The syntax and semantics of
extensible languages

Henning Christiansen
http://www. ruc.dk/~henning

Reference as:
Datalogiske Skrifter no. 14, 1988
(Technical report series)

Computer Science Section

Roskiide University, Roskilde, Denmark

Comment added 2006: The article introduces a grammar formalism called "Generative Grammars".

This name is a bit misieading, and later other authors have named these grammars "Adaptive
Grammars” and "Christiansen Grammars”.

The syntax and semantics of
extensible languages

Henning Christiansen

Roskilde University Centre
P.O. Box 260, DK-4000 Roskilde, Denmark

enrichment is a central concept in computer programming. In the Iast

This paper is concerned with generative grammars, a general,
syntactic formalism directed towards programming languages with a
high degree of extensibility. A generative grammar js a generalization
of an attribute grammar: The attribute machinery is made responsible
for the creation and management of syntactic rules and the syntactic
derivation relation is defined relative to a specialized, inherited
attribute. The resulting, syntactic descriptions are simple and
transparent, each syntactic construct — predefined or declared by the
user — is captured by an explicit, grammatical rule. As for attribute
grammars, semantic descriptions can be merged into the attributes.

In this paper, 1 give a presentation of generative grammars and make
a comparison with other syntactic formalisms. | consider two kinds of
semantic descriptions, compositional semantics and semantic
specifications based on Interpretation, The relation between generative
grammars and an extended Horn clause logic is also covered.

+ CONTENTS

Introduction
Historical overview

Generative grammars
3.1 Informal presentation
3.2 Definitions

3.3 Pragmatics

3.4 Limitations .

- Comparison with other syntactic approaches
4.1 Attribute grammars

4.2 Two-level grammars e
4.3 Wegbreit’s extensible context-free grammars

4.4 Precedence grammars
4.5 Other grammatical formalisms

4.6 Summary

Semantics of extensible languages
5.1 Compositional semantics
5.2 Interpretive semantics

5.3 Relation to other work

A comment on Lisp .

The relation to logic .

7.1 Generative grammars in extended Horn clauses

7.2 Representation-based grammars in Prolog .
Summary '

Appendix A — Anp example grammar

Appendix B — Lisp in Prolog

References |

[y

OOQ\U)AAN

10
10
13
15
17
18
19

20
21
22
23

25

28
28
30

31
33
36
39

1 Introduction

Any interesting programming language includes so
from simple declarations initi
introduction of new computational paradigms. The purpose of this declaration or extension
potentiality is, of course, to be able to adapt the language to a given purpose — or, in other
words, to make it possible to write more abstract and expressive programs,

The term, ‘extensible language’, has over the years been used with various, more or less
clarified, meanings. It has been used in order to characterize MAacro processors serving as
front-end to compilers for, say, Algol60; the similarity between the language’s own

declaration mechanisms and the external macr

objects and attention.
When 1 refer to ‘extensible languages’ or ‘linguistic extensibility’, I refer to any such

possibility for enrichment of a language with new concepts in the shape of new linguistic
forms. This means that the programmer — within the programming language — jg given
the opportunity to describe Iew entities and to use these entities. This wide and admittedly

zy definition of extensibility covers traditional programming languages with simple

fuz
declaration mechanisms, e.g., Pascal, more powerfy] programming languages such as

LIsP, various declared extensible languages, and generators of,

editors.
ption of brogramming languages, it is well-known that »

Concerning the descri
context-free grammar is well-suited for describing the non-extensible aspects of

: Each linguistic constryct is captured by its individual and
0 the description of extensibility, however, a method for

ifications and merge their contents into the existing language

description must be provided. Obviously, context-free grammars are not sufficient, but
with respect to transparency and succinctness, context-free grammars may serve as an ideal,
In this paper, I present a syntactic formalism, generative grammars, intended for the
description of extensible languages. Generative grammars are a generalization of attribute
grammars: The attributes and their mutual dependencies appear to be an appropriate

medium for the generation and management of new syntacti

In chapter 2, | give a brief and selective review of the histo

programming languages. My suggestion for an extensi
generative grammars, is presented in chapter 3 by means of a pragmatic discussion and g
definition; a usefu] generalization of the basic, generativ i

described. A sample grammar for a Pascal-like language equipped with various extension
‘mechanisms can be found in appendix A. A comparison with other selected syntactic

formalism is given in chapter 4.
The semantic description of extensible brogramming languages by means of generative

pter 4: It appears that the attributes are well-suited for

describing semantics, as is well-known from attribute grammars, and for the generation of

new semantic descriptions. A ful] description of the intertwined syntax and semantics of a

Lisp-like language is given in chapter 6. Chapter 7 covers the repr
grammars as Prolog programs. The well-known relation between attribute grammars and
Horn clause programs has a natura] generalization to generative grammars. Appendix B

grammar, chapter 6, into a Prolog program — which may be
reter. The final chapter 8 provides for a summary.

Finally, T will stress the pragmatic character of this paper, it concerns the use of

grammatical formalisms in the service of describing extensible languages. Formal

properties of grammars and languages are of minor interest here.

gives a translation of the Lisp
used as an effective Lisp interp

2 Historical overview

Algol60 was the first well-known programming language to be presented together with a
formal, syntactic description. The overal] structure of Algol60 programs is described in the
Algol60 report, (Naur,1963), by a context-free grammar, (Chomski, 1956). The
context-free grammar provides for a modular and transparent description of the superficial
phrase structure of a language, but it cannot cover the full syntax — the restrictions
imposed by declarations are outside scope of a context-free grammar. In the Algol60
report, these restrictions are described by additional, informal explanations.

The problem of formally describing the full syntax of languages such as Algol60 has
motivated a large amount of research work. The developments within the area of syntactic
descriptions can be roughly separated into two directions. Much effort has been made in
order to provide suitable syntactic descriptions that cover the full syntax of Algol60-like
languages and, what is especially of interest in this paper, for the description of
extensibility. Grammars and classes of languages have also become research object of their
own right; this direction concerns formal properties of grammars, often with a bias towards
automata theory and most often separated from the description of programming
languages. Examples from the sixties are (Aho, 1968, 1969), (Greibach, Hopcroft, 1969),
(Kasai, 1970}, (Rosenkrantz, 1969). This direction is still very active — and manifests itself
in several volumes of Lecture Notes in Computer Science each year.

For the purpose of programming language description, various syntactic formalisms
have been suggested. Chomski’s context-sensitive grammars, (Chomski, 1956), posses the
power to describe the full syntax of a typical programming language; however, this
formalism is simply too powerful and general and no tractable notation for this purpose has

been suggested.

The most successful grammatical formalism covering the full syntax of Algol60-like
languages is attribute grammars, (Knuth, 1968): An attribute grammar is a context-free
grammar in which each nonterminal is equipped with data object, so-called attributes,

determined as functions of the neighbouring attributes in a derivation tree. In an attribute
grammar, the context information created at the declarations and applied in the program
statements can be wrapped into symbol tables and passed around in the derivation tree as
attributes. The exclusion of, say, references to undeclared variables is described according
to the symbol table. The reason for the success of attribute grammars is that they provide
for very readable, and hence useful, descriptions of programming languages — and at the
same time, these descriptions are well-suited as guide-lines for implementations: The
information flow in the attributes represents an abstraction of the data flow in a compiler.
Chapter 4 gives a more detailed account on attribute grammars.

In the sixties, various extension mechanisms were suggested for Algol60, for example
(Mcllroy, 1960), (Galler, Perlis, 1967). However, these mechanisms have only been
described by means of the macro processors that implemented them, no explicit, syntactic
descriptions have been given.

The intended successor of Algol60, Algol68, on the other hand, has been designed
together with a grammatical formalism, two-level grammars, (van Wijngaarden et al,,
1975). In Algol68, it is possible to declare new types (called ‘modes’) with associated
operator systems. In a two-level grammar, information about declared objects is coded in
the language of a (context-free) metagrammar; terms of this ‘meta-language’ are in turns

used to instantiate so-called hyperrules into context-free rules which then may be used for
the generation of actual program text. Despite its simplicity, being based on derivations in
context-free grammars only, the two-level grammar formalism suffers from severe

grammars is found in chapter 4.
Attribute grammars and two-level grammars
instances of in advance fixed, syntactic patterns. This is reasonable for programming
languages such as Algol60 with a modest degree of extensibility, but for more powerful
syntactic extensions the principle is rather inadequate; this claim is discussed more

thoroughly in chapter 4,
guage system, Eirsa, (Lindsey, 1983), a dialect of two-level

In the extensible lan
grammars, (Turner, 1979), has been used as a specification language: The user describes the
r; the formalism is not used to

syntax of a new language by means of a two-level gramma
cover the combination of language definition and use, i.e., it is not used to describe an

extensible language.,
In order to describe extension mechanism in general, it appears to be natural to

understand declarations as creators of new, explicit syntax rules. A.C. dj Forini, (1963),

seems to be the first to have presented this idea. His paper is a conceptually clear, and stil]

worth reading, argument that declarations of any kind produce new linguistic material and
should be treated as such. For example, the declaration of a variable should result in the

can only describe language extensions as

rules). Although this idea appears to be strong, it has had a quiet life — probably because
context-free grammars equipped with more or less formally specified context conditions,
(for example, the Algol60 report’s style or an attribute grammar), is reasonable for the
description of traditional, i.e, Algol60-like, languages. The idea has been adapted in
Wegbreit’s extensible context-free grammars in order to describe the extensible
programming system Ecr, (Wegbreit, 1970). However, this class of grammars is biased
towards the description of exactly that system and cannot be viewed as a too] for
description of extensible languages in general; even the context-conditions of Algol60
cannot be described. More precise comments will be given in chapter 4.

With a few exceptions, the idea appears to have been resting until the invention of
generative grammars: Hanford and Jones, (1973), have suggested a so-called ‘dynamic
syntax’, a monstrous device. based on A-calculus, which also generates new descriptions
from declarations. Unfortunately, the suggestion is not given a proper formalization or
accompanied with an appropriate notation. In fact, it seems that the authors have been
aware of neither attribute grammars nor two-level grammars.

In 1985, 1 published the first Paper on generative grammars, which seems to be the first,
tic and semantic description of extensible languages based

3 Generative grammars
The generative grammar formalism is a generalization of attribute grammars: The attribute
machinery is made responsible for the generation and management of new syntactic rules —
and the derivation relation is replaced by a more powerful and context-sensitive one.

In this chapter, I will give a presentation of the generative grammar formalism. To begin
with, generative grammars are presented by means of an example, section 3.1. The precise
definition of generative grammars, their derivation relation, and a useful generalization are
given in section 3.2. Section 3.3 is a pragmatic discussion of the design and use of the
generative grammar formalism, The limitations of the generative grammar model, as it is
presented here, are discussed in section 3.4. The explanations in this chapter are in principle

self-contained although a basic knowledge of attribute grammars is preferred.
Appendix A gives an example grammar for a Pascal-like language equipped with various
extension mechanisms. A generative grammar for a quite different language, Lisp, can be

found in chapter 6.

3.1 Informal presentation
Here I will show an example generative grammar for the following language.

{ww | w is a string of letters}

This is a prototype extensible language, the first occurrence of the string,
of as the declaration of a new syntactic concept, the second occurrence as
generative grammar for this language is as follows, the notation is a
extended attribute grammars of Watt and Madsen, (1979).

{programiG)::= {(dcllGTtw) (bodyl{w-rule})
where w-rule = (bodylG’)::= w
(dclGTchsw)::= {charlGtch) (dcliGtw)
(dcllG1())::= <{nothing)

{chariGTa)::= a

w, can be thought
its application, A
dapted from the

constructing and appending arbitrary lists and

is used as such throughout this paper. The symbol (nothing) is a meta-symbol which
denotes the empty string. The inherited attribute (preceded by !) of each nonterminal, in
most cases described by the attribute variable G, should be ignored for the moment,

Consider, now, the program in our tiny, extensible language,

hubahuba,
and assume that the first ‘huba’ is generated as a declaration, represented by the
nonterminal ‘dcl’ in the grammar. The synthesized attribute of the declaration collects the

following character string.

w = huba.
Now, take a look at the rule for
single rule,

(bodylG')::= huba,

is given as the inherited attribute to the body. (The variable G’
covered by a notational convention described below). This ris
generated rule actually happen to be applied. This reveals
generative grammar and a plain attribute grammar: In an attri

The operator ‘«’ is a generalized operator for

programs; it will tell us that a grammar consisting of a

in the rule for programs is
€s a question of how this
the difference between a
bute grammar, derivation,

y a string of nonterminal and terminal symbols, is
of rules given by the grammar: Find an instance of
nonterminal and replace the latter by the right hand
ve grammar, on the other hand, the first attribute

position is by convention inherited and holds an entire grammar; the derivation relation is
defined according to the actual contents of that attribute. The derivation of an entire
program is initiated by assigning the initial grammar to this attribute in an initial symbol.
Now, let us return to our favourite, extensible language. In the generation of the
declaration, the original grammar is copied around by the attribute variables, all denoted G
— and everything works out as in an attribute grammar. When it comes to the generation of

“the body, the available grammar is specific to the given program text.

i.e., the replacement of a nonterminal b
defined according to the given, fixed set
a rule that matches the given attributed

side of that rule instance. In a generati

3.2 Definitions
The concepts are defined more precisely as follows.

Definition 1. A generative grammar is a set of rules of the form

(Ngtexpy it . . . texpy i =
o (Nytexp, *. .. fexp, ;) o

oy {NyTexp, ... texp,) .

where
* N, . .., N, are nonterminal symbols,
* &y ..., o Sequences of termina symbols,
» ¥ stands for either 1, preceding an inherited attribute (position), or |, preceding a |
synthesized attribute (position), _ |
* CXPo,1s - - -, €XPy, o, ArE Qltribute expressions which are terms built out of typed function
symbols, constants, and variables.

Each inherited attribute expression of N, and each synthesized attribute expression of N, . j
. .» N consists of a single, distinct variable; these attribute positions are cailed defining |
positions. By convention, the first attribute position of any nonterminal symbol should be
inherited and its type should represent the set of all generative grammars; it is called the

language attribute (position).

Definition 2. An instance of a generative grammar rule is the structure, if any, that results ;
from a substitution of its attribute expression by their respective values assuming a P
consistent assignment of values to variables throughout the rule. Hence, a rule instance is of o

the form
Agii= g AL A a,
where {A;} are attributed nonterminal symbols,
A; = (Nt T... ta;).
The values, {a,,}, are called artributes.
As long as the restrictions on attribute variables and expressions are observed, a ‘where’

notation, as in the sample grammar in section 3.1, may be used. A pattern matching
notation for structured attribute variables may also be used. By convention, a variable that

Attribute variables in a generative grammar can be distinguished from constant symbols
due to their appearances in defining positions. However, in order to facilitate the reading,
variables will be written in italics. In the sample grammar above, for example, it should be
clear that the symbol ‘a’ represents a concrete letter whereas c# is a variable that ranges over

the set of all letters,
Definition 3. The derivation relation, = | is defined as follows. Consider a string,

aAp
where o and 8 are strings of terminal and nonterminal symbols and A an attributed
nonterminal, Whenever there is a rule in A’s language attribute and an instance of that rule,

.A::= ay Ao .. cay AL,
we say that
aAB = amA, q.. o, (A a B,

The reflexive and transitive closure of = is denoted = *.

O

The language generated by a generative grammar, viewed either as a set of terminal strings
or a family of syntax trees, is defined as usual, By convention, the derivation of a program
text is imitiated from an initial, attributed nonterminal whose language attribute is the

entire, initial grammar.
Finally, T give the definition of a useful variant of generative grammars,

Definition 4, A representation-based generative grammar is defined similar to a generative
grammar except that the language attribute holds an arbitrary representation of a grammar.
Associated with a given grammar representation is an abstraction Junction which yields
grammars for the elements in the representation,

The derivation relation for a representation-based
means of its associated abstraction function.
- ,
Representation-based generative grammars are useful, for example, in order to apply a
stack-based protocol in the description of scope rules: The top-most rule describing a given
identifier is the one that counts. In a ‘normal’ generative grammar in which new rules are
added to an existing grammar by means of set union, such scope rules are likely to be
unspecified, cf. the examples below and in appendix A. No specialized notation is
developed for representation-based generative grammars, all examples are described either
informally or in terms a Prolog programs, cf. chapter 7.

generative grammar is defined by

3.3 Pragmatics

Consider a simple programming language of integer expressions that allows for the
declaration of named constants; the following is a sample program.

I+ lettwo = 2intwo + 3 end
Suppose, now, our chief programmer has produced the following, partial program,

lettwo = 2in ... end
The idea of defining the constant is to create an entity, two, that can be applied equally to,
say, ‘3°, ‘7, or ‘666°, in the scope indicated by the ellipsis. This viewpoint materializes in
the following generative grammar rule.

(exXpiG):ii= let ¢ identifier! Gtid) = (integerG) in ¢ explGU{new—rule}) end
d

where new-rule = {integerlG'Y::= ;
The partial sample program gives rise to a specialized environment in the shape of a very
high-level and special-purpose language. The generated grarmmar is a perfect starting point
for writing a user’s manual for this environment. And if semantic descriptions are merged
into the grammar as synthesized attributes, this starting point is made even more perfect.

{explGtvaly::= let (identifierl Gtidy = (integer!G1n)

in ¢ eXpdGU{new-rule} tvaly end

where new-rule = (integerlG'tny::= jg
From this rule it immediately follows that the new and highly specialized environment
includes a brand-new, special-purpose concept described by the following generated rule,

(integerlG'12)::= two

Generative grammars allow for a conceptually nice treatment of types: Each expression
type in a language can be described by its individua] nonterminal symbol. This means that
the class of expressions of a given type constitutes a well-defined sublanguage described by
a well-defined subgrammar. Hence there is no need — as in an attribute grammar — for an
explicit level of type checking. Consider, for example, the following rules describing a set of

integer expressions.
{integeriG)::= 0
(integer!G):: = |

{integeriG):: = (integer!G) + (integeriG)

These rules may be used as freely as the rules of a context-free grammar — the explicit
generation of new rules for declarations ensures that each available construct is described
by its individual syntax ruje. In order to use variables in expressions, for example, the
grammar may include a rule of the following form.

{integerlG):: = { integer-variablelG) :

However, Initially there are no rules for ‘integer-variables’ SO generation of references to
undeclared variables is impossible. The declaration of a variable may, then, give rise to the
generation of a new rule of exactly that variable, e.g.,

(integer-variable!Gy:: = p.

These rules, (apart from the last one, of course), are excerpts from the example grammar in
appendix A which also describes the actual generation of rules for variables.

3.4 Limitations
Here I will discuss two aspects of extensible language syntax which are not obviously
covered by the basic, generative grammar model. This concerns the description of

user-extensible, polymorphic type systems and of recursive definitions.

Polymorphism

One of the qualities of generative grammars is that a data type can be represented by its own
nonterminal symbol. As discussed above, the set of all expressions of a given type will
constitute a well-defined sublanguage described by a well-defined subgrammar. A

insist on the correspondence between expression types and nonterminals.
In the sample grammar in appendix A, a notational trick is used in order to make a
polymorphic operator appear as one description. For any given substitution of the

meta-variable, type, the notation
expression-tools(type)
represents a set of rules available for that type:
{{stmlG"):: = (¢ype-variablelG’}): = (typelG’),
(typelG'y::= (type-variable!G’ >,

‘integer-variable’). However, this notation is not a part of the formalism so it is impossible
to describe the generation of new and user-defined polymorphic operators this way.
Furthermore, the trick only works for explicitly defined and named types.

in order actually to model user-defined polymorphic operators by means of generative
grammars (based on a finite number of rules), the direct relation between types and

(expl G’ tlist(X)):: = append((explG’ tlist(X)), {explG'1list(X)))

For any expression type, X, this rule implies an ‘append’ operator for expressions of type
List(X). (The notation used here is actually beyond what has been defined and used
elsewhere in this paper; the more general attribute expressions used by (Madsen, Watt,
1979) are necessary).

Another possible solution that preserves the desired correspondence between
nonterminals and types would be to generalize generative grammars with generic
nonterminals: A nonterminal is now a term (over some signature); a class of nonterminals
may be specified by means of nonterminal variables. The ‘append’ operator may then be

described as follows.
(listtXNG " y:: = append(<list(X1G"), (lst(X)G"')).

- Any application of such a rule should imply a full instantiation of nonterminal as well as

attribute variables.!

Finally, it should be observed that, formally, there is only a cosmetic difference between
these two suggestions. From a pragmatic viewpoint, on the other hand, the use of generic
nonterminal symbols is superior — especially when several other attributes are involved.

Recursive declarations
Consider the following, very reasonable
a with recursive procedure declaration,
(stmlG)::= begin (dcNGUG,1G,; (stmiGUG,) end
{ chlGT{new-rule}):: = procedure { identifieriGTproc—id); {stmd)
where new-rule = {stmiG’):: = proc-id

In a similar, circular attribute grammar, the a
declaration create a new symbol table entry. In this case,

and trustworthy, rules describing a block-construct

equations having a unique solution which, furthermore, i
see, e.g., (Madsen, 1980). So, for example, -

begin
procedure p; p;

p
end,

is a correct ‘stm’ whereas

begin
procedure p; p;

q
end

is not (assuming no external declaration of ‘Q’).
Now, let us return to the generative grammar case and
generated ‘stm’, assuming an external definition of the null

consider the following partially
statement.

begin
procedure p; null;
em.i. .
Now, the grammar,
{(stmiG")::= p},

is a legal value for G, in the rule for the block-construct,
However, let ‘bad-grammar’ be a constant attribute symbol whose value is the following

grammar.

{{dcliGtbad-grammar):: =
{stmlG}::= nonsense

}

procedure (identifierlGTproc—z‘d); (stmiG),

a5 a representation-based pgenerative

1. Actually, a grammar involving generic nonterminals can be viewed
presented as a finite set of rules, some

grammar, cf. definition 4, chapter 3: An infinite, gemerative grammar is re
of which include nonterminal variables.

This value is unfortunately also a legal value for G, and hence, according to the generative

grammar, the text

begin
procedure p; nuil;
nonsense

end

is a legal ‘stm’.

A set of suitable restrictions should be developed in order to exclude the generation of such
undesirable grammars; this will involve a detailed study the set theoretic consequences of
recursive rules as the one for the block-construct above.

The Lisp grammar in chapter 6 describes recursive functions by multiple analysis of
function bodies so no recursive rule as the one above is needed. In a similar way, recursive
declarations based on so-called forward declarations — as in Pascal, (Jensen, Wirth, 1974)
— can be described directly in a generative grammar without any complications.

4 Comparison with other syntactic approaches

In this chapter, I give a more detailed presentation of selected syntactic formalisms that
cover certain context-sensitive aspects of programming language syntax. These formalisms
will be evaluated according to their qualities for the description of extensible language
syntax and compared with generative grammars.

Most space is spent on attribute grammars, (Knuth, 1968), for two reasons: Generative
grammars are a generalization of attribute grammars and, secondly, attribute grammars are
the most widespread formalism for describing the full, context-sensitive syntax of
traditional programming languages.

Another well-known syntactic tool that has been used for describing certain extensible
language features is the two-level grammar formalism, (van Wijngaarden, et al., 1975),
which has received much attention for its theoretical properties. I have not investigated the
formal relationship between my gencrative grammars and two-level grammars, the

comparison is made on a more pragmatic level.
The EcL system, (Wegbreit, 1970), is a so-called extensible programming system often

referred to in the literature and one of the few such presented together with a formal,
syntactic description. The syntactic aspects of EcL are described by a so-called extensible
context-free grammar which appears to be a special, but rather restricted, case of a

generative grammar,
The use of operator precedence is also considered and a few comments are given to the

descriptive tools suggested by Hanford and Jones, (1973), and Mason, (1987). The final
section of this chapter provides for a summary.

4.1 Attribute grammars
Attribute grammars were first described by Knuth, (1968), originally intended for the

specification of semantics of context-free languages. However, attribute grammars have
proved to be the most successful tool for describing the full, context-sensitive syntax of
Algol-like languages.

An attribute grammar is an extension of a context-free grammar: To each node in a
syntax tree is associated a number of attributes, each determined as a function of attributes
of its neighbouring nodes. Inherited attributes are functions of attributes of sibling and
father nodes in the tree and thus inherited attributes may be used to pass contextual
information into a subtree. Synthesized attributes are functions of attributes of offspring
nodes and hence tend to pass descriptions of a given tree to its context.

10

Consider, for example, the Algol60 block-construct whose superficial structure 18
described in the following context-free rule, (For reasons discussed in section 3.4, recursive

declarations are not considered in this discussion).

{stm)::= begin (dcl) ; {stm)} end
The declaration part is understood according to a global symbol table which it receives as an
inherited attribute, The contents of the declaration is described by a local symbol table,
generated as a synthesized attribute, which is merged together with the global table and in
turns given to the body of the block as an inherited attribute. This can be written as a
formula using the notation of Watt and Madsen, (1979), as follows; as in the notation for
generative grammars, cf. the previous chapter, the arrows, { and 1, indicate inherited and

synthesized attributes, resp.
{stm lglobal—symbol—table) =

begin ¢ chig!obal-symbo!—tableTioca!—symbol-table) ;
{ strniglobal—symbo!~tab!eU!ocalwsymbol—table) end

(stmisymbol-table):: =
{ variablelsymbo!—z‘ableTtypevar) 1= explsymbol-tableTtypeexp >

provided that bpe, = ype.,,
{ dcchombine(tablel, table))y:: = {dcltable,) ; ¢ dclttable,)
where the combine function is undefined whenever the

two tables contain bindings for the same identifier,

otherwise it specifies the union of the tables,
y Knuth, (1968), the value of an attribute is described by a single
function symbol, i.e., it is determined by a monolithic function which cannot be analyzed
further within the syntactic framework. The notation suggested by Watt and Madsen,
(1979}, for their so-called extended attribute grammars, which I also have used in this
paper, shows two advantages over the notation of Knuth, which for some reason still is the
most commonly used notation for attribute gramimars:

In the notation used b

- It has a compact expression and a coicise reading,.

perties of the attribute dependencies: An attribute is
t term whose variables stand for other attributes,

pressed indirectly by the use of identical

- It accentuates the algebraic pro
viewed as the value of an explici
This notation also allows constraints to be ex
attribute variables, for example:
(stmisymbol-table):: =
(variablelsymbol—-tab!eTtype) 1= (explsymbol-table?type)

In fact, this is only a simple example of the more general pattern matching mechanism in

extended attribute grammars,

11

The relation between attribute grammars and generative grammars
Formally, an attribute grammar is a special case of a generative grammar in which the
language attribute is constant. However, the different styles of syntactic specification in the
two approaches need to be illustrated by an example. Consider the following context-free
rule that describes the shape of a variable in a traditional programming language.

{variable)::= (identifier)
For any application of this rule, the actual identifier is expected to be declared as a variable
in an appropriate context and the type of the variable is given in the declaration. In an
attribute grammar, the context condition is conveniently captured by a symbol table
attribute (created at the declarations) that in turns is used to determine the actually allowed

instances of the rule.
(variableltableldetermine-type(id, table}):: = (identifiertid>

where determine-type is undefined if id is unbound in fable,
otherwise it yields the type bound to id in fable.

In a generative grammar, on the other hand, the context information is naturally merged
into the grammar: For each declaration of a variable, a specific syntactic rule is created.

The declaration
var n: integer

may thus by understood as the creation of a rule
{variable!GTinteger-type)::= n
or, expressed slightly different,
{integer-variablelG)::= n.
The general pattern for variables does not appear as a rule in the grammar — but each
actual variable is captured by a rule which is a particular instance of that pattern. Hence,
the generative grammar above is more transparent than its attribute grammar counterpart
in the sense that, for each nonterminal in a syntax tree, the permissible derivations from it
are determined by the superficial structure of the rules in the {local) grammar. In other
words, the generative grammar descriptions require fewer constraints and are thus of a
more generative nature. However, in order to express the requirement that two variables
declared at the same block level cannot have identical names, even a generative grammar
must use a constraint ~ which is conveniently wrapped as a partial function.

There is another essential difference between the two: In a generative grammar we can do
more than just creating instances of general patterns, we are free to infroduce compietely
new, syntactic structures — not foreseen by the designer of the initial grammar. Declaration
of new control structures consisting of arbitrary sequences of formal arguments with

interspersed keywords provides for a good example; cf. appendix A.
However, a certain degree of extensibility can be expressed in an attribute grammar.

Consider the language

{ww | wis a string of letters}
As observed in chapter 3, this is a simple, extensible language, the first w being a

declaration of a new, syntactic pattern; the second w is its application. The language can be
described by the following (extended) attribute grammar:?

1. As elsewhere in this paper, the » symbol is a combined operator for construction and concatenation of arbitrary

lists.

12

{program}:: = {dclTw) (bodyiw)
(dclfchowd:: = {dcl-chartch) (dcltw)

{delf()>::= (nothing)
{dcl-charta)::= g

(bodylchew):: = (body-charlch) {bodylw)
(body!())::= (nothing)
{body-charla)::= 3

grammar, i.e., the underlying context-free grammar, states

The superficial structure of this
ce is thinned out by a

that any character string is a potential body — and this enormous spa

constraint coded into the attribute expressions,
On the other hand, consider the generative grammar for this language presented in

chapter 3. In the generation of the string ‘hubahuba’, the following explicit rule is created.

(bodylG)::= huba
As opposed to the attribute grammar above, the generative grammar description is truly

generative, no constraints are heeded.
The question as to whether this example can be generalized in order to transform a

investigated. If, in fact, this really happens to be the case, the actual construction js
probably of no use: Extensibility, the creation of new syntactic possibilities, is described in
a rather indirect and ‘coded’ fashion,

It should be emphasized, however, that attribute grammars are the most used and most
successful tool for the full description the syntax of traditiona!l programming languages: It
provides for a precise and readable notation — and at the same time the attributes and their
dependencies represent an abstraction over the data structures and the data flow in 3
compiler. Many practical classes of attribute grammars associated with efficient
implementation techniques have been isolated, cf. the bibliography (Deransart, Jourdan,
Lorho, 1985).

For traditional programming languages, i.e., those usually not thought of as extensible,
there is really no need for the invention of generative grammars: They represent a
conceptually slightly nicer view of certain linguistic aspects, all right, but their use as a basis
for implementations is less obvious — and their power and generality are not used,

4.2 Two-level grammars
The grammatical formalism known as two-level grammars has been developed in order to
describe the syntax of the programming language Algol68, cf. (van Wijngaarten et al.,
1975). The novel features in Algol68 that motivated the development of a new kind of
grammar was extensibility over expression types and their operators. It was also a goal to be
able to describe the fu]] syntax of the language, including the context-sensitive aspects
introduced by declaration of variables, etc.

As an attribute grammar, a two-level grammar is a generalization of context-free
srammars. A two-level grammar consists of a set of hyperrules and a metagrammar. A

hyperrule serves as an abbreviation of a potentially infinite set of context-free rules that

may be used in the generation of actual program text. Hyperrules are parameterized by
metanotions and these metanotions are to be replaced by hypernotions generated by the

metagrammar.

13

This is illustrated by a description of the sample language,

{ww | wis a string of letters}.
The hyperrules for this language are as follows.

(1) program: W, W,
(2a) Vletter a Wendw: a, W endw.
(2b) letter b W endw: b, W endw.

(3) endw: .
The right and left hand sides are separated by the *:’ symbol, the elements of the right hand
side by commas, and the period indicates the end of a rule. Terminal symbols, such as ‘a’,

‘b’, etc., are written in normal font.
Consider rule (1). Its right hand side consists of two identical metanotions denoted ‘W’

This metanotion (indicated by boldface, capital letters) must be replaced consistently
throughout that rule by a so-called protonotion in order to apply it, the rule, in the
generation of terminal strings. The resulting rule instance can be thought of as a
context-free rule; the role of nonterminal symbols is performed by the protonotions that

appear as strings of lowercase, boldface letters.
The protonotions are described by an additional metagrammar. The metagrammar for

our sample language consists of the following rules.

W:: LETTER, W; endw.
LETTER:: letter a; letter b;

Metarules are distinguished from hyperrules by the use of *::* to separate the left and right
hand sides; the semicolons indicate alternative productions. The metanotions (capital
letters) serve as nonterminal symbols in this grammar and hence the following protonotion

. is alegal ‘W’

letter h letter u letter b letter a endw
New, returning to the hyperrules, this protonotion is a legal substitute for ‘W’ in rule N,
which yields the following, fully instantiated rule,

program: letter h letter u letter b letter a endw,
letter h letter u letter b letter a endw.

The right hand side of this grammar consists of two, fairly large, nonterminal symbols. In
order to derive anything from these nonterminals, we must find an appropriate hyperrule

and instantiation of it. Hyperrule (3h) with the substitution
W = letter u letter b letter a endw

yields the following rule,

letter h letter u letter b letter 2 endw:
h, letter u letter b letter a endw.

So now, we may write down the following derivation:

program =
letter h letter u letter b letter a endw, letter h letter u letter b letter a endw =
h, letter u letter b letter a endw, letter h Ietter u letter b letter a endw =

h, letter u letter b letter a endw, h, letter u letter b letter a endw

14

Continuing this way using appropriate instantiations of the rules (2u), (2b), (2a), and finally

(3) we derive the terminal string

hubahuba.

Two-level grammars are closely related to attribute

two-level grammar correspond to th
attributes. In two-level grammars, the protonotions
context-free grammar as opposed to an attribute grammar, in which arbitrary functions can

be used to construct attribute values. However, the attribute grammar’s distinction between
inherited and synthesized attributes has no counterpart in two-level grammars. The precise
relationship between the two formalisms is described in (Dembinski, Maluszynski, 1978).
Viewed in isolation, relieved from its applications, the two-leve] grammar formalism
appears to be a clearer and conceptually simpler system than attribute grammars: The
process of generating program text from a two-level grammar can be understood solely by
derivations from context free rules: Hypernotions are generated by a context-free
metagrammar, these hypernotions are used for instantiating hyperrules which then appear
as context-free rules that generate strings of terminal symbols. Two-level grammars, despite
their simple, formal concepts, are extremely powerful, even the ban on multiple
declarations for the same identifier and user-defined operator precedence can be described
within the pure two-level framework, cf. (van Wijngaarten et al., 1975). In fact, Sintzoff,
(1976), has demonstrated that any recursively enumerable set can be described by a
two-level grammar.
However, in the service of describing programming languages, two-level grammars are
somewhat disappointing; The lecessary contextual information can only be embedded in
the protonotions in a very tricky manner. Furthermore, in order to express the desired
relations between these protonotions, additional meta- and hypernotions that generate the
empty terminal string (or, in the case of an ‘error’, no string at all) must appear in the
hyperrules. In other words, a complicated and not very obvious coding is needed and the
resulting syntactic descriptions tend to be ex
Wijngaarten et al., 1975), is a perfect evidence for this claim! Similar co

in the survey paper by Marcotty, Ledgard, and Bochmann, (1976).
In an evaluation of two-level grammars as a general tool for describing extensible

languages, the conclusion is analogous to attribute grammars, namely that language
i means of instances of general grammatical rules: Hence

‘unforeseen’ grammatical constructs must be coded into
the meta- and hypernotions in a rather speculative manner,

4.3 Wegbreit's extensible context-free grammars
In order to describe the extensible programming system Ect, Wegbreit invented a
formalism called extensible context-free grammars, (Wegbreit, 1970). EcL s
user-extensible over the fixed set of syntactic categories in the ‘ground’ language, Er1,
Types in EcL are considered to be a dynamic concepts not covered by the extension

mechanism.

Consider, as an example, the following variant of our favourite extensible language. The
“*° symbols serve as special markers to direct the finite state transducer.

{*wiw | wis a string of letters}

15

The initial grammar consists of the following rules.

{program)::= * (dcl) * (body)
{dcly::= {char) ¢dcl)

{dcl)::= (nothing)

{char)::= a

The finite state transducer is specified by the following diagram. Each transition is

represented as an edge in the diagram labelled by a translation of an input symbol to a

(possibly empty) string of output symbols. The output symbols ‘[’ and ‘I’ signifies the

beginning and end of a generated syntax rule.
* = ‘f (body);:="'

* »—.'B’

initial state o

aH‘al am

b ‘b

For the following, partially specified program,

*huba * (body),
the finite state transducer produces the following output from the text up to the residual

nonterminal.

[(body}::= huba]
The generation of terminal strings and the finite state transducer’s activities are syncronized
by only allowing expansion of the leftmost nonterminal in a partially generated program
text. Returning to the sample program text, the termination of the generated rule is signified
by the output symbol ‘J’, and the completed rule is added to the grammar and is availabje
for the generation of the (body}).

Rules to be deleted from a grammar are produced in a similar manner by the finite state
transducer except that another special symbol is used for “:: =’. Any nonsense produced by
the finite state transducer up to a certain point that cannot be recognized as well-born
syntactic rules is ignored.

It can be seen that the formalism of extensible context-free grammars is simple and
constructive — and hence may seem reasonable from an implementation point of view.

However, an extensible context-free grammar possesses a fixed set of nonterminals and
hence it is impossible to express extensible type systems. Due to the nature of finite state
transducers, extensible context-free grammars cannot either cope with traditional, static
scope rules. Neither is it possible to describe ‘higher-order’ constructs such as Pascal’s
‘with’-statement — that would require a modification of the finite state transducer.

In can be concluded about this grammatical formalism, that one can describe systems in
which syntactic rules explicitly mentioned in the source text {qua a finite state tfranslation)
can be added or deleted. Furthermore, an extensible language described this way is tied to a
fixed, finite set of syntactic categories.

Extensible context-free grammars can be seen as a special case of generative grammars:
Consider an extensible context-free grammar consisting of a context free grammar, G,, and
a finite state transducer characterized by a function, T, such that the transducer’s output

16

for a string, s, is T(s). For each rule in Gy, we construct a similar generative grammar rule as
follows: Each nonterminal is equipped with

* a language attribute, of course,

» an inherited attribute that holds the text to left of the nonterminal in a given derivation,
and '

* a synthesized attribute that holds the text to the left of and including the text generated
from this nonterminal.

The transformation of rules of extensible context-free grammars into equivalent generative
grammar rules is described by means of an example. Let the following be such a ruje,

A= aBg
The corresponding generative grammar rule is as follows where ‘P’ is a suitable operator for
combining the output of the finite state transducer with an existing grammar,

(AlGliextuptoAttextincludingBegy:: —
a (BIP(G,, T(textuptoA ca))textuptod attextincludingB) B8

In the input languages for parser generators, compiler gcnerators, etc., it is custom to
scparate the specifications of abstract, concrete, and lexical syntax. Such conventions are

rules must be ‘read in’ in a strictly sequential order.
It appears that extensible context-free grammars are too weak and too restricted in order

to qualify as a general formalism for describing the syntax of extensible languages.

4.4 Precedence grammars
An inherent problem in language design, and especially in extensible languages, is the
question of ambiguity: The language designer may accidentally introduce, say, a system of
operators whose (generated) grammar contains semantically significant ambiguities. One
way of solving this problem is to specify for each operator, its precedence and associativity
in order to achieve a unique interpretation of the program text.

This was first suggested by Floyd, (1 963), and used among others by Wirth and Weber,
(1966), for the specification of the Euler language; however, this work was not biased
towards user-extensible languages. Turner, (1979), has used a version of this scheme in an
extensible language system — aithough not in the shape of a formalism for describing the
extensible language, i.e., the combination of definitions and applications of language
constructs. The definition of Algol68, (van Wijngaarden et. al., 1975), shows the use of
two-level grammars for describing user-defined operator precedence.

The now most widespread and well-known application of user-defined precedence and
associativity is probably the operator definitions in Prolog, see, e.g., (Clocksin, Mellish,

1984). For example, with the following declarations,
op(2, xfx, are), '
op(1, xfy, and).

the phrase,
girls are nice and pretty

is a convenient writing for the proper Prolog phrase

are(girls, and (nice, pretty)).

17

This form of notational extensibility can be described in a
the precedence and associativity information as synthesized attributes to the generated
syntax rules. A constraint, implemented as a partial function, can ensure the observance of
the given precedence and associativity. In a generative grammar for Prolog, the rule for
operator declarations should generate the appropriate rules: For the example operators

above, the following rules should be generated.

(termiGTprecedence({2, xfx), Ppp)yi=
(termlG1p,) are (term!G1p,)

(term{GTprecedence((l, xfx), p, py)yii=
(term{G1p,) and ¢ termlG1p,)

The ‘precedence’ function is defined as follows.

precedence(<py, a,>, p,, p,) =
Pyif ay = xfx and p, > p, and p, > p,, or
@, = xfy and p, > pyand py = p,, or
a, = yfx and p;, > p, and Dy > Ds;
undefined otherwise

In should be clear that other ways of expressing precedence and associativity, that may
appear more appealing to the novice user, can be described in generative grammars in a
similar manner. An interesting treatment of syntactic ambiguity and how to resolve it is

given by Aho, Johnson, and Ullman, (1975).

4.5 Other grammatical formalisms
Here, I will comment on two other suggestions for extensible language formalisms in which,

similar to generative grammars, declarations are viewed as creators of new rules of the same

sort as those found in the initia} description.
Hanford and Jones, (1973), propose a fairly complicated device based on A-calculus,

called dynamic syntax. However,

requirements posed by
grammars are superior concerning the clarity of the applied notation.

Mason, (1987), presents a generalization of context-free translation schemes called
dynamic template translators: The application of a translation rule will trigger off an action
sequence that works by side-effects on the current translation scheme. These action may
add or delete translation rules or modify their action sequence. This imperative nature of
the extension mechanism implies the need to provide for a fixed order of applications of
these rules. The actual derivation relation for dynamic template translators is defined in
terms of a recognition device based on a shift-reduce parsing algorithm. In other words, as
in Wegbreit’s extensible context-free grammars, cf. section 4.3, only left-most derivations
are allowed,

A dynamic template translator represents a special case of a generative grammar:
Consider a dynamic template translator rule which represents a context-free rule,

Noii= oy Ny o, .. vap Npeg, _
with an associated action sequence, 8, viewed here as a function from translation schemes
to translation schemes, and an output string, w. This dynamic translation rule is easily
converted to the following generative grammar rule.

18

generative grammar by attaching -

(N{GIS(G)twe ... w ew)i:=
o {NUGTG W) ey . .. %1 {NJG, TG Tw,)
However, I find that the imperative action sequences and their control structure do not
serve as an appropriate medium for the specification of language extensions. For example,
in order to model static scope rules, a rather intricate construction is needed in order to
remove the generated rules at block exit. The applicative style of specification applied in g
generative grammar seems more suited for the specification of grammars and thejr

elaboration.

4.6 Summary
In this chapter, I have described a number of syntactic formalisms that allow certain kinds

of context-sensitive syntax to be specified. Such descriptive tools may roughly be separated
in to two classes which may be characterized as the restrictive and the generative approach,

respectively.
- Those that rest on fixed sets of (context-free-like) rules whose application is restricted
in various ways; attribute grammars and two-level grammars belong to this class,

- Those that explicitly extend or modify the set of available rules; generative grammars
and the proposals of Wegbreit, Hanford and Jones, and Mason belong to this class.

It appears that the

the set of rules in a
too complicated. The problem with the generative approach, on the other hand, has been

the lack of a suitable framework and notation for describing language extensions — g
problem I have tried to solve with my generative grammars. In the following, I will review

the conclusions of the previous sections.
An attribute grammar is well-suited for describing the context-sensitive aspects of

traditional programming languages. Consider, for example, the class of variables or the
class of procedure calls in languages such as Pascal or Ada. Each such class corresponds to
a general, syntactic rule and the validity of an application of that rule, the context

condition, i

anguage. Compared with attribute grammars, generative grammars
provide for a more generative — and thus more transparent — descriptions with fewer

constraints,
Concerning types of expressions, generative

among the attribute values,
The only typical programming language aspect for which a generative grammar must use

a constraint is the ban on declarations of entities with coincident names at the same block

19

level. This constraint can be represented in a partial function that refuses to combine sets of
rules that include elements resembling each other too much.

Most of the comments on attribute grammars goes for two-level grammars as well. In a
two-level grammar, context information is coded into the hyper- and protonotions, and the
less trivial context information, the more complicated ‘coding’ is necessary. These
arguments should also be seen in the light of the severe notational problems with two-level
grammars, even for languages with a modest degree of extensibility, Algol68 for example.

Wegbreit’s extensible context-free grammars share the explicit generation of syntactic
rules with generative grammars but they are of a rather limited use. It is only possible to
read in syntactic rules literally from the program text, no elaborate analysis, and thus no
sophisticated declaration mechanisms, are within reach. F urthermore, the set of
nonterminals in a language described by an extensible context-free grammar is fixed and
traditional scope rules cannot be described either.

Finally, I find that the extensible context-free grammars’ use of a finite state transducer
for generation of new rules is rather awkward: The attribute machinery, which generative
grammars has adapted from attribute grammars, is both more powerful and results in
much cleaner descriptions.

The suggestion for a dynamic syntax given by Hanford and Jones, (1973), seems to be
closely related to my generative grammars. However, the presentation of dynamic syntax
suffers from the lack of a proper formalization and an appropriate notation. Mason’s,
(1987), dynamic template translators are an ‘extensible’ version of syntax-directed
translation schemes, the extension mechanism being based on imperative action sequences.
A dynamic template translator appears to be a special case of a generative grammar.
Furthermore, the applicative specification style applied in generative grammars, vs. action
sequernces, seems more appropriate for operating on grammars as data objects.

An inherent problem in extensible languages is the question of ambiguity: The user may
accidentally introduce, say a system of operators, whose generated grammar contains
semantically significant ambiguities. One way of solving this problem is to require that the
user explicitly specifies the precedence and associativity of each operator in order to achieve
a unique interpretation of expressions. Such conventions are easily embedded in a

generative grammar, cf, section 4.4.

5 Semantics of extensible languages

The semantics of traditional, almost-context-free programming languages is an extensively
studied and reasonably understood field in which several descriptive tools have been
developed, Hoare’s axiomatic specifications, (Hoare, 1969; Meyer, Halpern, 1982), and
denotational semantics, (Milne, Strachey, 1976}, for example. A generalization of a
semantic formalism to extensible languages should provide for a means for picking up the
user’s semantic specifications — formulated in the given programming language — and
converting them into the given formalism.

As for the syntactic descriptions, I also aim at a uniform treatment at the semantic level
of the predefined language elements and the novel constructs defined by the user. Hence the
approach taken in denotational semantics for, say, procedures is not sufficient: Each
procedure declaration gives rise to a new entry in a symbol table, usually called an
environment, and the meaning of any program phrase is a function of, among other things,
such an environment. The meaning of each original language construct is described by its
particular semantic equation whereas the class of all potential procedure calls is compressed
into one futile equation.

I do not intend to present one style of semantic descriptions for extensible languages and
claim it to be valid for all extensible systems and languages. Rather, it is my aim to
demonstrate that generative grammars allow for a wide spectrum of semantic descriptions.

20

Here, I will show two kinds of semantic specifications by means of generative grammars,
compositional and interpretive semantics.

Compositional semantics is a generalization of denotational semantics to extensible
languages. The meaning of a program phrase is an abstract expression of a computation
ication for each syntactic operator describes a combination of the
computations for its arguments. Compositional semantics resembles programs in a
procedural language such as Algol60: New meanings in the shape of pbrocedures are
composed from existing procedures and primitive language constructs. An example of a
compositional semantic specification is shown in section 5.1.

Defining the semantics of a new language by means of ap interpreter, on the other hand,
provides for much more flexibility and generality. Such semantic specifications allow for
the introduction of new paradigms, i.e, not only new meanings but new kinds of meanings.
Using interpreters one can, for example, add ‘g0to’s and coroutines to a strictly sequentia]
language — or add a layer of logic programming to a procedural language. Section 5.2
shows an example of a semantic specification based on interpreters embedded in a

generative grammar.

extensible languages.
Finally, it must be admitted that the terms ‘compositional semantics’ and ‘interpretive

semantics’ have been used quite ambiguously; it may refer either to the style nsed within a
language for describing (in the source program text) the semantics of new language
elements — or to the style applied in the underlying, generative grammar, This is not by
accident; these two levels are coupled tightly together in that the underlying formal
framework determines the scope of the potential extension mechanisms.

5.1 Compositional semantics
It is well-known that any denotational semantics can be formulated as an attribute grammar

cf. (Mayoh, 1981), (Madsen, 1980). Compositional semantics is the generalization of
denotational semantics to extensible languages based on generative grammars,

In the following, I will show a generative grammar that incorporates a compositional
semantic description for declarations of new infjx operators. For example, a new operator,

‘+ 4, may be defined as follows.

newoperatora ++ b =a + b + b
The intended meaning of this declaration is that new €xpressions such as

5++2

21

{dcli Gtnew-rule):: = new operator ¢ parameterl Gtaame,) {symboll Gloperator)
{parameterlGTname,) = (explGU{ par,, par,}1sem-term)

where
par; = {explG' param(name,)):: = name,
par, = { explG’Tparam(namez)):: = name,
new-rule = (expl G’ tnew-sem-term):: =
{expl G’ tsem-term,) operator {explG’ Tsem-term,)

where new-sem-term is a copy of sem-term in which each

occurrence of ‘param{name,)’ is replaced by the

attribute variable sem-term,’ and ‘param(name,)’

by the attribute variable sem-term,’

The semantic operator ‘param(—)’ serves as a special marker whose only purpose is to be
replaced textually by attribute variables; note that the substitution takes place at
‘declaration time’ and that ‘param(—)’ does not appear in the generated rule.

The parameter transmission described in the rule above is analogous to in-line
compilation of procedure calls with embedded code for the actual parameters. Assume, for

example, that the plus operator is defined as follows.
(explGflag; a, ! plusy::= (explGla,) + {explGla,)

The attribute expression, ‘ay; a, ! plus’, represents a semantic term parameterized by the
variables @," and ‘s,’. The semantic term is written in the signature of Mosses’ (1983)

abstract semantic algebras. With this definition of plus, the declaration

new operatora + + b=a + b + b
will result in the generation of the following rule,

{explG’1 sem-term,; sem-term, | plus; sem-term, ! plus):: =
(explG'1sem-term,) + + (explG1lsem-term,

Various other parameter passing mechanisms can be described by the generation of other
semantic terms. Gordon, (1979), provides for a catalogue of denotational characterizations
of various parameter passing mechanisms. In should be noted, that the textual substitution
applied in the example above is specific to the actual example and not a characteristics of
compositional semantics; however, textual substitution and renaming are useful techniques
in order to generate compact and concise semantic descriptions.

The paper, (Christiansen, 1985), provides for a comprehensive example of a
compositional semantic specification written as a generative grammar.

5.2 Interpretive semantics
An extensible language which allows its user to describe semantics by means of interpreters
should, of course, contain a set of basic facilities that makes it well-suited for writing
interpreters. This includes a representation of program text as data objects within the

Ianguage.

In the following, 1 will sketch a generative grammar for a language with an explicitly

represented phrase structure and semantic specifications based on interpretation. In this
language, one can define new operators and either specify their semantics immediately in
terms of an interpretation procedure or defer the semantic specification to another level. In
this example, all expressions are expected to be of the same type but the method can easily
be generalized to typed expressions.

The basic idea in this generative grammar is to assign to each expression phrase a
synthesized attribute holding a representation of its syntax tree — and to each node in this

22

procedure (represented as a function).

representation attach a, perhaps void, interpretation
decompose a phrase, and

This will allow programs to activate or interpret a given phrase,

maybe interpret parts of it or simply pass it on as a data value.
A phrase is activated or interpreted by means of an explicit operator described as follows.

{explGTvalue)::= evaluate (phrasel Gt{interp, tree))
where value = interp(tree)
It appears in this rule that an expression denotes a value and that phrases denote
particularly decorated syntax trees and that the ‘evaluate’ operator converts phrases to
expressions. (So in a certain sense, with a rather specialized meaning of the word ‘meaning’,
an interpretive semantics of this sort is a special case of a compositional semantics).
The rule for operator definition is as follows.

{dcliGTnew-ruley:: = new operator (parameteriGtname,) {symboli Gtoperator)
(parameter!Glname,) = procedurel GU{par,, pary}linterp-code)

where
par, = (phraselG’T(proc(nameI), tree(name,))):: = name,

par, = (phraselG’t (proc(name,), tree(name,))):: = name,

new-rule = (phraselG’ 1 (interp, operator((p,, 1), (p,, L)) =
(phrase!G'1{p,, t,)) operator { phraselG'1(p,, t,))

where inferp is a function derived from interp-code

The intermediate representation of the interpreter, interp-code, may be some term that
contains occurrences of the placeholders, proc(name,}, etc.

5.3 Relation to other work

I have not seen any other general mechanism applied to the description of extensibje

language semantics, the semantics of declared extensible languages presented in the
literature has been described either informally or in terms of their implementation. Mason’s
dynamic template translators, (Mason, 1987), is a generalization of syntax-directed
translation schemes for extensible languages, cf. section 4.5. In principle, the output
produced by a translation scheme may be used to describe semantics. However, there is no
interaction between the output strings produced for given input strings and the mechanisms
for creating new rules. Hence it is impossible to collect the semantic content of a declaration
for representation in new, generated rules. Here I will discuss how semantics is specified
within various, more or less, extensible languages and other related systems.

In the EcL system, (Wegbreit, 1970), the meaning of a new language construct is defined
by means of an interpretation procedure: Together with the syntactic specification, the user
must also supply a definition of a data structure for representation of abstract syntax trees
and an interpretation procedure that refers to this representation. There is no syntactic
coupling between these three levels, it is the user’s responsibility to ensure consistency. I
also see a problem in EcL due to its dynamic type concept — data types are treated as data
objects in EcL — together with a static extension mechanism: The interpretation
procedures tend to include extensive and explicitly programmed checking of the types of
their arguments.

Several extensible languages and programming systems have been developed based on the
so-called compiler-compiler described in (Brooker et al., 1963). In the two systems
described by Napper and Fisher, (1976, 1980), ALEC and Ree, semantics is specified in
terms of compilation: The semantic specification for a construct is an abstract description
of how to compile it. The Eisa system, (Lindsey, 1983), provides for an interesting
combination of compositional and interpretive semantics specifications. The language

23

includes specialized pattern matching operators for the analysis and synthesis of program
phrases: The evaluation or execution or a formal argument (or any other, denoted phrase)
is specified simply by mentioning it, just as in a traditional procedural language; if that does
not suffice, the argument may be decomposed or transformed and perhaps later executed.
An example in the paper, (Lindsey, 1983), shows these facilities applied in order to ensure
an efficient compilation of arithmetic expressions — and that in a rather clean and abstract
way.

Abstraction mechanisms in the languages of the Algol family, Algol60, Algol68, Pascal,
Ada, etc., reflect with no exception the compositional view. A procedure declaration, for
example, consists of a syntactic pattern, the procedure heading, and a semantic
specification, the procedure body. The execution of a procedure is understood as the
execution of the instructions in the procedure body with a suitable substitution of actual
parameters for their formal counterpart, it is impossible to introduce any radically new
concept by a procedure declaration.

Lisp, on the other hand, allows for both compositional and interpretive semantic
specifications for new function calls in that a Lisp function may receive its arguments
either as their (evaluated) values or in their unevaluated, textual form. Unevaluated
parameters can be made subject of arbitrary transformation using the full power of the
Lisp language and then interpreted by a call of the eval function. The following chapter
includes a generative grammar describing the syntax and semantics of Lisp.

Various generators of compilers, editors, user application programs, {e.g., the so-called
4th generation systems), prototype interpreters, etc., can be viewed as extensible languages:
Each such system is characterized by a specialized input language for writing language
definitions — and the system generates some representation of the language. The semantic
parts of a language specification are for the most part of such generators expressed
compositionally in some fixed semantic meta-language. This may be machine language,
calls of screen management routines, data base query languages, or some other abstract
machine language. The SIs system, (Mosses, 1978), for example, is intended for prototype
implementation of programming languages whose semantics is specified solely in terms of
the A-calculus or auxiliary function symbols whose meaning is specified by A-expressions.
The CERres compiler generation system, (Christiansen, Jones, 1983), produces
recursive-descent compilers from denotational semantic specifications based on a
simplified, semantic language called imperative semantics, (Christiansen, 1981).

Comparing to Standish’, (1975), classification of language extensions due to the character
of their semantic specification, his metaphrase extensions correspond to my interpretive
semantics. Standish points out two other classes covered by compositional semantics,
paraphrase and orthophrase extensions. The former concerns semantic specifications in
terms of the concepts found inside a given language, as is the case with traditional
procedure abstraction. ‘Orthophrase’ refers to extensions whose semantics needs to be
expressed compositionally in terms of some ‘external’ language, for example calling

machine langunage routines from a high-level language.

24

6 A comment on Lisp

Lisp, (McCarthy, 1960), is one of the earliest, if not the first, language with a clear stress
on extensibility. In LisP, a user can define new functions which, then, cannot be
distinguished from the primitive Lisp functions. This is also reflected in the semantic
specification of Lisp, see (McCarthy, 1960), in which the meaning of any function call is
described uniformly in terms of the universal functions, eval and apply. In fact, this
description of Lisp is probably the existing language description which has most in
common with a generative grammar concerning a unified treatment of existing and
user-defined language constructs.

Furthermore, Lisp gains its flexibility from the symmetry between programs and data
together with the explicit representation of the language semantics inside the language
itself, in the shape of the eval function. The predominant convention in the various dialects
of the language has, until recently, been dynamic binding and function definition which

also contributes to the frightening power of Lisp.
In this chapter, I give a generative grammar that specifies the full (and intertwined!)

syntax and semantics of a Lisp-like language that includes all the above mentioned aspects
and also user-defined macros. However, it will be practical to extend the model of
generative grammars slightly. Until now, the attribute values have been determined as
Junctions of other attributes, but in order to describe the introspective function, eval, it is
necessary to use relations for this purpose, more specifically the syntactic derivation
relation, denoted = *,

In fact, the generative grammar for Lisp reveals a close correspondence between Lisp’s
eval functions and the generative grammars’ syntactic derivation relation. In chapter 7, the
derivation relation — and hence eval — is modelled by an introspective prove predicate in

Prolog.
In order to describe the dynamic nature of declarations, the execution state is identified

with the language attribute.
The language includes the following forms.

atomns
atomic values and identifiers,

niil
an atom whose evaluated value is nil,

{prog2 — —}
evaluate two expressions in sequence,

(if — — —)
conditional expression,

{quote —)
return the argument unevaluated,

(eval —)
evaluate the value of the argument,

(defun fn-name (param-name) Jn-body)
define a new function, the text for function body is not evaluated,

(defmacro macro-name (param-name) macro-body)
define a new macro, the text for the function body is not evaluated,

25

(primitive; — .. .)
various primitive functions or special forms, the latter receiving their arguments in an

unevaluated form.

The addition of an assignment operator, i.e., setq, will be discussed later.

The grammar has three nonterminal symbols, atoms, expressions and quoted-text. The
difference between expressions and quoted text is that the former denote their evaluated
values whereas the latter denotes itself. The meaning of the attached attributes is indicated
as follows,

{atomllanguagetname of atom)
{quoted-text|languagetthe text itself)
{expressionllanguagetvalueta possible changed language)

The rules in the generative grammar are as follows.
Atoms denote nothing but themselves, for example:

(atom{GThubahop):: = hubahop
Quoted text also denotes itself:

(quoted-textiGtltext, ... fext)):=
({quoted-textiGtrext,) ... {quoted-text! Gtrext,))
{quoted-text!GThame)::= (atom!GTname)

I will consider the primitive expressions first since any other expressions are instances of
one of the two patterns, one for functions, and one for special forms.

{expressionl Gtval, 1G,):: =
(function, {expressionlG1va/,1G,) ..
where the relation between
(valy, G} and (val,, . . . ,val , G
is specific to the given function.
{expressionl Gtval, t1G,):: =
(special; (quoted-text!Gttext;) ... (quoted-textiGtrext,))
where the relation between
(val,, G,) and (text,, . . . , text,, G)
is specific to the given special form.
Sequencing, the nil and quote expressions are straightforward examples of the above:

. {expressioniG, _,tval 1G,))

{expressionlGtval,1G,):: =

{prog2 (expressionlGtval,1G,) {expressionl G, Tval,1G,))
{expressiond GTniltG):: = nil
(expression GttexttG)::= (quote {quoted-text!Gtrext))

In a conditional expression, the first subexpression is evaluated and depending on its
value, one out of the two following expressions is selected for evaluation. The text in the
remaining expression should not be considered at all, it may contain any correctly
paranthesized nonsense. The linguistic equivalent to the eval function, the derivation
relation, is necessary in order to characterize this in a generative grammar rule.

26

{expressioni Gtval 1G,):: =

(if (expression!Gtval,1G,) (quoted-explGtrext, > (quoted-textl Gtrext,))
where, if val, = nil then

(explG \Tval1G) = * text
or, otherwise

(explG tval 1G,) = * text, .

The effect of a function definition is to add to the grammar a new rule for application of
the declared function. This rule should describe the meaning of an application as an
evaluation of the function body in the ‘application-time’ environment extended with a
suitable rule for the function parameter.

(expressionl G1/n-namet GU{ fn-rule} y:: =
(defun (atom!G1fn-name) (¢ atom| Glparam-name))
{quoted-text{ G1fn-body))
where fr-rule =
{expressionl G’ Tresult-valuet G," \{ param-rule} y:: =
{(fn-name (expressionlG’ Tactual—pammTGl "))
where
{expressionlG, ‘Ul param-rule} Tresult—valueTGz’) = * fn-body
and param-rule =
(expression{G " tactual-paramtG* 3:: = param-name

Macro definitions are analogous to function definitions, except that the actual parameter
“(in the generated rule) should not be evaluated and that parameter transmission is
performed by textual substitution.

(expressionl GTmacro-namet GU{ macro-rule} y:: =
(defmacro {atom!Glmacro-name) ((atomi Gtparam-rule))
{quoted-text) Gtmacro-text))
where macro-rule =
{expression! G’ tresult-value? G,/u=
{macro-name {quoted-text. "Tparam-text))
where
(expressiond G Tresult-valuel G,y = * expanded-text
where expanded-text is derived from macro-fext in that each
each occurrence of param-name is replaced by param-text.

It is left as an exercise for the reader to implement the indicated textual substitution by
means of a few generative grammar rules.
The final rule in the grammar is for the eval function.

{expressionlGtval,1G,):: = {eval (expressiondGTval,1G,))
where
(expression! G, tval,1G,) = * val,

The Lisp description given above contains serious ambiguities concerning functions or
variables with identical names. This can be remedied in a representation-based generative
grammar (definition 4, chapter 3); The grammar is represented in a state having two
components,

- a table mapping function or macro names to their definitions, and
- a stack of variable bindings.

27

The abstraction function, i.e., the function which yields back a grammar, should ignore all
but the top-most bindings to a given variable name. This representation provides a suitable
medium for specifying a more accurate behaviour of the binding mechanisms:

- Adding a new function or macro is described as the addition of a new entry to the table
overriding any previous definition for the given name,

- Actual parameter bindings are added to the top of the stack and removed at function

exit.

- The explicit assignment of a value to a variable, i.e., setq,
binding for the given variable name; if none such exists, i.
binding is added at the bottom of the stack.

A yet more detailed representation of the execution state based on structure sharing would,
furthermore, allow for a description of the Lisp functions rplaca and rplacd.

7 The relation to logic
In this chapter, I consider the relation between the generative grammar formalism and the
logic programming language Prolog, see, €.g. (Clocksin, Mellish, 1984).

The core of Prolog is the subset of first-order logic known as Horn clauses which — as ig
well-known — are closely related to the syntax of non-extensible languages. Furthermore,
the full Prolog language is well-suited for writing programs that manipulate programs —
which suggests that Prolog might be useful with respect to a class of grammars in which

grammars themselves are treated as data objects.

It will appear that any generative grammar can be rewritten in a quite straightforward
manner -as a Prolog program. This transformation is valuable for prototype
implementation of languages described by generative grammars and, furthermore, useful
representation-based grammars can be expressed quite naturally using Prologs non-logical
facilities. Section 7.1 is concerned with the representation of ‘pure’ generative grammars;

section 7.2 discusses various kinds of representation-based grammars.

should change the top-most
e., it is a global variable, a

7.1 Generative grammars in extended Horn clauses
To begin with the simplest case, we observe the corresponding between Horn clause logic
and non-extensible languages. Consider, for example, the following context-free grammar.

{exp):ii= {exp) + {(exp)
{(exp)::= {(exp) * {exp)
{exp)ii= 2

It is equivalent to the following Horn clause program, where equivalence means that the
syntax trees of the former are isomorphic to the proof trees of the latter.

eXp:— exp, exp.
EXp:~ exp, exp.
exp.

Deransart and Maluszynski,

clause programs and attribu
again here, the associated classes of trees
predicates can be used to calculate more interestin
others, by Abramson, (1984). Consider, for exam
expression language having a synthesized attribute whi
may be written as a Horn clause program as follows.

(1985), have demonstrated the correspondence between Horn
te grammars whose attributes are terms over free algebras,
are isomorphic. Furthermore, additional
g attribute relations, as observed, among
ple, an attribute grammar for the simple
ch describes the expression values. It

28

exp(v): — exp(v,), exp(v,), vis v+ v,
exp(v): — exp(y,), exp(vy), vis v, * V,.

exp(2).
(Here, the operator ‘is’ should be understood as a predicate and not as its imperative Prolog
counterpart).
,» these clauses are not very

Considered as a procedural Prolog program, however
interesting, but they may scrve as a parsing program if the concrete, syntactic strings are

merged into the predicates. For example as follows.

exp(E, V):- decomp(E, (E1,+,E2]),
exp(E1l ,V1), exp(E2, V2), V is V1 + v2.

where decomp is defined such that, for example,
decomp(E, (E1,+,E2])
1s equivalent to

append(E1, [+/E2], E).

The use of append or its syntactically dressed up companion, decomp, is rather inefficient,
but that is out of interest in this chapter. (The definition of decomp written in a rather

imperative Prolog style can be found in Christiansen, 1986¢).
I will now consider how extensible languages — in the appearance of generative

grammars — can be represented in Prolog. Bowen and Kowalski, (1982), has argued that a
representation of Prolog within itself, by means of a meta-predicate

prove(goal, program)

is essential in order to provide for a more flexible, logic programming style.?
Using this meta-predicate, it is easy to express the fact that different, syntactic phrases
are generated by different grammars. Consider, for example, the following generative

grammar rule for a traditional block construct,
(blockiG)::= begin (dclG1G,) ; (stmiGUG,) end
It is easily translated into the following Prolog rule.

block(B, G):- decomp(B, (begin, D, ;, 8, end]),
prove(del(D, G, G1), G}, _
append(C1, G, GG}, .
prove(stm(S, GG), GG). '

GG. In other words, the corres

1. The fact that prove is true for given goal and program, the latter represented as a list of Prolog rules, is intended
to mean that the goal is true according to the given program. The prove predicate can be defined in a reasonahle
manner in Prolog, cf, (Bowen, Kowalski, 1982); an implementation of prove appears in appendix B.

29

{nontermi{G...) = * text

if and only if
prove(nonterm(text, G, ...), G),

assuming a straightforward transformation of nonterminal symbols into predicate symbols
as indicated above; the ellipsis stand for possible attributes apart from the language
attribute. :
It should be clear that this transformation into a (meta-) Prolog program can be applied
ns apply functions that can be

to any generative grammar whose attribute expressio
functions cover the spectrum of

implemented in Prolog — and as is well-known, these

computable functions, see, for example, (Shapiro, 1984).1
The initial call of a parsing program derived from a generative grammar in this way is as

follows,

G = [rules for the initial grammar,
the decomp predicate,

the prove predicate,
additional predicates used for the attribute expressions],

prove(program(program-fext, G, ... other attributes), G).

The prove predicate provides for an implementation of the reflexive use of the derivation
relation in the LiSP grammar given in chapter 6. For example, the generative grammar rule
for the eval function can be written as follows; Prolog’s list structures are used to indicate
the syntactic phrase structure $o no extra predicate for syntactic decomposition is needed,

exp{ [eval, E1], G, V2, G2):-
exp(E1, G, V1, G1),
% where :
prove(exp(E2, Gi, V2, G2), G1).
The appendix gives the full text of the Prolog representation of the Lisp grammar together
with an implementation of prove; this Prolog program constitutes a slow, but effective,

Lisp interpreter.

7.2 Representation-based grammars in Prolog
The imperative aspects of Prolog, its deterministic proof strategy, the cut operator (usually
denoted ‘!I’), etc., give rise to an implementation of representation-based generative
grammars (definition 4, chapter 3).

Consider, for example, a block-structured language whose basic block-construct is as
described in section 7.1. Assume, furthermore, that the rules for declarations are such that

a variable, ‘n’ say, is described by a generated rule of the form,

variable(V):- decomp(V, [n]), 1.

This rule will inhibit any other rule for a variable named
beginning of existing programs. If the grammatical
information and other attributes, any reference to their

symbol, e.g.,

variable(V, Type, Meaning):- decomp(V, [n]), !,
Type = integer,
Meaning = yksikaksikolme.

‘n’ since new rules are added to the
rule, furthermore, contains type
values should appear after the cut

1. However, generative grammars which allow for recursively defined attribute values may cause problems,

30

Hence, the indicated techni
conventions for block-structured languages by m

grammar,

ynamic assertion and

he paper (Christiansen 1986¢), I have introduced a logical operator
ured use of these imperatives. This operator introduces a new form

goal assuming Jist of rules
An instance of this form is intended to be provable according to a logical program, P, if
goal is provable in P extended with /st of rules. The familiar block construct can now be
described as follows.

block{B):- decomp(B, [begin, D, 3, 8, end]),
del(D, Extension),
stm(8) assuming Extension,

at the creation and management of new syntactic rules can be

iptions for extensible languages can be
mars. Two ‘styles’ of semantics descriptions have been

ntics which is a generalization of denotational semantics and
the more powerful interpretive semantics, It appears that textual substitution and renaming
may be useful techniques in the generation of concise semantic descriptions from the

specifications in the given
intertwined Syntax and semantics serveg as an examp

Furthermore, I have shown how in principle any generative grammar may be
transformed in a quite straightforward manner into a Prolog program. These Prolog
programs may serve as (quite slow) prototype implementations of extensible languages —
and the construction exposes a relation between extensible languages and an extensible logic

based on ‘meta-interpretation’.

Generalizations
The basic generative grammar formalism is sufficient from a theoretical point of view,

however, a few pragmatic extensions of this model may be useful.

Representation-based generative grammars.
- The specialized inherited attribute, the language attribute, is here a representation of a

grammar. Hence generated grammars may be described and elaborated in terms of that
representation. For example, a stack-based based protocol is useful in order to describe
scope rules in which one syntax rule temporarily may override other rules. Such
scoping principles are difficult to describe in the pure generative grammar framework

in which a grammar is understood as a ser of rules.

Reflexive use of the derivation relation.
- In a normal generative grammar, the attributes are determined as functions of other

attributes. However, explicit reference to the derivation relation in the generative
grammar rules may give rise to quite natural descriptions of reflexive or introspective

language constructs such as Lisp’s eval function.

Concluding remarks
The generative grammars presented here provide a framework for the understanding of

extensible languages — in the shape of a descriptive tool for their syntax and semantics.
However, the formalism still needs some refinement in order to give a satisfactory
treatment of recursive declarations, cf, section 3.4,

It would have been desirable with an accompanying catalogue of implementation
techniques for languages described in this way. However, no systematic treatment of this
topic has been given yet. The report, (Christiansen, 1986b), excerpts published in
(Christiansen, 1986a), describes the problems in the adaptation of traditional parsing and
compilation techniques at an overall and theoretical level. In (Christiansen, 1988), I have
summarized my experience with implementation of generative grammars which includes

various experiments in incremental editing.

32

Appendix A — An example grammar

This appendix shows a generative grammar for a Pascal-like language. Each expression type
is represented by its own nonterminal symbol and new types can be introduced by means of
record declarations. The language, furthermore, allows for the declarations of new

statement and expression forms,

Built-in statement forms
The language includes statement sequencing, a block-construct with non-recursive
declarations, and a conditional statements. Assignment statements are described later on.

(StmIGhii= (stmlG) ; (stmlG)
(stmiG)::= begin (dcliG1G,) ; (stmiGUG,) end
(stmiG)::= if (boollG) then (stmlG) else {stmlG) fi

Built-in types and operators
The set of operators common to all expressions consists of

- assignment statement,
- the use of variables in expressions,
- a conditional expression,

- an equality test, and
- a valof expression which specifies a value in terms of a statement; the result is returned
by a result is statement,

In order to describe these operators for the built-in types and to generate versions for new
types, the following notational shorthand is used. For any term, fype, (which is expected to

represent a nonterminal symbol), the notation
expression-tools(type)
refers to the following set of rules.
{{stmlG’)::= (type-variablelG’}: = {typelG'y,
(typelG’)::= (type-variablelG’),
(LpelG’)= if (boollG’) then {typelG') else {typelG’) fi,
(boollG")= (typelG’') = (typelG'y
(ypelG’)::= valof (stmiG'U{exit-rule}) end
where exit-rule = (stmlG” y::= result is ¢ typelG”)
h
Note that this implies the existence of constructed nonterminals such as ‘integer-variable’

for variables of type integer.
The ianguage features two basic types, booleans and integer numbers:

(typelGTbool}:: = bool
(typelGtinteger):: = integer

These two rules allow the basic types to be used in declarations of, for examples, variables
and new types. To each of these types is associated a set of type specific rules, for example:

33

(boollG)::= true
(booliG)::= (boollG) and (boollG)
{integeriGy::= 1

integeriG)::= (integer!G) + (integer!G)

i

As for any type, we assume the following.
expression-tools(bool)
expression-tools(integer)

Identifiers
For simplicity, each identifier is assumed to be defined by its own rule, for example:

{identifier{ Gthuba):: = huba

Declarations
A declaration may be a sequence of declarations. Th
available for the subsequent declarations.

(Al GT1GUG,):: = (dcliG1G,) ; (dclGUG,1G,)
Variables of specified type can be declared as follows.

(dcliGt{new-rule}):: = var (identifieriGtname) : {typelGltypeid)
where new-rule = (typeid-variablelG'>:: = name

e first part of such a sequence is made

Type declarations \
New types can be declared as records consisting of named fields with specified types. For

each new type are generated rules for using the type in other declarations, for creation of
values of that type and selection of their components, and a rule describing a ‘with’
statement. The latter, when applied, will in turns generate specialized selection rules.

(dcll Gt {type-rule, create-rule, with-rule,
access,, . . ., accessn}Uexpression-tools(new—type)):: =

type (identifier! Gtnew-type) =
record (identifierlG1fleld,) : (typelGTeype,),

- (identifier! G1field) : ¢ typelGtiype,) end
where
Dype-rule = {typelG’'tnew-type):: = new-type
create-rule = (new-typelG’):: =
create new-type ((typedG'), . . ., {type LG'))
fori=1,...,n,
access; = {LypelG')i:= {new-typelG') . field,

with-rule =
(stmlG’)::= with (new-typelG'> do
(stmlG'U{quick-access,, . . ., quick-access })
where, fori = 1,..., n,
quick-access; = (typelG”) ::= field,

34

Declaration of new statement forms
Instead of traditional procedure declarations, the sample langnage includes a more general
declaration mechanism: New statement forms are described as patterns specifying arbitrary
sequences of terminal symbols and parameters which may be expressions or statements. For

example, an if-then statement may be defined as follows.

operation if [b: bool] then [s] fi =
if b then s else null fi

The declaration mechanism is described ag follows.

(dcli GT{new-rule}):: =
operation ¢ patternlGTsyntax—specharameter—rules)

= { stmlGUpammeter—rules)
where new-rule = (stmlG Y= rhs
where rhs is a copy of syntax-spec in which each occurrence
of the special marker, @CONTEXT, is replaced by
the attribute variable G
{patterniG1 syntax-spec, » syntax-spec, Tparameter-ruleslUpammeter—
{patternlGlsyntax-spec 1 \parameter-rutes,
{patternl GTsyntax-specz 1‘parravmeter—rm’ehs‘2 >
{patternlGtatom? sy :: = (identifier! Glatom)
{pattern! Gtnonterm? {paramerer-rule} y:: =
[(identifieriGTpar—name) : {typel Glpar-type) |
where parameter-rule = (par-typel G’ y::= par-name
nonterm = {par-typel @CONTEXT)
(patterni G thonterm?t{ parameter-rule}) ::
where parameter-rule = (StmiG’)i:= par-name
nonterm = {stml@CONTEXT)

rules,y:: =

= [(identifierl Gtpar-name)]

Declaration of new expression forms
The declaration mechanism for statement forms may be
operators of any type. The description of such declaratio
operators valid' for all expression types as follows,

expression-tools(type) =
(dcGT{new-rule} y:: =
operation (pattemlGTsyntax-specharameter-rules) : type
= (ypelGUparameter-rules)

where new-rule = (1ypelG ‘Y= rhs
where rhsis . . .

35

Appendix B — Lisp in Prolog
This appendix gives the full text of a Prolog implementation of the generative grammar for
Lisp presented in chapter 6. The method used for translation of generative grammars into

Prolog programs is described in chapter 7.
In order to simplify the prove predicate, the bodies of clauses given to this predicate are

written as Prolog lists. The LisP grammar is defined in the predicate named 1isp. The
‘top-level’ predicate, prove_1isp, can be used as a Lisp interpreter; the notation used for

Lisp source code is illustrated in the predicate sample_program.
prove lisp(Text, Result):- lisp(G), prove([exp(Text, G, Result,)1, G).

sample_program({prog2, [defun, fak,[n],
[if,[equal,n,OJ,l,[times,n,[fak,[minus,n,l]}}]],

[fak,5]
]
).
Usp([latom(4, G, A):-
[atomic(A)}],

qtext{ Q, G, Atom):-
[latom(Q, G, Atom)],
qtext{ {Q | MoreQ], G, [T | MoreT]):-
[qtext(Q, G, T),
qtext(MoreQ, G, MoreT)],

exp([quote, Q], G, Qtext, G):-
[atext(Q, G, Qtext)],

exp(£1, G, [1, G):- (1,

exp(t, G, 1, G):- 1,

exp(N, G, N, G):- [integer(N)],

exp([plus,N1,N27, G, V, G2) i~

[exp(N1, G, V1, G1),
prove([exp(N2, G1, V2, G2)], G1),
V is V1 + V2],

exp([minus,N1,N2], G, V, G2):-
fexp(N1, G, V1, G1),
prove([exp(N2, G1, V2, G2)], G1),
Vis V1 - v21,

exp([times,N1,N21, G, V, G2):-
[exp(N1, G, Vi, G1),
prove([exp(N2, G1, V2, G2)], G1),
V is V1 % v2],

exp([equal, E1, E2], G, V, Go):=
[exp(E1, G, V1, G1),
prove([exp(E2, 61, V2, G2)3, G61),
(VL =v2), (V=1t), (V= [1))3,

exp([econs, E1, E2], G, [VL ! V2], G2):-
lexp(E1, G, Vi, G1),

) prove([exp(E2, Gi, V2, G2)], G1)],

36

exp([car, E1], G, V, G1):-
[exp(E1, G, V1, G1),
Vi = [V 1],
exp{ [cdr, E1], G, V, G1):-
(exp(E1, G, V1, G1),
Vi=1[_ V],
exp([prog2, Ei, E2], G, V2, G2):-
[exp(E1, G, Vi, G1),
prove([exp(E2, G1, vz, G2)1, G1)1],
exp([if, Econd, Ethen, Eelse]l, G, Vx, Gx):-
[exp(Econd, G, Vcond, Geond),
qtext(Ethen, G, Tthen),

qtext(Eelse, G, Telse),
% where

1£(Veond = [],
prove([exp{ Telse, Geond, Vx, Gx)], Geond),
prove{ [exp(Tthen, Geond, Vx, Gx)], Geond))],
exp([eval, E1], G, V2, G2):-
[exp{ E1, G, V1, G1),
% where
prove([exp(Vi, G1, V2, G2}1, 61)],
exp([defun,A1,[A2],Q], G, Fn_name, [Fn_rule | G]):-
[latom{ A1, G, Fn_name),
latom({ A2, G, Param_name), |
qtext(Q, G, Fn_body),
% where
Fn_rule = (exp([Fn_name,E1_], G., V., G4_):-
[exp(E1_, G_, Actual, G1.),
Par_rule =
(exp(Param name, G__, Actual, G__)

Hhe []);
G2_ = [Par_rule | G1_],

prove([exp{ Fn_body, G2_, s G3.)7,
G2_),

remove_rule(Par_rule, G3_, G4_)1)

1
exp([defmacro,Al,[A27,Q] . . . left as an exercise
).

prove([1, _).

prove([First_goal | Rest_goals], Program):-
member(Clause, Program), % select a clause
rename(Clause, Head:- Body), % rename variables
First_goal = Head, % match first goal with

% head of selected goal
append(Body, Rest_goals, New_goals),

prove{ New_goals, Program).
% Escape fo globally defined predicates:
prove([First_goal | Rest_goals], Program):-

is_defined(First“goal), First_goal, prove(Rest_goals, Program).

37

% Renaming of variables in clauses:
rename(Clause, Renamed_clause):-
asserta(little green man(Clause)),
clause(little_green man(Renamed_clause), _},
retract(1little green_man{ Clause)), !.

% Globally defined predicates used in the grammar:

is_defined(prove(., _)).
is defined(_ is _ }.
is defined(_ = _).
is defined(atomic(_)).
is_defined(integer(_)).
is_defined{ if{ _, _, _)).
% Cond, Then, and Else should be calls of prove or elementary
% tests or assignments.
if{ Cond, Then, Else):-
Cond, !, Then; Else.
is_defined(remove_rule(_, _, _)).
remove_rule(R, [R1 | Prog], Prog):- R == R1, I.

remove_rule(R, [R1 | Prog], [R1 | Progi]):-
remove_rule(R, Prog, Progl), |.

38

References
Abramson, H., Definite clause translation grammars, Proceedings of the 1984

International Symposium on Logic Programming, Atlantic City, pp. 233-240, 1984.

Aho, A.V., Indexed grammars — An extension of context-free grammars, Journal of the
ACM 15, pp. 647-671, 1968.

Aho, A.V., Nested stack automata, Journal of the ACM 16, pp. 383-406, 1969.

Aho, A.V., Johnson, S.C., and Ullman, J.D., Deterministic Parsing of Ambiguous
Grammars, Communications of the ACM 8, pp. 441-452, 1975.

Bowen, K.A. and Kowalski, R.A., Amalgamating Language and Meta-Language in Logic
Programming, Logic Programming, Clark, K.L., and Térnlund, S.A., eds., Academic
Press, pp. 153-172, 1982.
Brooker, R.A., MacCallum, L.R., Morris, D., and Rohl, j.S., The Compiler Compiler,
Annual Review in Auromatic Programming 3, pp. 229275 , 1963.

Christiansen, H., 4 new approach to Compiler Gerneration, Master’s thesis, Aarhus
University, Computer Science Department, 1981,

Christiansen, H., Syntax, Semantics, and Implemen
Languages with Powerful Abstraction Mechanisms, Proc. 18th

Conference on System Sciences, vol, 2, pp. 57-66, 1985.
Christiansen, H., Recognition of Generative Languages, Lecture Notes in Computer
Science 217, pp. 63-81, Springer-Verlag, 1986a.

Christiansen, H., Parsing and Compilation of Generative Languages, Dartalogiske skrifter
3, Roskilde University Centre, 1986b.

Christiansen, H., Context-sensitive Parsing in Full Prolog, Datalogiske skrifter 5, Roskilde
University Centre, 1986c.

Christiansen, H., Programming as lan
Roskilde University Centre, 1988,
Christiansen, H. and Jones, N.D., Contro] flow in a simple semantics-directed compiler
generator, Proc. Formal Description of Programming Concepts 17, pp. 73-97,
North-Holland, 1983.

Chomski, N., Three models for the descri
Information Theory 2, pp. 113-124, 1956,
Clocksin, W.F and Mellish, C.S., Programming in Prolog, second edition,
Springer-Verlag, 1984.

Dembinski, P, and Maluszynski, J., Attribute grammars and two
unifying approach, Lecture Notes in Computer Science 64, pp. 143-154, 1978.

Deransart, P., Jourdan, M., and Lorho, B., A Survey on Attribute Grammars, Part JI]:
Classified Bibliography, INRIA, Rapports de Recherce 417, 1985,

di Forini, A.C., Some remarks on the syntax of symbaolic programming languages,
Communications of the ACM 6, pp. 456-460, 1963,

Floyd, R.W., Syntactic analysis and operator precedence, Journal of the ACM 3, pp.

316-333, 1962.

tation Strategies for Programming
Hawaii Internationgl

guage development, Datalogiske skrifter 15,

ption of languages, JIEEE Transactions on

-level grammars: A

35

Galler, B.A. and Perlis, A.J., A proposal for definitions in Algol, Communications of the

ACM 10, pp. 204-219, 1967.
Gordon, ML.J.C., The denotational description of programming languages, An
introduction, Springer-Verlag, 1979,
Greibach, S. and Hopcroft, Scattered
System Sciences 3, pp. 233-247, 1969,

Hanford, K.V. and Jones, C.B., Dynamic syntax: A concept for the definition of the
syntax of programming languages, Annual Review in Automatic Programming 7, pp.

115-142, Pergamon Press, Oxford, 1973.

Hoare, C.A.R., An axiomatic basis for co
ACM 12, pp. 576-583, 1969,

Jensen, K. and Wirth, N., Pascal, User
Computer Science 18, 1974.

Kasai, T., A Hierarchy between Context-Free and Context-Sensitive Lan
Computer and Systems Sciences 4, pp. 492-508, 1970.

Knuth, D.E., Semantics of Context-Free Languages, Mathematical Systems Theory 2, pp.
127-125, 1968.

Lindsey, C.H., Elsa — An extensible programming system, Pro
system design (ed. Borman, J.), North-Holland, 1983.

Madsen, O.L., On defining semantics by means of extended attribute grammars, Lecture
Notes in Computer Science 94, pp. 259-299, 1980.

Marcotty, M., Ledgard, H.F., and Bochmann, G.V., A Sam
Computing Surveys 8, pp. 191-276, 1976.

Mason, K.P., Dynamic Template Translators: A Useful Model for the Definition of
Programming Languages, Ph.D. thesis, University of Adelaide, 1984.

Mason, K.P., Dynamic Template Translators — A New Device for Specifying
Programming Languages, Intern. J, Computer Math 22, 199-212, 1987.

Mayoh, B.H., Attribute grammars and mathematical semantics, SIAM Journal of
Computing 10, pp. 503-518, 1981.

McCarthy, J., Recursive Functions of Symbolic Expressions and their Computation by
Machine, Communications of the ACM 3, pp. 184-195, 1960.

Mecllroy, M.D., Macro instruction extensions of compiler languages, Communications of
the ACM 3, pp. 214-220, 1960.

Meyer, A.R., Halpern, J Y., Axiomatic definitions of programmin
theoretical assessment, Journal of the ACM 29, pp. 555-576, 1982.

C., A theory of programming language semantics, Chapman and

Context Grammars, Journal of Computer and

mputer programming, Communications of the

Manual and Report, Springer Lecture Notes in

guages, Journal of
gramming languages and

pler of Formal Definitions,

g languages: A

Milne, R. and Strachey,
Hall, London, 1976.
Mosses, P., SIS — Semantics Implementation System: Reference Manual and User Guide,
DAIMT MD-30, Aarhus University, 1978.

Mosses, P., Abstract semantic algebras!, Proc. Formal Description of Programming

Concepts II, pp. 45-70, North-Holland, 1983.

40

Napper, R.B.E. and Fisher, RN, ALEC — A user extensible scientific programming
language, Computer Journal 19, pp. 25-31, 1976.
Napper, R.B.E. and Fisher, R.N,, RCC — A user-extensible systems implementation

language, Computer Journal 23, pp. 212-222, 1980.

Naur, P., Revised report on the algorithmic language Algol60, Communications of the

ACM 6, pp. 1-17, 1963,
Rosenkrantz, D.J., Programmed grammars and
ACM 16, pp. 107-131, 1969.

Shapiro, E.Y., Alternation and the computational com
of Logic Programming 1, pp. 19-33, 1984,

Sintzoff, M., Existence of a van Wijngaarden syntax for every
Ann. Soc. Scientifique de Bruxelles, pp. 115-118, 1976.

Turner, J.S., Unambigous definition mechanisms for extensible programming languages,
Ph.D. Thesis, Manchester, 1979,

van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Sintzoff, M.,
Lindsey, C.H., Meertens, L.G.L.T, and Fisker, R.G., Revised report of the algorithmic

language ALGOL 68, Acta Informatica 5, pp. 1-236, 1975.

Watt, D.A. and Madsen, O.L., Extended Attribute Grammars, DAIM] PB-105, Computer
Science Department, Aarhus University, 1979.

Wegbreit, B., Extensible programming languages, Harward University, Cambridge,
Massachusetts, 1970, (Garland Pubiishing, Inc. New York & London, 1980).

Wirth, N. and Weber, H., Euler: a generalization of Algol and its formal definition: Part |,
Communications of the ACM 9, pp. 12-23, 1966.

classes of formal languages, Journal of the
plexity of logic programs, Journal

recursively numerable set,

41

