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Abstract. In this paper, we show an application of Adaptable Gram-
mars to language evolution. An adaptable grammar may be defined as a
logically based transformational grammar formalism in which the gram-
mar itself may be affected in a derivation step. This grammar formalism
was originally intended for describing software systems and programming
languages. For the field of natural language analysis, the main advantage
of adaptable grammars over other types of formal grammars is the idea
of evolution. Adaptable grammars are dynamic entities in which nov-
elties appearing in lexical units or language structure can create new
or modify existing grammar rules. Taking into account this idea of ‘dy-
namicity’, we suggest the possibility of applying adaptable grammars to
natural language change.

1 Introduction

During the last decade, approaches to language have undergone a deep trans-
formation thanks to a new interdisciplinary paradigm that integrates artificial
intelligence, physics and evolutionary biology [14, 6, 35, 44]. Currently, the re-
search in diachronic change is based on the understanding of language as a
complex adaptive system [55] and an evolutionary system [16, 5]. Moreover, it
is supported by computational models and simulation to fully understand the
dynamics of human language and its adaptation to the environment [7]. Some
consistent contributions to the topic have also been introduced from mathemat-
ics [45–47].

The main problems approached by language evolution are the origins and
emergence of language, language acquisition and language change. The origins
and emergence of language was first tackled from a computational and formal
perspective by the pioneering work of Steels [53, 54], and summarized by Knight,
Studdert-Kennedy & Hurford [27].

Language evolution through language acquisition has several key contribu-
tions in the works of Briscoe [6], Kirby [25], Komarova, Niyogi & Nowak [28]
and Komarova & Nowak [29].



Finally, language change has been approached by a number of articles in
recent years. One of the most recent mathematical models of language change
has been developed by Baxter et al. [3]. The authors introduce parameters for
both evolution by communicative interaction and generational change. Some
formalisms have been used to explain particular cases, like Baxter et al. [4]
for the English of New Zealand and Lieberman et al. [32] for the emergence
of the “-ed” suffix Closely related to the problem of language change is the
formal representation of language death [1, 38, 37], bilingualism [36, 8, 49] and
creolization / dialectalization [42, 43].

The approach we are introducing in this paper is a very simple model for
dealing with language change. It is based on a logically based transformational
grammar formalism in which the grammar itself may be affected in a deriva-
tion step. We intend to model the linguistic competences of a silent listener
equipped with reflective capabilities, i.e., who is capable of inspecting and re-
vising its competences according to current usages. In contrast to some of the
models mentioned above, it is not based on artificial intelligence or simulation
of communicating agents. Instead we propose a strictly formal approach to the
problem of language evolution, showing how a grammar can adapt to new words
and ways of building phrases without any external means.

We apply a formalism called Adaptable Grammars, based on an earlier pro-
posal of Christiansen [9–11], which only recently have been applied to formal
linguistics. In [13], the author shows how such grammars may capture standard
non-context-free languages used in the literature (e.g., [34]) as prototypical rep-
resentatives for the central natural language properties of reduplication, crossed
dependencies, and multiple agreements. In the present work, we take this a step
further considering language evolution.

A surprisingly simple implementation of adaptable grammars in Prolog was
shown in [13], which will be extended below with additional auxiliaries for rule
generation; this implementation makes adaptable grammars also a powerful tool
for experimentation.

In section 2 we give an introduction to adaptable grammars and indicate
principles for how they may be used for describing language evolution, and in
section 3 we show an adaptable grammars for a simple language evolution prob-
lem. A realistic example is outside the scope of this paper, so the mentioned
grammar should be taken as a proof of concept. Section 4 compares with re-
lated work with a focus on machine learning and grammar induction, and finally
section 5 gives some concluding remarks, including some plans for future work.
The appendix shows an implementation in Prolog for parsing with adaptable
grammars.

2 Adaptable Grammars

This grammar formalism was originally intended for describing software systems
and programming languages; other authors have used the name “Christiansen
grammars” [51, 22, 48, 56]. Recently, Ortega et al. [48] have used these gram-



mars for grammatical, evolutionary programming; the authors motivate their
approach by the observation that with such grammars they can do with shorter
derivations of target programs, thus shorter chromosomes and therefore faster
convergence. See also [10, 11, 13] for comparison with other attempts to adapt-
able or extensible grammar formalisms. The inclusion of reflective atoms in the
definition below is new.

We assume the terminology of first-order logic, including logical variables,
and logic programs (pure Prolog programs) as well as related notions such as
(ground) instances for formulas and terms.

Definition 1 (Adaptable grammars). An adaptable grammar is a quintuple
〈Σ,N,Π, [[−]], R〉 where Σ is a finite alphabet, N a set of nonterminal sym-
bols which are logical predicate symbols of arity at least 1, Π is a logic pro-
gram, [[−]] is the denotation function which is a (partial) function from terms
to grammars, and R is a set of grammar rules (below). Nonterminals and pred-
icates of Π are assumed to be disjoint. Each nonterminal symbol has a distin-
guished argument called its grammar argument. A reflective atom is of the form
derive static(N,S,G) or not derive static (N,S,G); the arguments in-
dicated by “G” are also called grammar arguments. A grammar rule is of the
form:

lhs --> rhs.

where lhs is a nonterminal and rhs a finite sequence of elements which may be
terminal or nonterminal symbols, reflective atoms, or first-order atoms defined
by Π.

The use of an explicit denotation function means that we avoid potential cir-
cularity problems, so that the definition can rely on standard sets of first-order
terms. Furthermore, it allows us to introduce arbitrary auxiliary notation as
we will do below. We apply a notation inspired by definite clause grammars so
that terminals in grammar rules are written in square brackets, and atoms re-
ferring the program component in curly brackets. We assume that the grammar
argument for a nonterminal always is the last one, and we drag it outside the
standard parentheses and attach it by a hyphen, e.g., instead of n(x,y,G), we
prefer n(x,y)-G when n is a nonterminal of arity 3. Terms within rules that
represent grammars are generally written using Prolog’s list syntax but may be
written in other ways depending on the actual denotation function. The program
component can also change over time and serve as a dynamic knowledge base,
although we do not employ this in the present paper.

A static rule is one without reflective atoms and in which all grammar
arguments coincide with the same logical variable (e.g., p-G-->q-G, but not
p-G1-->{t(G1,G2)},q-G2. The static version of a grammar G, denoted σ(G)
coincides with G except that any non-static rule is removed. Reflective atoms
can be applied for explicitly checks whether a string is derivable in a “current”
grammar.

Definition 2 (derivation). Given an adaptable grammar 〈Σ,N,Π, [[−]], R〉, an
application instance of one of its rules r ∈ R is a ground instance r′ of r in



which grammar arguments denote grammars and any logical atom in r′ is sat-
isfied in Π; the reflective atom derive static(N-G,S) is satisfied whenever
N -G is a nonterminal, S a sequence of terminals, G a term that denotes a gram-
mar, and N-G′ ⇒∗ S, where G′ is a grammar term such that [[G′]] = σ([[G′]]);
not derive static(N-G,S) is defined in a similar way, but with N-G′ 6⇒∗ S.3

Whenever αβγ is a sequence of ground grammar symbols, β being a nonterminal
of the form N-G with an application instance β-->δ of a rule in [[G]], we write:

αβγ ⇒ αδ′γ

where δ′ is a copy of δ with any atom referring to Π and reflective atoms taken
out. The relation ⇒∗ refers to the reflexive, transitive closure of ⇒.

The language defined by a given ground nonterminal N-G is the set of ter-
minal strings S for which N-G ⇒∗ S.

Notice the difference between grammars and terms that represent them. A gram-
mar argument may be a list of rule representations containing duplicates, and
the “processing” of it may take multiplicity into account. Even without the pro-
gram components, our adaptive grammars are obviously Turing complete as they
embed pure Prolog programs, which can be rewritten as grammar rules that gen-
erate the empty sequence. Thus the computational complexity for text analysis
with an adaptable grammar can be arbitrary high, but the examples we show
here has linear time complexity in the length of the discourse being analyzed
(assuming a maximum length for periods).

The following example represents the essence of our approach to characterize
language evolution.

Example 1. In [13] we show a ten line Prolog implementation of a basic version
of adaptable grammars, and in the appendix of the present paper we give a
version that also supports reflection so that it can interpret (i.e., parse with) a
grammars as the one we show below. Grammars are represented in the so-called
non-ground representation (i.e., new variables are denoted by variables that do
not occur elsewhere [21]), the rules of a grammar represented as a list, and the
other components left implicit.

The following grammar describes simple discourses, consisting of sentences,
and initially only sentence “a” is recognized. The last rule extends the grammar
in case a new usage such as “b” comes into fashion.

(1) d( G)-G --> []
(2) d(G2)-G --> s(G1)-G, d(G2)-G1
(3) s( G)-G --> [a]
(4) s(G1)-G --> [X], not derive static(s( )-G,[X]),

{G1=[(s(Gx)-Gx-->[X])|G]}
3 Notice that there is no circularity problem here as satisfaction of reflective atoms is

defined in terms of derivations using static rules only. In fact, reflective atoms are
included for conceptual clarity only, as they could have been defined in the program
component by a straightforward meta-interpreter (here: a parser).



When this grammar is applied for parsing a text given as [a,b,b], it will pro-
duce, as argument of the topmost d node, a grammar which is extended with the
rule s(Gx)-Gx-->[b]. The occurrence to not derive static in line (4) prevents
the creation of rules that are already present.

This grammar contains some patterns that will recur often in grammars that
capture language evolution, and we will introduce more convenient notation
later.4 Rule (2) is a sequencing operator which explicitly states that the current
grammar G is imported for the start of the lefthand side, it is possible modified
by the constituents from left to right and finally exported as G2 to whatever
context the rule was applied in; we will take this as a default pattern and leave
out the language arguments. Furthermore, rule (4) indicates an addition of a new
rule to the current grammar; we will indicate this by writing the rule, prefixed
by +. Finally, we define two infix operators for the reflexive predicates, => and
\=>, referring implicitly to the current grammar.

Example 2. With the notation introduced, we can now write the grammar of
example 1 as follows.

(1) d --> []

(2) d --> s, d

(3) s --> [a]

(4) s --> [X], d \=> [X], +(s-->[X])

For the specific aims of the present paper, we introduce a final convention that
actually changes the meaning of the notation for grammars used in example 2.
We may assign a numerical weight to each rule in a grammar; each time a rule is
applied, it gets weight 1, all other rule weights are multiplied by some constant f ,
0 < f < 1, called the obsolescence factor, and as soon as a rule’s weight becomes
less that some treshold t, 0 < t < f , it is discarded from the grammar. The initial
weight of each rule will be either 1 or the special value null, indicating that the
particular rule is never discarded. In the example above, we would expect rules
(1), (2), (4) to be of that kind and any other rule, whether existent from the
start or created dynamically, has the risk of being forgotten. We will introduce
notation in the following sections to distinguish.

So with reasonable choices of f and t, we expect the sample grammar, when
analyzing the discourse [a,b], leads to a revised grammar that knows sentences
“a” and “b”. In case of a discourse [a,b,b,. . .,b,c], we may expect the rule
for “a” to vanish and rules for “b” and “c” to remain at the end.

However, it must be emphasized that we did no extend the formalism in-
troduced in definitions 1 and 2, we just introduced a convenient notation. The
weighting information can be represented as an additional argument to each

4 Be aware that Adaptable Grammars can describe much more advanced grammar
manipulation that what is shown here, so the notation we introduce here indicates
a restriction to a subset of Adaptable Grammars.



grammar symbol and each rule extended with an initial call to a weight adjust-
ment predicate, that possibly also removes rules from the grammar.5

3 Modeling Language Evolution by Adaptable Grammars

A version of adaptable grammars have been implemented in Prolog for experi-
ments with language evolution, and we illustrate this below for a small sample
grammar that accommodates, in an incremental way, to new usages coming up.
We take this demonstration as a proof of concept and use the experience gained
to discuss possible improvements of the approach. The following grammar de-
scribes a small subset of Catalan, and shows the extensions we have made to
the grammar format explained so far. It must be stressed, however, that the
new notations introduced do not extend the formal framework given by def-
initions 1 and 2; they are included for convenience only. Figure 1 shows this
adaptable grammar represented as a Prolog term so it can be directly input to
an analysis program, which is a mere extension of the one shown in the appendix.

structural categories -d, + -s, np, +vp) //

lexical categories a, +pr, +n, v //

[ ( np --> pr):1,

( np --> a, n):1,

( pr --> [ella]):1,

( a --> [una]):1,

( n --> [poma]):1,

( v --> [menja]):1,

( vp --> v):1,

( vp --> v, np):1,

( s --> np, vp):1,

( d --> s,[’.’],d):null,

( d --> []):null,

( s --> substring_until_period(Tokens),

s \=> Tokens,

new_rules(Tokens,R),

+R,

s => Tokens):null,

( substring_until_period([T|Ts]) -->

[T], {T \= ’.’}, substring_until_period(Ts) ):null,

( substring_until_period([]) --> [], look_ahead([’.’]) ):null ]

Fig. 1. An adaptable grammar for a simple language evolution problem

5 From an implementation point of view, it will be easier to merge the weights into
the grammar representation, but this still does not change the formalism.



The collection of syntactic categories (nonterminals) are defined in the first
two lines, distinguished into structural and lexical ones which gives a difference
in which rules that can be generated for them. The syntactic categories stay fixed
throughout the analysis of a discourse being analyzed. A prefix “+” means that
the category can be extended and “-” that a category cannot be used in new
rules being generated. Discourses “d” and sentences “s” are considered high-level
notions that cannot appear as substructures inside new constructs; sentences
can be extended with new forms, but discourses cannot, i.e., we simplify the
problem by having periods to serve as definite steering marks. The initial weights,
as explained above, are made explicit as to have a way to state that some of
the rules will stay forever in the current grammar (those with weight null).
The nonterminal substring_until_period is a generic device that collects the
string up to and not including the next period; this string is made available in
the variable Tokens so it can be processed further. We use here a look_ahead
device to ensure the Tokens are expanded as far as possible; it must match a
given character, but does not “consume” it. An oracle is used for generating new
rules in an attempt to make the Tokens parseable.

This oracle appears as a new reflexive construct, new rules, that includes
some heuristics designed for the specific example, but which is expected to work
at a larger scale. It generates in a nondeterministic way different collections of
rules and commits to the first one that solves the problem, so to speak. In case
of new words being applied, they must be placed in lexical categories; if that is
sufficient, no more rules are generated. Otherwise, the oracle starts adding new
structural rules based on the following heuristics:

– Only a limited number of rules can be introduced in one go; here limited to
a maximum of two.

– The body of a structural rule may contain only a limited number of nonter-
minals; here limited to a maximum of two.

– Grammar extensions that introduce left-recursion to the current grammar
are not allowed.6

– A rule already in the grammar will not be created again.
– Any word belongs to at most one lexical category (admittedly too simple for

realistic applications).

In the section for future work below, we discuss possible improvements of this
strategy. Figure 2 shows the new rules that are created for some sentences that
contains new words and usages.

Example (1) illustrates that no rules are generated when the existing ones
are sufficient; (2–4) shows examples of new usages that are accommodated by
means of the rules that we might expect; in (5), a new structural rule is created,
which may or may not be the desired one; in (6), the perfect rule for a new type
of sentences is created, whereas in (7), a new sort of sentence consisting of one
new word generates some unnatural rules. We may relate the problem in (7)

6 Due the inherent top-down parsing strategy, a left recursive grammar will lead to
infinite loops.



Sentence(s) New rule(s)

(1) ella menja una poma. (no new rules)

(2) blabla menja una poma. pr-->[blabla]

(3) la blabla menja una poma. a-->[la]

n-->[blabla]

(4) menja una poma. s-->vp

(5) ella una poma menja. vp-->np,vp

(6) menja. s-->vp

(7) beu. s-->a

a-->[beu]

(8) menja. beu. s-->vp

v-->[beu]

Fig. 2. Sample sentences and discourse plus the rules created to accommodation.

to the observation that any competent and reflective grammar user may have
difficulties when too many novelties are introduced at the same time; here both
a new word and new sentence form is introduced in a one word sentence.

Example (8) is perhaps the most interesting: it analyzes a discourse consisting
of two sentences, the first on shows a new sentence form that is accommodated
by the rule s-->vp, which is feasible as menja is known to be a verb; in the next
sentence this rule is applied when accommodating the new word beu which is
now classified in an intuitively correct way.

Examples for longer discourses that we do not show here, demonstrate how
the obsolescence principle removes, after a while, rules that are not used, either
because the usage they represent goes out of fashion or it may be a strange
rule generated from a single sample that a normative linguist would classify as
incorrect.

4 Related Work

Adaptable grammars can be related to work done in fields as, for example,
grammar induction, inductive logic programming and iterated learning.

Grammar induction, e.g, [20, 15, 19, 26], also known as grammatical inference,
automatic language acquisition or automata induction, is a specialized subfield
of machine learning that deals with the learning of formal languages from a set of
data. Grammar induction refers, therefore, to the process of learning grammars
and languages from a given corpora. In order to solve a grammar induction prob-
lem we require, on one hand, a teacher that provides data to a learner, and on the
other hand, a learner (or learning algorithm) that from that data must identify
the underlying language. Adaptable grammars share with grammar induction
the idea of ‘learning’ from data, but while in the field of grammatical inference
the goal is to learn a new language/grammar from the given data, in our model
the goal is to adapt (to slightly modify) the grammar we start with in order
to fit the changes that happen in language evolution. In grammatical inference,



the learner must infer the grammar from the data, in adaptable grammars the
speaker must adapt his grammar in order to be able of parsing the new/unknown
structures. In what refers to the applications to natural language, while gram-
matical inference seems to be easily applicable to the area of natural language
acquision, our model fits better the field of natural language evolution/change.
Also, [30] has developed a grammar induction method that produces Stochastic
Context Free Grammars.

Inductive logic programming [39, 31, 41, 40] is also a subfield of machine learn-
ing particularly useful in bioinformatics and natural language processing, which
also represent powerful methods for grammar induction, e.g., [2, 17]. The term
inductive logic programming was first introduced by Stephen Muggleton in 1991
[39]. Inductive logic programming has been defined as a technology that combines
principles of inductive machine learning with the representation of logic program-
ming. The aim of this technology is to induce general rules starting from specific
observations and background knowledge. It is considered more powerful than tra-
ditional techniques that learn from examples because it uses an expressive first
order logic framework instead of the traditional attribute-value framework and
because it facilitates the use of background knowledge. Those two features are
very important because many domains of expertise cannot be formulated in an
attribute-value framework and because background knowledge is very important
in artificial intelligence applications. Roughly speaking, a problem in inductive
logic programming is concerned with finding a hypothesis (a logic program) from
a set of positive and negative examples. It is required that the hypothesis covers
all positive examples and none of the negative examples. There is a background
knowledge (a logic program) that is provided in the inductive logic programming
system and fixed during the learning process. Adaptable grammars work in a
similar fashion. The background knowledge in inductive logic programming can
be equivalent to the grammar we start with in adaptable grammars. This initial
grammar must be adapted/fixed during the parsing process in order to fit new
examples. Of course, in our adaptable grammars we deal also with hypothesis,
the system make different hypothesis in order to find the new rule that better
fits the new data. The weights introduced in our adaptable grammars relate
this framework to the so-called probabilistic inductive logic programming [50] or
statistical relational learning, a model that shows an integration of probabilistic
reasoning.

Iterated learning [25, 52] is a model for language evolution through language
acquisition that was introduced by Kirby in 2001. In this model, agents are able
to create a compositional language starting from a holistic language by means of
inferring a grammar from the language they learn every generation. Both models
share the idea that the grammar evolves and provide a method to capture such
evolution. However, their theoretical principles are widely different. First of all,
we have to place iterated learning model in the field of simulation and artifi-
cial intelligence, whereas adaptable grammars offer an strictly formal model for
language evolution. Moreover, while iterated learning takes into account agents
and generational change, adaptable grammars are not concerned about the pop-



ulation nor the reasons of the evolution. They only account for changes and are
able to adapt to them. Finally, iterated learning deals with the emergence of
language structure. It is a model of language change, that is also able to ex-
plain the origins of compositionality. However, adaptable grammars are a model
of language change that can describe the death of languages or the processes
of splitting and dialectalization, but are not able to suggest an explanation for
language emergence. Finally, we mention that genetic algorithms also have been
suggested for grammar induction [24].

It may be suggested that our aim could be fulfilled even better by running
a grammar induction procedure on the previous n sentences whenever a next
sentence cannot be parsed. However, in this way we would loose the property of
incrementality that we find central in the modeling of how a competent language
user gradually changes his or her understanding of the grammar as the language
evolves over time. In fact, our approach is more closely related to abductive rea-
soning in logic programmming (see [18] for an overview), as it proceeds by adding
one rule or as few new rules as possible in order to accommodate to one sample
at a time, rather that revising everything. We may refer to [12] that describes a
quite analogous system for abductive reasoning in which a constraint-logic im-
plementation attempts to guess new Prolog rules that makes a given top-level
goal provable; such techniques might also apply to the present application. We
have not seen the obsolescence principle applied in abductive logic programming.

Finally, we compare our approach to the tradition of mildly context-sensitive
grammars [23], which are capable of capturing (essential aspects of) natural
language, while maintaining a polynomial time complexity for analysis, thus
also limiting its formal expressibility. Our approach is different as we propose
a formalism which, in this sense, is far too powerful, but we obtain an ease of
understanding and naturalness of the actual grammars which (under suitable
assumptions) can analyze in linear time. This can be in seen contrast to the
mildly context-sensitive Contextual Grammars [33] in which grammars for even
small and artificial languages convey (our claim!) very little intuition about the
languages described. We have not notices any attempts to apply mildly context-
sensitive grammars for characterizing language evolution.

5 Conclusions and Future Work

From the origins of formal language theory, in the middle of the 20th century,
models coming from the formal grammars research field have been applied to
the description, explanation and processing of natural language. However, there
is a one aspect of natural language that is specially difficult to be modelled by
using formal grammars: language evolution.

In this paper, we have shown the possible applications of adaptable grammars
to language evolution. The main advantage of the formalism introduced here is
precisely, that it can account for natural language change. Adaptable grammars
are able to evolve during the processing, they are dynamic entities that can



modify their rules, changing gradually (as natural languages do) in order to
adapt themselves to the evolution of language.

The implementation introduced in the paper has the aim to show how the
mechanism can actually explain natural language evolution. If the main ideas
collected here are shown to be expressive enough to be developed, then a new
system should be designed taking into account many aspects that have been
dismissed up to now, in order to approach language evolution in a more realistic
way.

Overall, language evolution is tackled here from the viewpoint of a passive
listener, but there is nothing that limits of using a (current) grammar for sen-
tence generation. In other words, using the same type of grammars, an agential
perspective could be taken, designing different individuals that exchange utter-
ances in a population, taking into account generational take over, mutation rates
and social parameters.

Summing up, the principle of having the grammar dynamically modifying or
adapting itself along a discourse may be seen as a universal mechanism that may
be incorporated in other grammatical frameworks as well. The motivation is to
provide a “natural” way of modelling those context-dependent aspects of lan-
guage that essentially are related to the introduction of new linguistic potential
or – in a broader perspective – the development of language. The advantage is
that original and novel language constructs are represented in an equal manner
so that, at any stage, the current grammar may be read out. In most traditional
grammar formalisms, that are capable of expressing some context-dependencies,
this need to be modelled by highly over-general rules whose application is con-
trolled by an encoding of the linguistic context.

Our plans for future work include a more careful selection of new rules by
considering a suitable generalization-specialization hierarchy, so that we generate
only most specific rules to accommodate new usages, and add a generalization
or induction step that clashes similar rules into a more general one when cer-
tain criteria are met, and which takes into account also the weights that reflect
how often and recent the different rules have been applied. We are considering
applying the approach to developments in Latin and the languages derived from
it. Another possible application is to trace the development of topics in social
networks.



Appendix: An Implementation of Adaptable Grammars in
Prolog

The following Prolog program provides an implementation of adaptable gram-
mars given in the format applied in example 1; only a few trivial lines of code
have been left out.

derive(NG,S):- derive(NG,S,[]).

derive([],S,S).

derive([T|Ts],[T|S1], S2):- derive(Ts,S1,S2).

derive({Code},S,S):- Code.

derive((A,B),S1,S3):- derive(A,S1,S2), derive(B,S2,S3).

derive(derive static(N-G,X),S,S):-
make static(G,GS), derive(N-GS,X).

derive(not derive static(N-G,X),S,S):-
make static(G,GS), \+ derive(N-GS,X).

derive(N-G,S1,S2):-
renameVars(G,Gx), member((N-G-->B),Gx), derive(B,S1,S2).

renameVars(X,Y):- assert(quax(X)), retract(quax(Y)).

make static(G,Gx):- Gx contains only the static rules of G.

An interpreter for the grammar format indicated in section 3 can be obtained
from the one above by adding more or less straightforward code, but needs no
essential new inventions.

At the time of publication, we will have announced a website that contains the
full code of this interpreter as well as the more elaborate implementation needed
for the example in section 3.
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