Integrity constraints and constraint logic programming”*

Henning Christiansen
Roskilde University, Computer Science Dept.,
P.O.Box 260, DK-4000 Roskilde, Denmark

henning@ruc.dk

Abstract

It is shown that constraint logic is useful for evalua-
tion of integrity constraints in deductive databases. In-
tegrity constraints are represented as calls to a meta-
interpreter for negation-as-failure implemented as a
constraint solver. This procedure, called lazy negation-
as-failure, yields an incremental evaluation: It starts
checking the existing database and each time an up-
date request occurs, simplified constraints are produced
for checking the particular update and new constraints
corresponding to specialized integrity constraints are
generated for the updated database.

1 Introduction

There is a relationship between integrity constraints
in databases and the constraints of constraint logic
programming going beyond the partial overlap of the
names applied for these phenomena. Both concern con-
ditions that should be ensured for systems of interde-
pendent entities: the different tuples in a database, and
the set of variables in a program execution state. Both
relate to problems that evolve gradually: integrity must
be ensured each time a database is updated, and the
constraints of logic programming wake up to ensure sat-
isfiability whenever more specific information becomes
available about their arguments, by further instantia-
tion or new constraints added to the constraint store.

Constraint logic programming is a computational
paradigm which extends logic programming with incre-
mental properties and makes it possible to cope with
some of the problems of “classical” Prolog program-
ming of over-generation and indefinite backtracking —
without much compromise of a declarative style of pro-
gramming.

It seems obvious to transfer these properties to the
domain of integrity constraints in databases that always
has been a source of difficulties in implementation and
inefficiency. Integrity constraints, seen as global state-
ments to be satisfied by a database, are avoided in most
available database systems and applications although
often partly compensated by hand-coded update rou-
tines.

*Invited talk at DDLP’99; appears in INAP’99 proceedings.

In the present paper, we make an experiment of
using constraint logic for evaluation of integrity con-
straints. We make a restriction to deductive databases
with only positive literals (however, allowing nonequal-
ities in their bodies) and only positive updates. We ap-
ply a metaprogramming setting in which metavariables
can stand for prospective updates and suggest a meta-
level implementation of negation-as-failure adapted by
means of constraints for evaluation of integrity con-
straints. The basic idea is straightforward: The proce-
dure evaluates as far as possible, and whenever it runs
into a branch where the presence of a metavariable (rep-
resenting a yet unknown update request or sequence of
such) makes it impossible to proceed, it delays. We call
this principle lazy negation-as-failure. It turns out to
be well suited for the purpose and it provides an incre-
mental evaluation mechanism that casts of specialized
integrity constraints for each update similarly to what
is obtained by earlier methods called simplification (ref-
erences and comparison given in the final section of this
paper). The experience reported in the present paper
indicates that constraint logic is well-suited for eval-
uation of integrity constraints, combining conceptual
simplicity with desirable computational properties —
and this holds whether we consider constraint logic pro-
gramming (and deductive databases in Prolog for that
matter) as the real topic or as a researchers’ playground
for designing and experimenting with new methods per-
haps applicable in other technologies.

In section 2 we describe the overall setting and show
different applications made with an implementation of
the lazy negation-as-failure procedure. We consider
generation of specialized update routines for particu-
lar updates, view update, and generation of intentional
answers.

An implementation made using the language of Con-
straint Handling Rules [10] is described in section 3,
and possible improvements and more efficient imple-
mentation methods are discussed. The final section 4
provides a summary and compares with related work.

2 Basic concepts and motivating examples

We illustrate the overall principle by examples made
with an experimental implementation and we postpone

as many details as possible about its implementation
for section 3.

Databases are represented in the object language of
function-free positive Horn clauses extended with = and
dif constraints. The semantics is defined in terms of a
provability relation for ground queries with = and
dif representing syntactic equality and nonequality.
Clauses of the form bottom:- --- are called integrity
constraints and a database DB is considered consistent
whenever DB I/ bottom.

For checking this property, we apply a metainter-
preter fails(P’, @'), where P’ and @' are names of
object program P and query @. Its intended meaning is
that @ (finitely) fails in P, i.e., we do not have P - Qo
for any object substitution o. The fails predicate is
implemented by means of a constraint solver and the
property which makes it interesting for our purposes, is
that 1t produces specialized and optimized versions of
the integrity constraints for possible metavariables in
P standing for future updates.

We use a ground representation [14, 13] of programs
and queries with each symbol named by itself, except
for object variables that are named by constants *4°,

’B’, ..., ’Z’. The following Prolog term names an ob-
ject program to be used in the examples.
DBy =
[(father(john, mary):- true), (f1)
(mother(jane,mary):- true), (f2)
(bottom:- dif(’4’,’B’), (icl)
father(’A’,’C’), father(’B’,’C’)),
(bottom:- dif(’4’,’B’), (ic2)
mother(’A’,’C’), mother(’B’,’C’)),
(bottom: - (ic3)

father(’A’,’Z’), mother(’4’,°X’))]

This database consists of facts about father and
mother relations and three integrity constraints telling
that you can only have one father and only one mother,
and that a father cannot be a mother. Notice that the
two father atoms in (icl) occur symmetrically in the
following sense: The same pair of tuples ¢1, ¢ can be
generated in two different ways but whether or not ¢;
and to give rise to an inconsistency 1s independent of
which tuple is generated by which atom. The same
holds for the two mother atoms in (ic2).

Checking the integrity of DBy can be done by calling
fails(DBy, bottom) that succeeds without leaving
any unresolved constraints. In a case like this, the un-
derlying procedure works similar to negation-as-failure
in Prolog, examining all possible branches of execution
the goal bottom.

2.1 Obtaining specialized integrity constraints

The ground representation makes it possible to indicate
a future update by means of uninstantiated metavari-
ables (i.e., Prolog variables) as follows; the ampersand

1s an operator for concatenation of different object pro-
grams. In the following call, Clause is a metavari-
able which stands in the position of an arbitrary clause
which can be added to the program at a later stage.

fails(DBy & [Clause], bottom) (Qo)

The procedure works as far as possible from the input
given to it, which means that it will process (and ac-
cept) the existing database DBy, but those branches
that depend on Clause have to delay. The processing
of each of (ic1-3) gives rise to delayed constraints ready
for receiving possibly new father or mother tuples
that might imply an inconsistency, and another delayed
constraints is ready to test a possible new integrity
constraints that might arrive as Clause = (bottom:-
).

A more interesting behaviour can be observed when
more specific information about the particular update
is given which makes it possible for the constraint solver
to simplify the result considerably. This can be given
as a partial instantiation combined with auxiliary con-
straints as in the following query.

constant(4), constant(B), (Q1)
fails(DBy & [(father(4,B):- true)], bottom).

The two constant constraints are used in order to spec-
ify that the update must be a father fact. Declara-
tively, the meaning of constant (¢) is that ¢ needs to be
the name of an object constant (as opposed to a name
of an object variable). Executing (Q1), the procedure
considers again all branches, verifies the known part of
the database, but now the constraint solver effectively
prunes those branches that appeared in the processing
of (Qg) for possible new mother and bottom clauses.
The following resulting constraints are returned as an-
swer, ready to evaluate a future update given by values
of A and B.

failsi(jane=4), (A1)
failsi((mary=B,dif(john,4)))

The meaning of a failsl constraint is that the query
named by its argument must fail under any instantia-
tion of the possible metavariables. The first one is a re-
mains of (ic3) combined with (f2) stating that a no new
father can bear the name jane since jane already is reg-
istered as a mother. The second comes from (icl) and
(f1) and the conjunction inside fails1 means that one
of the two conditions must fail. Thus this constraints
can be read: If the child mentioned in the update is
mary, then the father must be john. In this way, the
constraint solver has produced a specialized procedure
expressed by (A;) for verifying the update reduced into
a form that do not refer to the database.

It is usually required that a database has no duplicate
records. This can be expressed as a constraints which
unrolls into a bunch of smaller constraints pairing each
two clauses in the database. Most of them vanish imme-
diately and for (Qq), only fails1((A=john,B=mary))

remains, expressing the condition for (fl) and the yet
unknown fact. Taking this into account, the constraint
solver can perform a further simplification step and re-
duce (Ay) into

fails1(B=mary), failsi(jane=4). (AD)

In this particular example, the constraint solver has
produced a specialized and optimal procedure for
checking a single update of the father relation to DBy.
In section 3.3 we will discuss circumstances under which
it is not desirable to unfold the constraints as far as
done here.

2.2 Incremental integrity checking for
sequences of updates

In the call
fails(DBy & F, bottom) (Q2)

the metavariable F stands for a list of updates which can
arrive one after another by a gradual instantiation of F.
To begin with, we consider the case where all updates
are known to be new father facts. In order to make
it possible for the constraint solver to make use of this
information we use the following constraint:

clause pattern(F, (father(X,Y):- true), (C)
(constant_(X), constant_(Y)))

The meaning is that any clause that may arise in F must
match the given structure and satisfy the indicated con-
straints.! The constraint solver can use this constraint
in order to prune branches that otherwise need to wait
for an instantiation of F. For example, a mother atom
fails with any clause that can arrive in F.

The execution of the query Q4:= (Q2, C) will again
process the existing database and leave specialized
residual constraints for checking future updates. In this
case, the constraints are slightly more complicated that
those of (A7), now formed by a three-argument version
of failsi. The declarative meaning of

fails1(Prog, Atom*Cs, Continue)

is that for each clause H:- B in (s, the query
H=Atom, B, Continue must fail in program Prog.

The following constraints result from the execution
of Qf; variables with subscripts are generated by the
system and renamed here so that they are easier to
relate to the initial integrity constraints of DBy. It will
be explained in section 3 how the constraint solver has
managed to replace object variable names by Prolog
variables.

fails1(DBy & F,father(4;,Z;)*F,mother(4,,X;)),

fails1(DBy & F,father(B,,mary)*F,
dif (john,Bs)),

1In fact, the call to clause_pattern applies a nonground rep-
resentation of the object language so it must be assumed that
the variables X and Y in the example do not occur elsewhere in
the query. Without this liberty, it had been necessary to develop
an extra level of conventions for naming.

fails1(DBy & F,
(father(A3,C3),father(Bs,C3))*F,dif(A3,B3))

The first one is a specialized version of (ic3) for F, the
second a version of (icl) for testing that no new clause
in F produces a conflict with (f1). The third constraint
in the answer displays a variant form used for literals
that occur symmetrically in an integrity constraint, so
that (Atomq, Atoms)* (s indicates that Afom;, Atoms
are tested pairwise with all clauses of Cs, however, leav-
ing out symmetric variants. Thus this constraint is a
specialized version of (icl) for testing that no inconsis-
tency occurs within F.

Adding a tuple, say father(john,peter), to
the database is done by setting F=[(father(john,
peter):—true) | F1] where F1 represents future up-
dates. This event starts the three constraints shown
above which makes them cast off smaller constraints
similar to those shown in section 2.1 for verifying
father(john,peter). The answer constraints mutate
into the following, now also with a specialized version of
(icl) for testing that no new clause in F1 conflicts with
the newly added fact; we use D to abbreviate DBy &
[(father(A, B):-true) | Fi1].

fails1(D,father(A4,Z4)*F,mother(44,%X4)),
fails1(D,father(Bs,mary)*F,dif (john,Bs)),
fails1(D,father(Bg,peter)*F,dif(john,Bs)),
fails1(D,
(father(4;,C;),father(B7,C7))*F,dif(A7,B7))

A scenery for updating with mother as well as with
father tuples can be specified as follows.

clause pattern(F, (father...), ...), (Qs)
clause pattern(M, (mother...), ...)),
fails1(DBy & F & M, bottom)

The constraints produced follow the same pattern as
already shown.

2.3 Integrity constraints in view updating

The procedure specified by the fails predicate can
also be used together with abductive procedures for
performing view update. In [3] we have described
a metainterpreter defined by the predicate demo(F’,
Q'), which holds when P’ and ()’ are names of object
program P and query @ with P F Qo for some ob-
ject substitution o. Using the same sort of constraints
as described in the present paper, this predicate can
work with partly instantiated argument and serve as a
program synthesizer. Let
DB =DBy &

[(sibling(’X’,’Y’):- dif(’X’,’Y’)), (f3)

parent(°Z’,’X’), parent(’Z’,’Y’))

(parent(’X’,’Y’):- father(’X’,’Y’)), (f4)

(parent(’X’,’Y’):- mother(’X’,’Y’))]. (fb)
Thus, sibling is a view predicate in the sense that
it is defined indirectly from the set of basic father

and mother facts in the database and no explicit
sibling facts are allowed. The problem of updat-
ing the database in order to accumulate the fact
sibling(bob,mary) can be stated by the query

clause pattern(F, (father...), ...), (Qaq)
clause pattern(M, (mother...), ...)),

fails(DB; & F, bottom),

demo(DB; & F, sibling(bob,mary)).

The underlying constraint solver provides an optimal
interleaving of the computations performed by demo
and fails and the following two alternative answers
are produced,

F = [(father(john,bob):-true) | Fi], or

M = [(mother(jane,bob):-true) | Fi]

each followed by a set of delayed constraint similar to
those shown above for “direct” updates. In [4] it is de-
scribed how this principle can be combined with simple
induction problems in various ways. We can refer to [8]
for another recent method which integrates integrity
checking and view update.

2.4 Other applications

In a system intended to serve as a cooperative agent,
it can be relevant to enter a dialogue with the user in
order to find out why a particular database query or
update request fails — and how 1t might be changed in
order to succeed. See [20] for a recent overview of such
systems.

The constraint-based fails predicate can also be
used for these sort of things. Consider, for example,
the query mother(june, mary) that fails when eval-
uated towards the database e.g., using demo(D By,
mother (june, mary)). This failure arises since
mother (june, mary) is not present in the database.
In order to check whether this property, so to speak, is
by accident or “by nature”, we can check if an update
with mother(june, mary) is possible:
fails(DBy & [(mother(june, mary):- true)],

bottom)
It fails, showing that mother (june, mary) violates the
integrity constraints, i.e., it is not possible for june to
become a mother of mary. In order to obtain more spe-
cific information we can try out different generalizations
of the query in order to get more information, e.g.,

constant(4),
fails(DBy & [(mother(4, mary):- true)],

bottom) .

Leaving out the check for no duplicate tuples, we get
as single answer A=jane. So one way to explain why
june cannot be a mother of mary is that jane is the
only possible mother.? Alternatively, the other gener-
alization

?Notice that an evaluation of mother(A, mary) against the
database also gives answer A=jane, but this does not give evidence
that jane is the only one possible.

constant(4),
fails(DBy & [(mother(june, A):- true)l,
bottom)

yields failsi(mary=A) which tells that june can be
assigned mother of any child, except mary.

It is also clear that the specialized constraints pro-
duced in this way can be used for semantic optimization
of a query. If, for example, the task is to evaluate the
query mother(june,A), the example above shows that
failsi(mary=A) can be added the query, perhaps lim-
iting the search space. However, it still needs to be
investigated for more interesting examples how much
time is saved, taking into account the time spent on
executing fails.

3 A constraint-based implementation of
lazy negation-as-failure

The procedure used for evaluating calls to fails is a
metainterpreter implemented by means of Constraint
Handling Rules; CHR, which is an extension to Pro-
log making it possible to write constraint solver in a
straightforward way; we refer to [10, 11] for background
and introduction to CHR. We show these rules in an
abstract way which can be rewritten straightforwardly
into “real” CHR by means of auxiliary predicates for
doing elementary data structure operations.

As mentioned, the constraint solver works with a
ground representation of the object language for which
the constraint instance(7},7%) is extremely useful.
Its meaning is that 77,75 name object terms %,
for which there exists an object substitution ¢ with
ts = t10, e.g., as in instance(p(’X’), p(a)). These
constraints embody a reflection of object variables into
metavariables. For example, instance(p(’X’),Z) is
equivalent to Z=p(Z1) where Z1 i1s a new metavariable.
This means that the unification of two object terms
can be simulated at the metalevel (i.e., Prolog) by two
instance constraints followed by a metalevel unifica-
tion. See [3] for a detailed analysis and description of
a constraint solver, and [6] for a version in CHR.

At the top-level, the metainterpreter is defined as
follows.

fails(P,Q) :- instance(Q,Q1), failsi(P,Q1).(0)

where the intended meaning of fails1(P,Q1) is that
Pt/ @1, where P and)7 are the program and query
named by P and Q1.

We show firstly an implementation of fails1 which is
intended for cases with completely specified arguments
and then describe those adjustments that are necessary
in order to cope with the general case.

3.1 A metainterpreter for known
object programs and queries

The overall principle in the processing of calls to failsi
1s to select and process object literals one after another
in its query argument (i.e., the second one). If the
selected item can be recognized as failing, fails1 suc-
ceeds 1mmediately, otherwise we have to consider the
rest of the query for the solutions that exist for the
selected item.

If all items considered in the query has succeeded,
failure is impossible:

fails1(_,true) <=> fail. (1)

For an equation, the test for satisfiability and the in-
stantiation of possible solution is effectively performed
by a metalevel unification:

fails1(P, (Q1,(A=B),Q2)) <=> (2)
(A=B —> failsi1(P, (Q1,Q2)) ; true)

The object level nonequality constraint is treated simi-
larly to the dif predicate found in some Prolog dialect:
If enough information is present to tell the arguments
either identical or nonunifiable, the call is executed,
otherwise it is delayed. In addition, if one (or both)
of the arguments is a metavariable that does not occur
in atoms or equations in the remaining query (we call
such a variable free in the query), the nonequality is
satisfiable and can be discarded from the query.

fails1(P, (Q1,dif(4,B),Q2)) <=> (3)
A==B or both are constants or
one 1s a vartable free in (Q1,Q2) |
(A==B -> true ; fails1(P, (Q1,Q2)))

For an atom to fail, it must fail with all clauses in the
object program:

failsi([C1,...,cn], (Q1,A,Q2)) <=> (4)
A names an object atom |
failsl with_clause(C1,P,4,(Q1,Q32)),

failsl with_clause(Cn,P,4,(Q1,Q2)).

In practice, we use the auxiliary constraint fails1 with
three arguments for the distribution over the clauses
which, as shown in section 2.2, delays on uninstantiated
program tails. In addition, it distributes over the am-
persand operator and makes the mentioned optimiza-
tion for symmetric literals.

Prolog’s version of negation-as-failure uses back-
tracking as a way to avoid cluttering up the different
unifications made to the variables in the selected atom
and the different heads-of-clauses. In order to be able
to delay subcomputations from the different branches
of execution, we take a copy with new variables of the
current object query.

failsl with_clause((H:-B),P,A,Rest) <=> (5)
(predicates or arities of B and H different
-> true
; copy-term((A,Rest), (A1l,Restl)),
instance((H:-B),(H1,B1)),
fails1(P, (H1=A1,B1,Rest1)).

where we use H1=B1 as an abbreviation for the sequence
of equations between pairs of arguments of H1 and B1.

Local soundness and completeness of each of these
rules 1s easy prove. The termination properties are
similar to Prolog’s negation-as-failure when we assume
a computation rule selecting equations before anything
else and atoms from left to right. The floundering prob-
lem in Prolog (or nonsound semantics in most versions)
does not appear since any object variable in an object
query given to fails is existentially quantified.

3.2 Coping with partly unknown
object programs and queries

The most interesting applications of fails are when its
arguments contain uninstantiated metavariables repre-
senting unknown parts of the object program or query.
This means that some subcomputations need to be de-
layed while others can be reduced a bit further by the
constraint solver from partial knowledge about these
variables. We sketch here an adaptation of the proce-
dure shown above; correctness statements still need to
be formulated and proved.

As it appears in section 3.1, the terms naming ob-
ject program and queries given to fails are “pre-
processed” by instance constraints before failsi
takes them into account in the computation process.
This means that such metavariables, which we will call
external variables, give rise to pending instance con-
straints and fails1 works on other metavariables that
will be affected if later, some event instantiates the
external variable. An exception is made for external
variables covered by a constant constraint which are
copied directly into the terms processed by failsi. A
variable is called externally dependent if it is external or
it 1s covered by a pending instance constraint as indi-
cated. Finally, we refine the notion applied in rule (3)
above of a variable being free in a query argument only
to concern variables that are not externally dependent.

The copy procedure applied in rule (5) needs to be
made more precise: When a copy ' of a term ¢ is made,
any external variable in ¢ should be preserved in ¢’ and
any instance constraints that can affect externally de-
pendent variables in £ should be copied in a similar way
and added to the constraints store.

The presence of an externally dependent variable in
an object equation or dif to be processed by failsi
generally makes determination of a definite success or
failure impossible. With a few exceptions, rules (2) and

(3) cannot apply in such cases. These are when the ar-
guments are identical or one of them is free in the given
query argument. Cases with opposite equations and
dif’s occur quite often when integrity constraints are
evaluated and are treated by a separate rule as follows
(with additions to handle symmetric variants):

fails1(,,(...,X=Y,...,dif(X,Y),..)) <=> true.(6)

Whenever the second argument to fails1 consists of
equations and dif’s only, they become independent of
the object program and we simplify them into a ver-
sion of fails1 with a single argument (cf. examples in
section 2). These constraints are governed by rules sim-
ilar to (2) and (3) plus some additional reduction rules
including the following:

fails1((X=Y, C)), failsi((dif(X,Y), C)) <=>
fails1(C).

A constraint of the form fails1(dif1(s,t)) not re-
moved by the rule similar to (3) is executed as a unifi-
cation s=t and the rule (6) above can be extended also
to take into account “global” constraints of the form
fails1(X=Y). Constraints fails1((C4,...,C,)) that
cannot be reduced further can be treated in two ways,
either trying out each of fails1(C4), ... fails1(C))
on backtracking or, which seems more convenient for
the applications we consider in the present paper, leav-
ing them in the state until further instantiation takes
place. The treatment of one-argument failsi con-
straints gives our metainterpreter a flavour constructive
negation [2].

The more complex constraints failsi (with two
or three arguments) and failsl with clause delay
whenever the argument standing for either the query
or for the program (part) being traversed is uninstan-
tiated. Here clause_pattern constraints are useful in
order to have some of these calls succeed (and thus
vanish from the constraint store) when the expected
predicate symbols of the program part and atom under
consideration are different.

3.3 Possible extensions and improvements

Due to the way instance constraints provide a trans-
lation of object variables into Prolog, it seems obvi-
ous to integrate our method with databases stored as
Prolog facts. Instead of traversing the database as a
list of represented clauses, they can be efficiently ac-
cessed by means of the indexing techniques usually
applied in Prolog implementations. Here 1t will be
of great advantage if we limit the unfolding of con-
straints as to avoid specializing, for example, (ic2)
for the update pattern mother(X,Y) into one call
fails1((Y=c,dif(X,m))) for each fact mother(m,
¢) in the database. Instead we should keep the call
fails1(...,mother(_,Y)) which, when the value of Y
becomes known can be checked in more or less constant
time. To achieve this, we can let (4) only apply for

intentional predicates and delay any call to an exten-
sional predicate that contains an externally dependent
variable.

Similarly, we should avoid unrolling the condition
for no duplicate records into quadratically many dif1’s
and simply perform a database lookup as expressed by
failsi(...,f) whenever a new fact f is suggested.

Another obvious optimization will be to compile the
rules of the database into specialized versions of rule (5)
and thus get rid of instance constraints and perhaps
eliminate the program argument of fails1 completely.

It seems also interesting to consider the approach
adapted for commercially available database systems
that can access very large amount of data in an effi-
cient way. This can be imagined by means of an inter-
face to Prolog or by building the functionality into the
database system.

It seems also obvious that the metainterpreter can
be speeded up substantially by implementing parts of
it at lower levels such as modifying the underlying Pro-
log abstract machine. The repeated copying of query
arguments performed by rule (5) is one example where
operations directly at the internal data structures seem
to be advantageous. The use of lower level message
passing techniques for triggering the rules seems also to
be a way to reduce the overhead introduced by CHR’s
loop searching for rules to apply.

4 Summary and discussion of related work

It has been proposed to apply constraint logic, in the
shape of a constraint-based metainterpreter for lazy
evaluation of negation-as-failure, for evaluation of in-
tegrity constraints in deductive databases. The proce-
dure is lazy in the sense that it delays subcomputations
on metavariables standing for potential updates, and
this leads to an incremental execution: Instead of evalu-
ating integrity constraints from scratch, only a minimal
amount of work is made for each update.

The technique called simplification introduced by [19]
for relational databases provides a way to specialize in-
tegrity constraints into simpler ones for specific updates
under the assumption that the existing database sat-
isfies these constraints. The specialized integrity con-
straints produced by our lazy negation-as-failure proce-
dure appear quite similar although they are produced,
so to speak, as a by-product of checking the entire
database.

The simplification methods has been adapted for de-
ductive databases by [18] (also described in [17]). This
includes a simple bottom-up processing of the database
rules starting from the updated predicates in order to
identify an upper limit for the part of the database (in-
cluding integrity constraints) that can be affected by
the update, and thus needs to be processed in order to
check that consistency has been preserved. The lazy

negation-as-failure procedure’s top-down processing of
the database gives a similar (and actually more “pre-
cise”) effect in its incremental processing of the evolv-
ing database: The branches of the evaluation of the in-
tegrity constraints that are not affected by the update
have already been processed (or pruned) in the previ-
ous examination of the original database and partial
processing of the update (e.g., from knowledge about
its predicate). See also the analysis of [18]’s method
made by [16]. Later extension and improvements of
the simplification method are reported by [7, 21, 9, 8].

A method, which is related to ours is [16], applying
partial evaluation of a metainterpreter in order to ob-
tain specialized (procedures for checking) integrity con-
straints and a considerable improvement of efficiency
compared with [18] is reported. The techniques of
constraint solving and of partial evaluation are related
in the sense that both produce specialized code wait-
ing to process the remaining input, in the form of ei-
ther delayed and reduced constraint or a residual pro-
gram, typically with new specialized predicates. Con-
straint solving is conceptually simpler, being essentially
a declarative programming paradigm, whereas partial
evaluation permits a detailed control of, say, unfolding
of predicate calls.

We see our main contribution as showing that con-
straint solving is a technique that is relevant for check-
ing of integrity constraints since 1) it matches the
declarative nature of integrity constraints, and 2) that
it provides the necessary incremental evaluation in or-
der to avoid checking the entire database each time an
update arise. We see this and the partial evaluation
based method of [16] as two complementary techniques
that can make benefit of each other. As one example,
it seems obvious to apply partial evaluation in order
to eliminate the metainterpretation layer and compile
database clauses and integrity constraints into special-
ized Prolog and CHR rules for doing the checking.

It is also clear from our work that constraint solvers
for lazy negation-as-failure can be designed in many dif-
ferent ways and optimized for different classes of logic
programs. An obvious shortcoming of the version de-
scribed in the present paper is the lacking ability to
handle nested negations. However, we see this more as
a property of the present implementation than a prob-
lem in the use constraints. Inspiration for an improve-
ment can be found an earlier metainterpreter suggested
by [15] which handles nested negations by means of con-
structive negation[2] in a straightforward way, however,
not in a context where metavariables can represent un-
known parts of object programs and queries. It seems
interesting to attempt a generalization of it by means of
the techniques described in [3] and the present paper.
Another way to represent negation in the object lan-
guage 18 by means of so-called explicit negation with,
for each predicate p, to assume another predicate not_p
with an integrity constraint to preserve consistency.

In [5, 6] we describe a generalization of lazy negation-
as-failure to programs with function symbols as it ap-
pears in DEMOII system. That version, however, is
more complicated and tends to delay more often since
we cannot process object equations and nonequations
with the same ease as in the present context.

Another and deeper problem concerns update by
deletions. The representation of object programs
as datastructures with changes given as instantia-
tion of metavariables implies that the approach is
monotonic. Information can only be added, not re-
move which means that deletions have to be rep-
resented symbolically so that, e.g., the deletion of
father(john,mary) is given as the addition of a fact
deleted father(john,mary).

Finally, we refer to the following overview papers on
integrity constraints and their applications [1, 12].

Acknowledgments

This research is supported in part by the DART project
funded by the Danish Research Councils. Thanks to
Davide Martinenghi for invaluable discussions and ex-
perimentation with different implementations of the
procedure.

References

[1] F.Bry, R.Manthey and B.Martens: Integrity veri-
fication in knowledge bases. In A.Voronkov (ed.):
Proc. Second Russian Conference on Logic Pro-
gramming. Lecture Notes in Computer Science

592, pp. 114-139, Springer (1992)

[2] D.Chan: Constructive negation based on the com-
pleted database. In R.A .Kowalski and K.A.Bowen
(eds.): Logic Programming, Proc., 5th Intl. Con-
ference and Symposium, pp. 111-125, MIT Press
(1988)

[3] H.Christiansen: Automated reasoning with a
constraint-based metainterpreter. Journal of Logic
programming, vol. 37, pp. 213-253 (1998)

[4] H.Christiansen, Abduction and induction com-
bined in a metalogic framework. In P Flach,
A.Kakas (eds.): Abductive and Inductive Reason-
wng: Fssays on thewr Relation and Integration, To
appear, 1999.

[5] H.Christiansen and D.Martinenghi: The Demoll
system. Source code for implemented system, ex-
ample files, and manuals available by World Wide
Web, http://www.dat.ruc.dk/software.htm (1998)

[6] H.Christiansen and D.Martinenghi, Symbolic con-
straints for meta-logic programming, Journal of
Applied Artificial Intelligence, to appear (1999)

[7]

[10]

[13]

[14]

[17]

[18]

H.Decker: Integrity enforcement on deductive
databases, In L.Kershberg (ed.):Ezpert database
systems, pp. 381-395, Benjamin-Cummings (1987)

H.Decker: An extension of SLD by abduction and
integrity maintenance for view updating in deduc-
tive databases. In: M.J.Maher (ed.): Logic Pro-
gramang, Proc. of the 1996 Joint Int’l Conference
and Symposium on Logic Programming, pp. 157—
169, MIT Press (1996)

H.Decker and M.Celma: A slick procedure
for integrity checking in deductive databases. In
P.v.Hentenryck (ed.): Logic Programming: Proc.
Eleventh Int’l Conference on Logic Programming,

pp. 456-469, MIT Press (1994)

Fruhwirth, T.W., Constraint handling rules, In:
A.Podelski (ed.): Constraint Programming: Ba-
sics and Trends, Chatillon Spring School, Lecture
Notes in Computer Science 910, pp. 90-107 (1995)

Fruhwirth, T.W., Theory and Practice of Con-
straint Handling Rules, Journal of Logic Program-

ming, vol. 37, pp. 95-138 (1998)

P.Godfrey, J.Grant, J.Gryz and J.Minker: In-
tegrity Constraints: Semantics and Applications.
In J.Chomicki and G.Saake (eds.): Logics for
Databases and Information Systems, pp. 265-306
(1998)

P.M.Hill and J.Gallagher: Meta-programming in
logic programming. In D.M.Gabbay, C.J.Hogger,
and J.A. Robinson (eds.), Handbook of Logic in
Artificial Intelligence and Logic Programmaing, vol.

5, pp. 421-498. Oxford University Press (1998)

P.M.Hill and J.W.Lloyd: Analysis of meta-
programs. In H.Abramson and M.H.Rogers (eds.):
Meta-programming in Logic Programming. MIT
Press, pp. 23-51 (1989)

M.Johnson: A negation meta interpreter us-
ing antisubsumption Posted to
comp.lang.prolog (1992)

constraints.

M.Leuschel and D.De Schreye: Creating spe-
cialised integrity checks through partial evalua-
tion of meta-interpreters. Journal of Logic pro-

gramming, vol. 36, pp. 149-193 (1998)

J.W.Lloyd: PFoundations of Logic Programming,
2nd Edition, Springer-Verlag 1987.

J.W.Lloyd, E.A.Sonenberg, and R.W.Topor: In-
tegrity constraint checking in stratified databases.

Journal of Logic programmang, vol. 4, pp. 331-343
(1987)

[19]

[20]

J.-M.Nicolas: Logic for improving integrity check-
ing in relational data bases. Acta Informatica 18,

pp. 227-253 (1982)

J.Minker: An Overview of Cooperative Answer-
ing in Databases. In T.Andreasen, H.Christiansen,
and H.L.Larsen (eds.): Proc. Intl. Conference
on Flexible Query Answering Systems, FQAS’98,
Lecture Notes in Computer Science, pp. 282-285
(1998)

F.Sadri and R.A.Kowalski: A theorem-proving ap-
proach to database integrity, In J.Minker (ed.):
Foundations of Deductive Databases and logic pro-
gramming, pp. 313-362, Morgan-Kauffman (1988)

