).

We introduce a convenient notation. When a semantics and constraint solver is
given, the state sn following from a sequence of insertions of constraints c1, . . . ,cn
into an initial store s0 is denoted [s0,c1, . . . ,cn]. More precisely,

s0,c1 ` s1

s1,c2 ` s2

...
sn−1,cn ` sn =def [s0,c1, . . . ,cn]

When s0 = true, it may be left out.
In the special case of a standard semantics, permuting the constraints may yield

syntactically different states which will be equivalent according to the given seman-
tics, i.e., they represent the same set of possible worlds.

Example 2. A constraint solver for the constraint framework of Example 1 can be
described as follows.

s, in(i, `) ` s∪{in(i, `)} whenever there is no in(i, `′) ∈ s with ` 6= `′,
s, in(i, `) ` false otherwise.

1 The mentioning of the substitution σ in Definition 3 is necessary in order to preserve the identity
of variables in the store and its normalized version.



6 Henning Christiansen

3 Defining Semantics and Constraint Solvers with CHR

Often the possible worlds semantics will be implicit in the definition of the actual
constraints and constraint solver. A declarative programming language such as Con-
straint Handling Rules intended for defining constraint solvers is interesting here.
Claiming a programming language to be “declarative” means that its programs can
be read as a concise specification of what the program is supposed to accomplish
without unnecessary computational details. In the following, we give first a brief
introduction to Constraint Handling Rules and show, then, how it can be used for
defining constraint solvers that may comply with a standard or a non-standard se-
mantics.

3.1 Constraint Handling Rules: A Brief Introduction

Constraint Handling Rules (CHR) is an extension to the logic programming lan-
guage Prolog that adds mechanisms for forward-chaining reasoning to complement
Prolog’s standard backward-chaining, goal directed reasoning. CHR is now part of
several major Prolog systems, including SWI and Sicstus. Here we give only a very
brief introduction; a comprehensive account on CHR and its applications can be
found in the book [20].

CHR was originally intended as a declarative language for writing constraint
solvers for standard constraint domains concerned with numbers, arithmetic, equa-
tions and the like. Later it has turned out that CHR is suited for automated reasoning
in general as documented by the vast literature on applications of CHR, also sum-
marized in [20]. As shown in, e.g., [11] and the present paper, the combination of
CHR and Prolog is a powerful paradigm for implementing a variety of forms of
reasoning and knowledge representations.

A CHR program consists of declarations of constraint predicates and rewriting
rules over constraint stores. A simplified explanation of CHR’s procedural semantics
is that whenever a new constraint as called, it is included in the constraint store and
the rules of the current program apply as long as possible. CHR has three sorts of
rules of the following forms.

Simplification rules: h1, . . . ,hn <=> Guard | b1, . . . ,bm
Propagation rules: h1, . . . ,hn ==> Guard | b1, . . . ,bm
Simpagation rules: h1, . . . ,hk \hk+1, . . .hn <=> Guard | b1, . . . ,bm

The h’s are head constraints and b’s body constraints, and Guard is a guard condition
(typically testing values of variables found in the head). A rule can be applied when
its head constraints are matched simultaneously by constraints in the store and the
guard is satisfied. For a simplification rule, the matched constraints are removed and



Constraint Programming for Context Comprehension 7

the suitably instantiated versions of the body constraints are added. The other rules
execute in a similar way, except that for propagation, the head constraints stay in the
store, and for simpagation, only those following the backslash are removed. Prolog
calls inside the body are executed in the usual way.

CHR has a logical semantics based on reading a simplification as a bi-implication,
a propagation as an implication, and finally considering a simpagation H1\H2<=>G |
B as equivalent with the simplification H1,H2<=>G | H1,B (although it is executed
in a different way). It is possible to write CHR programs that are inconsistent ac-
cording to this semantics and non-termination can be an issue as well.

It can be shown, see [20], that if a program is terminating and confluent (roughly:
the final result is independent of the order in which rules are applied), then it is
consistent. Procedurally, when a new constraint arrives, the interpreter searches for
possible rules to apply in the order they appear in the program, and there is also a
deterministic strategy for finding companion constraints to form a match with the
entire head of a rule. This means that non-confluent and even inconsistent programs
may still be both readable and preserve a reasonable semantics, although it may
go beyond a standard first-order semantics. This provides a style of programming in
which simplifications and simpagations are explicitly used for their effect of deleting
or revising constraints in the store. A formal semantics for CHR based on linear
logic has been suggested by [5] to cope with such programs. In practice, we do
not need such apparatus, and in the examples below we can specify a non-standard,
possible worlds semantics when relevant.

In the constraint solvers to be shown below, we use the Prolog facility fail as a
way to indicate an inconsistent state. When used within a larger program, this re-
sults in no new store being generated and instead the interpreter backtracks, perhaps
leading to a failure of the entire computation.

3.2 Constraint Solvers for Standard and Non-Standard Semantics

A constraint solver for a standard semantics will typically accumulate the con-
straints into the growing state, however, taking care to

• avoid adding constraints that are already in, or implied by the current state, and
• detect failure when it occurs.

The following example shows a pattern that can be used for a large class of standard
semantics.

Example 3 (Standard semantics). The semantics of Example 1 and the solver of
Example 2 can be represented in CHR as follows.

:- chr_constraint in/2.
in(I, L1) \ in(I, L2) <=> L1=L2.



8 Henning Christiansen

The first line is necessary to inform the interpreter that the in/2 predicate should be
treated in a special way, i.e, as a constraint. The single rule of the program, in case
it applies, will ensure that no individual can be registered at two different locations
at the same time. If the unification L1=L2 fails, it indicates an inconsistency. No-
tice that the rule is a simpagation that removes one of the constraints, thus avoiding
duplicate constraints to pile up in the store.2 If the rule does not apply when a con-
straint is called, it means that the constraint is the first one referring to its particular
individual, and it is simply added to the store.

Example 4 (Standard semantics). We consider a constraint solver to be used for the
analysis of stories about the students at small university at some fixed moment of
time. The university has a number of rooms and other places, where a student can
be.

lecture hall 1, lecture hall 2, reading room,
student bar, garden, ...

There are two courses going on, programming course in lecture hall 1
and linguistics course in lecture hall 2. We have constraints in(s,r)
indicating that student s is in room r, attends(s,c) that student s attends course
c, can see(s1,s2) that student s1 can see student s2, and finally reading(s)
indicating that student s is reading. A student can only be in one room at a time,
and reading can take place in any other room than the lecture halls, and for student
x to see student y, they must be in the same room. A constraint solver for this can
be expressed in CHR as follows; the constraint diff(x,y) is a standard device
indicating that x and y must be different (easily defined in CHR; left out for reasons
of space).

:- chr_constraint attends/2, in/2, can_see/2, reading/1.
attends(St, programming_course) ==> in(St, lecture_hall_1).
attends(St, linguistics_course) ==> in(St, lecture_hall_2).
in(St, R1) \ in(St, R2) <=> R1=R2.
reading(St) ==> in(St, R),

diff(R, lecture_hall_1),diff(R, lecture_hall_2).
can_see(St1,St2) ==> in(St1,R), in(St2,R).

The first line introduces the constraint predicates, and the rules describe the general
world knowledge explained above and at the same time it defines the set of con-
sistent constraint stores. As stated above, we may use ground, consistent constraint
stores as possible worlds in a semantics. As an example of running this constraint
solver, we observe:

[attends(peter,linguistics course), can see(mary,peter)]
3 in(mary,lecture hall 1).

2 Most implementations of CHR are based on a multiset semantics; some implementations has
an option for switching to a set semantics, but for reasons of efficiency, this is discouraged. It is
recommended to use relevant simpagations for duplicate elimination as shown in the example.



Constraint Programming for Context Comprehension 9

This constraint solver is suited for reasoning about a static world, but standard se-
mantics can also capture development over time if world facts are equipped with
time stamps or abstract time representations as in the event calculus [26].

Example 5 (Non-standard semantics). We consider a robot in a two-dimensional
world whose actions are to move forward, to turn left and to turn right. We will
use a constraint solver written in CHR to determine the robot’s position after a
sequence of actions. Constraint predicates are position/2, intended to hold the
current x and y coordinates, direction/1 whose argument are expected to be
one of north, west, south, east, and finally nul-ary constraints for the ac-
tions step forward, turn left and turn right. This is defined in CHR as
follows.

:- chr_constraint position/2, direction/1,
step_forward/0, turn_left/0, turn_right/0.

direction(north), turn_right <=> direction(east).
7 similar rules
direction(north) \ position(X,Y), step_forward

<=> Y1 is Y+1, position(X,Y1).
3 similar rules

As normalized constraint stores, we consider in this example only ground ones (for
simplicity only3) of the form position(x,y) ∧ direction(d), where x,y are
integers and d one of north, east, south, west. To define a semantics, we
define W as the set of normalized states, and W as follows.

W (s) = {s} for any normalized con. store s

W (s∧a) = {s′} for normalized con. store s and action a; s′ is a copy of s with
the direction or position fact adjusted according to a

W (s) undefined in all other cases

This is obviously a non-standard semantics as conjunction does not correspond to
intersection of world sets. The CHR program above defines a constraint solver for
W with s,a `W (s∧a) for normalized state s and action a, and undefined otherwise.
To see that the order normalization steps do matter, consider the following with
s0 = {position(0,0),direction(north).

[s0,step forward,turn left]
= {position(0,1),direction(west)}

3 The constraint solver uses a predicate “is” which is a Prolog device for arithmetic that only
works when all variables in its right hand side argument are given at the time of the call. Replacing
it by a proper constraint solver capable of handling equations concerning the addition and subtrac-
tion of the constant one, will make it possible to work with non-ground constraints, corresponding
to calculating the robot’s position and direction relative to an unknown start position.



10 Henning Christiansen

[s0,turn left,step forward]
= {position(-1,0),direction(west)}

This is a minimalist example of a dynamically developing context for which each
new piece of information (here: a next constraint) results in a revision rather than an
addition. The order in which the constraints are encountered is essential and defines
a discrete time axis.

3.3 Nondeterministic Constraint Solvers

In some cases it may be difficult to represent accommodation of a new constraint in a
single new constraint store, and instead we may have the constraint solver produce
different, alternative updated stores, corresponding to a disjunction of alternative
interpretations. In the setting of CHR embedded in Prolog, this may be handled by
backtracking. First a formal definition.

Definition 4. Let a constraint framework F = 〈C ,W ,W 〉 with a set of normalized
constraint stores be given. A subset of normalized constraint stores S is called a
normalized form of a store s, whenever, for any substitution σ for variables of s and
S, that

W (sσ) =
⋃

s′∈S

W (s′σ). (3)

A nondeterministic constraint solver is a relation, denoted s,c ` s′, between normal-
ized constraint stores s, s′ and constraint c; let S(s,c) denotes the set of all s′i with
s,c ` s′i.

It is a solver for W whenever S(s,c) is a normalized form of s∧ c. It is sound if
S(s,c) = {false} whenever s∧ c is inconsistent.

Nondeterminism may be relevant for both standard and non-standard semantics. The
notation of section 2 for sequences of insertions of constraints is generalized writing
“∨” between alternative states. Here we show an example of a constraint framework
with a standard semantics and a nondeterministic constraint solver.

Example 6 (Nondeterministic constraint solver). We modify the solver shown in ex-
ample 4 by changing the rule of the form can see(St1,St2) ==> . . . that states
consequences of the knowledge that students can see each other. The new rule is as
follows, where skypes/2 is a new constraint indicating that two students are having
a video chat.

can_see(St1,St2) ==> in(St1,R), in(St2,R)
; skypes(St1,St2), in(St1,R1), in(St2,R2), diff(R1,R2).

The semicolon stands for Prolog’s disjunction that is implemented by backtracking.
Notice that the rule incorporates a (claimed) world property, that two people will



Constraint Programming for Context Comprehension 11

not skype together when they anyhow are in the same room. The semantics is de-
fined as a straighforward extension of the one given in example 4. Considering the
steps of this constraint solver, we may possibly have [. . . ,can see(peter,mary)] =
s1 ∨ s2, where each of s1,s2 represents that either Peter and Mary are in the same
room or in different rooms and skyping. In case the existing constraint store indi-
cates that both Peter and Mary in fact are in the same room, s2 will vanish, thus
[. . . ,can see(peter,mary)] = s1.

4 Driver Algorithms

In order to use a constraint solver for automatic extraction of context information
from an observed phenomenon (such as a text, etc.) it needs to be combined with an
algorithm that processes the phenomenon, converting it into constraints that in turn
are handled by the constraint solver.

Here we use the logic programming language Prolog that plays well together
with constraint solvers written in CHR. We expect a basic familiarity with Prolog
and its grammar notation, Definite Clause Grammars.

We explain first the important result that the combination of Prolog as driver and
CHR for context management is provably an instance of abductive reasoning. Sec-
ond, we show how the special sort of Prolog programs, dressed up as Definite Clause
Grammars, works seamlessly together with constraint solvers written in CHR. For
reasons of space we leave out other examples of driver algorithms written in Prolog
or CHR, but discuss a few options in section 4.3 below.

4.1 A Close Relationship between Prolog with CHR and Abductive
Reasoning

The term abductive reasoning that stems back to C.S. Peirce, means basically to
reason for a best explanation for an observed phenomenon.

While Prolog in itself is a purely deductive paradigm, different approaches to
so-called abductive logic programming (ALP) have emerged since the early 1990s,
and there is a direct equivalence between Prolog programs using CHR and a class
of ALP programs as demonstrated by [11]. Here we will give a brief informal back-
ground in terms of an example.

An ALP program consists of a Prolog program in which certain predicates are
recognized as abducibles plus so-called integrity constraints, that are restrictions on
which combinations of abducibles are allowed. An abductive answer A to a query Q
to an ALP is a set of abducible atoms such that



12 Henning Christiansen

1. if A is added to the program as ordinary facts, Q would succeed according to the
traditional logic semantics for Prolog, and

2. A satisfies the integrity constraints.

We can illustrate this in a simplistic example of an ALP program, where we also
show its equivalent program in CHR+Prolog.

ALP:
Abducible pred’s: a, b, c
Integrity const’s: ¬(a∧b)
p:- q, a.
q:- b.
q:- c.

Prolog+CHR:
:- chr constraint a,b,c.
a, b <=> fail.
p:- q, a.
q:- b.
q:- c.

Considering the program clauses as a plain Prolog program, the query q would sim-
ply fail, as the predicates a, b and c are false. Switching to abduction, we consider
the query q as an observation – we have observed it and insist on it being true – and
we need to figure out which yet unkown facts of abducible predicates that should
be added in order to make q true in the program. In the example program, obvi-
ously a,c is the only possible extension to the program that will make it possible
to prove q true and that does not conflict with the integrity constraints. Comparing
with the program to the right, written in Prolog and CHR, we see that {a,c} is ex-
actly the only final store produced for the query q. We can convince ourselves about
the validity of that solution by manually adding the facts a and c to the program.

Prolog and manual editing:
p:- q, a.
q:- b.
q:- c.
a.
c.

Query q will succeed and the proof includes the newly added clauses.

4.2 CHR together with Definite Clause Grammars for Text
Analysis

CHR works seamlessly together with Prolog’s Definite Clause Grammar (DCG)
notation as shown in the following example.

Example 7. We consider the nondeterministic constraint solver of example 6, and
add to the code, the following grammar rules as driver algorithm.



Constraint Programming for Context Comprehension 13

story --> [] ; s, [’.’], story.
s --> np(St1), [sees], np(St2), {can_see(St1,St2)}.
s --> np(St), [is,at], np(C), {attends(St,C)}.
s --> np(St), [is,reading], {reading(St)}.
np(peter) --> [peter].
np(mary) --> [mary].
np(jane) --> [jane].
np(programming_course) --> [the,programming,course].
np(linguistics_course) --> [the,linguistics,course].

Traditionally in DCGs, the code inside the curly brackets is used for calculating
attributes associated with the grammar symbols, but here we use them also for men-
tioning those contextual facts that must be a premise for the indicated sentences to
be correctly uttered.

These facts are not known in advance, but are abduced on the flight when
needed, which is the same as adding them to the constraint store. Consider the
query phrase(story,[peter,· · ·]), where the list represents the text Peter
sees Mary. Peter sees Jane. Peter is at the programming course. Mary is at the pro-
gramming course. Jane is reading. The resulting constraint store – i.e., the context
representation for this text – consists of the following constraints. The variable writ-
ten as “X” stands for Jane’s location which we do not know much about, except that
it is not one of the lecture halls.

attends(mary,programming_course) can_see(peter,jane)
attends(peter,programming_course) can_see(peter,mary)
in(jane,X) reading(jane)
in(mary,lecture_hall_1) skypes(peter,jane)
in(peter,lecture_hall_1) diff(X,lecture_hall_2)

diff(lecture_hall_1,X)

4.3 Refinements of Driver Algorithms in Prolog, DCG and CHR

The use of Prolog with CHR allows also for having the driver algorithm to inspect
the current constraint store which gives a high flexibilty for control. In [15], pro-
noun resolution has been approached by adding to the constraint store information
about position in the text and various attributes (such as gender etc.) for the possible
entities that may be referred to by pronouns.

In the so-called CHR Grammars [8], syntactic parsing is taken care of by CHR
rules compiled from a high-level grammar notation with very powerful, context-
sensitive rules that also interact with abduction. This means that the constraint store
integrates the contextual knowledge base with the grammatical symbols.



14 Henning Christiansen

The methods we have described extend easily to systems with multiple and per-
haps partly shared knowledge bases for different agents’ beliefs. Each agent is given
an index that is included as an additional arguments to the constraints belonging to
its knowledge base. For example, the fact a(k) for agent 7, is made into a(7,k); a
general rule a(X)==>b(X) must be written as a(Agent,X)==>b(Agent,X)
and if it is specific for agent 7 as a(7,X)==>b(7,X). This should make it pos-
sible to model dialogues with exchange of knowledge, but this has not been tested
systematically yet.

In [12], a different approach is suggested for use in interactive installations with
several concurrent processes and perhaps streaming sensor data. Here each process
has its own program, and selected constraint predicates reside in shared files, which
thus also serve as communication channels.

5 Related Work and Background

The relationship between constraint logic programming and abductive reasoning
was observed in an early paper [27] from 1992, before CHR was introduced in 1992-
3. While the recognition of CHR as suitable for general knowledge representation
and reasoning emerged through the following decade, its close relationship to ab-
ductive logic programming with integrity constraints was first reported in 2000 [1].
The use of CHR’s abductive capabilities for context comprehension was suggested
together with CHR Grammars in 2002 [8]. The combination of Prolog and CHR
for abduction, including with DCG as featured in the present book chapter, was un-
folded in the HYPROLOG framework [13] in 2005. Its relation to abductive logic
programming was formally characterized and proved in [11]. Non-monotonic (i.e.,
non-standard) semantics4 and its implementation in CHR were introduced in 2006
by [9] for an implementation of a paradigm called global abduction; similar uses
of CHR for knowledge base update is also described by [20]. Probabilistic versions
of abduction with CHR and Prolog are introduced by [10, 16]; here each abductive
answer is given a probability and the most probable answer is taken as the best one.

A paper from 2005 [14] argues that the use of CHR for context comprehension
leads to an integration of the traditionally separated levels of semantics and prag-
matics analyses (the latter here referring to the mapping of semantic placeholders to
indexes of real world entities), motivating a suggestion for a “pragmatic semantics”.

The principle of language interpretation as abduction was first formulated [24]
in 1993, and was inherent in earlier and parallel work, e.g., [7]. The paper [24]

4 Abductive reasoning is often mentioned as a special case of non-monotonicity since conclusions
are drawn that may not be a logical consequence of the present knowledge base. However, what we
call standard semantics used in relation to abduction is a first-order, monotonic semantics for the
constraint stores (knowledge bases) with a knowledge assimilation mechanism that conforms with
conjunction. Readers puzzled by this discussion may find the paper [17] from 1991 interesting, in
which the relation between abduction and deduction is investigated in a way that has strong links
to the work presented here.



Constraint Programming for Context Comprehension 15

introduced also a system for discourse analysis involving a weighting scheme (anal-
ogous to, but not the same as, probabilities, cf. above). There is also a clear relation
between our work and the flat representation suggested by [23].

Our non-standard semantics is related to the work on so-called belief revision,
e.g., [2, 21, 22], in which general heuristics are considered on how to assimilate new
observations that conflict with the current knowledge base. The main difference is
that with CHR, the developer can define his or her own ways to revise the knowledge
base.

In addition to the line of work described here, there is a long tradition for ab-
duction in logic programming with and without constraints, reviewed by [18], but
the identification of abducibles with constraints as in the present work is not made.
A detailed comparison shows that the CHR based approach described here is likely
the most efficient implementation of abductive logic programming, and the price to
be paid for this is a limited support of negation.

6 Conclusion

We have exposed the similarity between context representation and a logically based
approach to constraint programming, namely Constraint Handling Rules. It has been
shown that this gives rise to practical methods for discourse analysis with context
comprehension, and we demonstrated that this can be understood as an instance of
“Interpretation as Abduction”. The main advantage of the approach is the ease with
which a model of the relation between a language syntax and its contextual meaning
can be specified, and it can be practiced using standard, implemented tools such as
Prolog, Definite Clause Grammars and Constraint Handling Rules. We showed this
here only with simplistic syntactic analysis, but it should be kept in mind that we
can rely on the large body of experience on using logic programming for syntax
analysis and compositional (context-independent) semantics; see, e.g., [28] or the
vast amount of more recent textbooks on this matter.

When used in teaching, the approach indicates a steep learning curve, as has been
verified at a number of summer schools and tutorials; this goes for both audiences of
linguist and of computer science students. It is well-known for decades that students
can learn to write simple Prolog programs and language parsers in a few hours, and
extending with CHR does not present any special obstacle – when introduced with
language or simple reasoning tasks that everyone can relate to. Interestingly, our
mechanisms are essentially abduction and abductive interpretation but presented in
this ways, they appear quite natural even for novice students; these subjects are
normally considered highly advanced and difficult.

Concerned with efficiency, our methods may give rise to both very slow and very
fast language analyzers. As is well known, parsers written in Prolog can easily run
into combinatorial explosions due to badly controlled backtracking, but experienced
grammar writers (i.e., logic programmers) know how to control that. The addition
of a contextual module in the shape of a CHR program may not slow down execu-



16 Henning Christiansen

tion in a noticeable way, as 1) the available implementations of CHR are efficient
and fully integrated with the Prolog engine, and 2) the actual CHR rules used in our
examples are in most cases quite straightforward and do no give rise to any deep
levels of recursion. However, as we have shown in section 3.3, it may sometimes
be relevant to use disjunction within the body of a CHR rule, represented by Pro-
log’s semicolon operator implemented by backtracking. Used badly, this may also
lead to combinatorial explosions. This can to some extent be remedied by additional
atomic constraints, that represent the disjunction of other constraints; however, such
attempts tend to involve a huge set of strange CHR rules only to deal with dis-
junctions. This destroys the elegancy and transparency of using CHR for context
comprehension and is the reason, why we did not feature this option.

As we have shown, the most obvious and intuitive applications of our approach
concern analysis of text describing static sceneries: bits of knowledge are added
incrementally, where at each point in the text a few CHR rules may be used to
integrate the new knowledge and perhaps using the already found information for
disambiguation. To integrate aspects of a dynamic evolution – not only in the acqui-
sition of knowledge, but when the described state of affairs is changing over time
– we showed how CHR can represent non-standard semantics, which allow effec-
tive knowledge updates, so that the constraint store at any point represents a current
“now” knowledge database.

Our approach has been used by [15] to build UML class diagrams from text
describing use cases, including with pronoun resolution and other linguistic refine-
ments. The paper [6] concentrates on using CHR to resolve relative time expression
appearing in bibliographical text.

The main practical limitation of the approach is that there is no standard inte-
gration with tools such as POS taggers (for the input side) or external knowledge
representation systems such as a database (for the output of a discourse analysis).
Fragments of such interfaces exist in different applications, but a ready to use en-
vironment with these facilities is still lacking. Thus, to use Prolog and CHR for
context comprehension in a large-scale practical application, the concise programs
we have shown here need to be complemented with a certain amount of detailed
interface programming.

References

1. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity constraints
and abduction. In: Proceedings of FQAS2000, Flexible Query Answering Systems: Advances
in Soft Computing series, pp. 141–152. Physica-Verlag (Springer) (2000)

2. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic 50(2), 510–530 (1985)

3. Aliseda, A.: Abductive Reasoning: Logical Investigations into Discovery and Explanation.
Synthese library. Springer (2006)

4. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)



Constraint Programming for Context Comprehension 17

5. Betz, H., Frühwirth, T.W.: A linear-logic semantics for Constraint Handling Rules. In: P. van
Beek (ed.) Constraint Programming, Lecture Notes in Computer Science, vol. 3709, pp. 137–
151. Springer (2005)

6. van de Camp, M., Christiansen, H.: Resolving relative time expressions in Dutch text with
Constraint Handling Rules. In: D. Duchier, Y. Parmentier (eds.) CSLP, Lecture Notes in Com-
puter Science, vol. 8114, pp. 166–177. Springer (2012)

7. Charniak, E., McDermott, D.: Introduction to Artificial Intelligence. Addison-Wesley Pub-
lishing Company (1985)

8. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic Programming
5(4-5), 467–501 (2005)

9. Christiansen, H.: On the implementation of global abduction. In: K. Inoue, K. Satoh, F. Toni
(eds.) CLIMA VII, Lecture Notes in Computer Science, vol. 4371, pp. 226–245. Springer
(2006)

10. Christiansen, H.: Implementing probabilistic abductive logic programming with Constraint
Handling Rules. In: T. Schrijvers, T.W. Frühwirth (eds.) Constraint Handling Rules, Lecture
Notes in Computer Science, vol. 5388, pp. 85–118. Springer (2008)

11. Christiansen, H.: Executable specifications for hypothesis-based reasoning with Prolog and
Constraint Handling Rules. J. Applied Logic 7(3), 341–362 (2009)

12. Christiansen, H.: An adaptation of Constraint Handling Rules for interactive and intelligent
installations. In: J. Sneyers, T.W. Frühwirth (eds.) CHR ’12: Proc. 9th Workshop on Constraint
Handling Rules, pp. 1–15. K.U.Leuven, Department of Computer Science, CW 624 (2012)

13. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with assump-
tions and abduction. In: M. Gabbrielli, G. Gupta (eds.) ICLP, Lecture Notes in Computer
Science, vol. 3668, pp. 159–173. Springer (2005)

14. Christiansen, H., Dahl, V.: Meaning in Context. In: A. Dey, B. Kokinov, D. Leake, R. Turner
(eds.) Proceedings of Fifth International and Interdisciplinary Conference on Modeling and
Using Context (CONTEXT-05), Lecture Notes in Artificial Intelligence, vol. 3554, pp. 97–
111 (2005)

15. Christiansen, H., Have, C.T., Tveitane, K.: From use cases to UML class diagrams using
logic grammars and constraints. In: RANLP ’07: Proc. Intl. Conf. Recent Adv. Nat. Lang.
Processing, pp. 128–132 (2007)

16. Christiansen, H., Saleh, A.H.: Modeling dependent events with CHRiSM for probabilistic
abduction. In: J. Sneyers (ed.) CHR ’11: Proc. 8th Workshop on Constraint Handling Rules,
pp. 48–63. GUC, Technical report (2011)

17. Console, L., Dupré, D.T., Torasso, P.: On the relationship between abduction and deduction.
Journal of Logic and Computation 1(5), 661–690 (1991)

18. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: A.C. Kakas, F. Sadri (eds.)
Computational Logic: Logic Programming and Beyond, Lecture Notes in Computer Science,
vol. 2407, pp. 402–436. Springer (2002)

19. Frühwirth, T.W.: Theory and practice of Constraint Handling Rules. Journal of Logic Pro-
gramming 37(1-3), 95–138 (1998)

20. Frühwirth, T.W.: Constraint Handling Rules. Cambridge University Press (2009)
21. Gärdenfors, P.: Belief revision and nonmonotonic logic: Two sides of the same coin? In:

ECAI, pp. 768–773 (1990)
22. Gärdenfors, P., Rott, H.: Belief revision. In: D.M. Gabbay, C.J. Hogger, J.A. Robinson (eds.)

Handbook of Logic in Artificial Intelligence and Logic Programming, Epistemic and Temporal
Reasoning, vol. IV, pp. 35–132. Oxford University Press (1995)

23. Hobbs, J.R.: Ontological promiscuity. In: ACL, 23rd Annual Meeting of the Association for
Computational Linguistics, 8-12 July 1985, University of Chicago, Chicago, Illinois, USA,
Proceedings, pp. 61–69. ACL (1985)

24. Hobbs, J.R., Stickel, M.E., Appelt, D.E., Martin, P.A.: Interpretation as abduction. Artificial
Intelligence 63(1-2), 69–142 (1993)

25. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL, Conference Record of the
Fourteenth Annual ACM Symposium on Principles of Programming Languages, Munich, Ger-
many, January 21-23, 1987, pp. 111–119 (1987)



18 Henning Christiansen

26. Kowalski, R.A., Bowen, K.A. (eds.): Logic Programming, Proceedings of the Fifth Interna-
tional Conference and Symposium, Seattle, Washington, August 15-19, 1988 (2 Volumes).
MIT Press (1988)

27. Maim, E.: Abduction and constraint logic programming. In: ECAI, pp. 149–153 (1992)
28. Pereira, F.C.N., Shieber, S.M.: Prolog and Natural-Language Analysis, CSLI Lecture Notes

Series, vol. 10. Center for the Study of Language and Information (1987)


