
1

freely

A survey of adaptable grammars

Henning Christiansen
Roskilde University Centre

P.=. Box 260C DK-4000 RoskildeC Denmark
E-mail: henningJdat.ruc.dk

This paper is a comment on two recent contributions to Sigplan Notices.
In his paperC QThe static semantics !leRC no. 25/4C Brian Meek discusses the relevance

of the notion of Qstatic semanticsR. The relation between a variable’s declaration and the
restrictions on its useC for exampleC is usually classi!ed as static semantics. Meek !nds
the designation rather misleading since it is applied for concepts concerned with context-
dependent syntax. The term QsemanticsR should properly only be used for aspects that have
to do with real meaningC e.g.C the association between program statements and their intended
computation. Here I will show that this distinction between syntax and semantics can be
made clearer using grammars which adapt themselves to the current program contexts. For
exampleC declarations of new items can be described by adding new rules to the grammar
and thusC within a given scope of a programC the set of valid phrases can be derived by
means of the current set of grammar rules. This wayC we get rid of some of those X often
quite complicated X context constraints that are called static semantics.

In no. 25/5C Boris Buhrsteyn presents an articleC Q=n the modi!cation of the formal
grammar at parse timeR. The author suggests an approach to language recognition in which
declarations ofC sayC variables result in an adaptation of the grammar as outlined above and
in turn in an adjustment of the parsing tables. The idea can be traced back to the early
sixtiesC and over the years several proposals for adaptable grammar formalisms have been
suggested. In the followingC I complement Buhrsteyn’s article giving an overview of the area
and describe the advantages and disadvantages of describing programming language syntax
this way.

Section 1 below describes the principle of adaptable grammars and how it can be used
to characterize various context-dependentC syntactic aspects. The notation used will be my
own generative clause grammars which are adaptable versions of Prolog’s de!nite clause
grammars. The formal de!nition is given in appendix AC appendix B shows some examples.
Section 2 provides a short historic survey of approaches to extensible or adaptable grammar
formalisms. The more problematic issues of the approach and how they have been solved or
not solved in various formalisms are discussed in section 3.]isibility rules and recursive dec-
larations represent syntactic aspects that are dif!cult to handle this way. Chapter 4 provides
for a summary and a discussion of the distinction between syntax and semantics.

1

1

→

→

1 The principle

From where or from whom this designation originates is not clear to me. Perhaps it is
due to a shallow interpretation of the title of Knuth’s (1968) paper which introduced attribute
grammars?

When describing the full syntax of a programming languageC we have to take
care of context-dependent issues introducedC among other thingsC by declara-
tions. In a traditional grammar X an attribute grammar (KnuthC 1968)C for
example X a !xed set of (in principle) context-free rules are kept in check by
additional context conditions. The general rule describing use of variablesC
for exampleC

variable identi!er

will typically have an associated context condition which states that the actu-
ally occurring identi!er has to appear in a certain symbol table object. The
designation of Qstatic semanticsR is often applied for such context conditions.

These context conditions tend to be rather complicated. For simple vari-
ablesC it works quite wellC but the more sophisticated declaration mechanismsC
the more inane grammar rules and complicated context conditions. This is in-
dicated very clearly in the published attribute grammar for Ada (Uhl et al.C
1982) by the two-and-a-half page context condition associated with the gram-
mar rule for general procedure and function call (rule r 084). We can illustrate
the phenomenon by a small experiment. Consider a language in which arbi-
trary new constructs can be declared in any syntactic category. In order to be
prepared for all possibilitiesC an attribute grammar mustC thenC contain a rule
of the following kind.

phrase characterd

The associated context X or Qstatic semanticR X condition willC thenC be
where all real information about the language syntax must be encoded.

Instead we may suggest (as also BuhrsteynC 1990C di ForiniC 1963C just to
mention a few) that we

e abolish the over-general rules with their context conditionsC

e introduce mechanisms to add individual grammar rules for each de-
clared notion.

2

→

→

Controlling grammatical scope

grammatical context

context part

For exampleC for a variableC xC of type integerC the following rule should be
added to the current grammar.

variable(integer) fxg

The notation used here is similar to Prolog’s de!nite clause grammars (Colmer-
auerC 19h5C PereiraC WarrenC 1980)C terminal symbols are indicated by square
bracketsC the atomic value QintegerR is an attribute of the nonterminal Qvari-
ableR.

Following this principleC a procedure declaration should give rise to a
grammar rule describing calls of that particular procedure. For exampleC calls
of a Pascal procedureC pC with a variable parameter of type real and a value
parameter of type integer is described as follows.

statement fpC ’(’gC variable(real)C f’C’gC expression(integer)C f’)’g

This as opposed to having a set of rules describing general procedure calls X
with any possible name and any possible kind of parameter list X and asso-
ciated attribute de!nitions which collect the information about the particular
call and check its consistency with the symbol table.

In order to turn the idea into a formalismC two things must be providedC

e a method for synthesis of new grammar rulesC and

e a mechanism for controlling their scope.

As an example of an adaptable grammar formalismC I will explain my own
generative clause grammarsC GCGC which are extensions of the well-known
de!nite clause grammars (ColmerauerC 19h5C PereiraC WarrenC 1980).

The syntactic derivation relation for GCG associates with each instance of a
nonterminal a grammar which is called its . This gram-
mar determines the sentential forms which can be derived in one step from
that nonterminal. In a GCG ruleC a nonterminal can have a which
gives expression to its grammatical context. Consider as an example the fol-
lowing GCG rule for a non-recursive block construct.

3

→

→

→

G
G

N

N
G

where

where

Synthesizing new grammar rules

statement in dcontext
fdeclaregC declarations(dnews)C
fbegingC

statements in dnews j dcontextC
fendg.

The asterisks indicate grammar variablesC the QinR symbol connects nonter-
minals with their context parts.

ConsiderC nowC a nonterminalC QstatementR whose grammatical contextC
C includes this rule. When the rule is applied to expand the nonterminalC the

variable dcontext will refer to . The declaration part is expected to gener-
ate an additional set of grammar rulesC C which henceforth is bound to the
variableC dnews. (The omitted context part for the declarations defaults to the
currentC i.e.C dcontext). The grammatical context for the body statements is
then the value of the expressionC dnews j dcontextC which is the union of
and . A formal de!nition is given in appendix A.

Buhrsteyn (1990) shows a notation based on Yacc’sC (JohnsonC 19h5). The
GCG formalism inherits its notation from its underlying logic programming
framework. Consider as an example the following rule for variable declara-
tions.

declaration(duse-var)
fvargC identi!er(did)C f:gC type(dtype)

duse-var m (variable(dtype) fdidg).

In an application of this ruleC the variables did and dtype will be instantiated
to suitable terms whichC thenC serve as parts of the generated grammar rule.
For exampleC in the derivation of the declarationC

var x: integerC

the grammar variable did is assigned the value QxR and dtype the value Qin-
tegerR. (How we distinguish between such meta-variables and possible new
variables needed in the new rule is explained later). The notation makes
it possible to extract textually large attribute expressions and place them be-
low the grammar rule.

4

*

use

→

→

→

→

The effect of the adaptable principle
The basic idea is that grammatical context is made an explicit data object
open for modi!cationC e.g.C by extension with new rules. This wayC we may
write grammars which extract the contents of declarationsC arrange it into new
grammar rules which become valid in the scope of the declarations. Hence
there is no need to attach any additional context restrictions to the grammar
rule. In the body of a block everything is generated freelyC perhaps supplied
by yet otherC locally generated grammar rules.

AboveC the principle was applied to simple variables. We can continue
with types. The declaration of a record type forC sayC complex numbersC gen-
erates the grammar rules which so to speak brings the type into existence.

type(complex) fcomplexg.

variable(real) variable(complex)C f’.’C reg.

variable(real) variable(complex)C f’.’C img.

The !rst rule giving the type identi!er makes it possible to declare variables
of complex typeC the two latter for accessing the !elds of such variables. The
last ruleC for exampleC states that anywhere (in its scopeC of course) that a real
number variable is expectedC a complex number variable followed by Qdot-
imR is allowed.

IfC furthermoreC the language at hand allows the declaration of new oper-
atorsC a declaration of an operator for complex multiplication could give rise
the following rule.

expression(complex) expression(complex)C f gC expression(complex).

The rules for the declarations which generate these rules are found in ap-
pendix B.

As mentioned aboveC the principle of adaptable grammars reduces the
need for the often quite heavy context conditions which X under the name
of static semantics X otherwise is a burden on syntax descriptions for pro-
gramming languages. There is also a conceptual advantage in the approach
which seems more natural with respect to the way we declarations in pro-
gramming languages. Whenever a programmer has got used to a program
package for complex arithmetic he can think of complex numbers as being an
integral part of the programming language X equal to integers and booleans.

5

. . .

λ

2 Approaches to adaptable syntax

The idea looks captivating when applied to declarations as shownC howeverC
there are other context-dependent issues of programming language syntax
which are more problematic to express this way. We return to this in sec-
tion 3.

The following survey is based on my personal search for work related to my
own.

The !rst to describe the idea of extending the grammar in order to model
declarations seems to be A.C. di Forini (1963). The approach is motivated
by the (at the time) lack of a formal de!nition method for the full syntax
of programming languages as well as by interest in conceptual aspects. To
support the viewpointC di Forini gives citations from the original Algol 60
report (NaurC ed.C 1960)C e.g.C Q fdeclarationsg automatically introduce a
new level of nomenclatureR. The paper gives no suggestion for a grammatical
formalism or a notationC but it is very clearly written and may still provide
valuable insight to the present-day reader.

In 19h0C B. Wegbreit introduced a class of extensible context-free gram-
marsC ECF’sC in order to describe his extensible programming system ECLC
(WegbreitC 19h0). An ECF consists of a context-free grammar and an associ-
ated !nite state machine. The !nite state machine analyzes the source text in
parallel with the normal parsingC and whenever a pattern has been recognized
as a grammar rule (which have to be enclosed in special brackets)C it can be
either added to or deleted from the grammar. Whether addition or deletion
meantC is indicated using either an arrow or a crossed out arrow between the
left and right hand sides of the grammar rule in the source text. HoweverC the
applications of ECF are rather limitedo I will come back to this in section 3.

Hanford and Jones (19h3) have suggested a concept of dynamic syntax
which is a monstrous device based on the -calculus. Also hereC the current
set of valid rules is intended to be a data object open for modi!cation. Un-
fortunately the approach is not given a proper formalization or accompanied
with an appropriate notation. Therefore it is dif!cult to compare it with other
approaches and the authors do not seem to have continued with the idea.

Yet another approach is Mason’s (1984C 198h) dynamic template transla-
torsC DDT’sC which can be seen as a generalization of Wegbreit’s approach. A

6

2

2

Some additional techniques are needed in order to represent the resulting hierarchies of
programs in a common program spaceC see (ChristiansenC 1990).

DDT is basically a syntax-directed translation scheme which may have side-
effects on itself. The language determined by a DDT is de!ned operationally
in terms of an extended shift-reduce algorithm.

The !rst of my own published papers on these mattersC (ChristiansenC
1985)C introduces an extension of attribute grammars which in their essence
are equal to the generative clause grammars described here. A distinguished
attribute is used for passing grammar objects around and the derivation re-
lation is de!ned relative to these attributes. FurthermoreC it is shown that
these grammars also can express similarly adaptable semantics. The report
(ChristiansenC 1988) gives a more thorough treatment of these grammars.
Buhrsteyn’s recent approachC (BuhrsteynC 1990) seems closely related. His
modi!able grammars are also extensions of attribute grammars such that the
general attribute mechanism can be used to extract the contents of declarations
and put it together to form new rules. HoweverC with respect to modifying the
grammarC the approach is more related to Wegbreit’s and Mason’sC the syntax
analyzer can add new rules to the grammar as a side-effect while scanning the
program from left to right. This as opposed to our functional style of grammar
adaptation.

In (ChristiansenC 1986)C the problems involved in adapting traditional pars-
ing methods to languages de!ned by such grammars are discussed. HoweverC
no general solutions are givenC the main problem seems to be that parsing
tables are global properties of a grammar. This means that adding a single
rule to a grammar may lead to a re-construction of the entire parsing tableC
or worseC that the LL(1) or LALR(1) or whatever property is relevantC is de-
stroyed. HoweverC it is worth mentioning here the recent work by HeeringC
KlintC and Rekers (1989) on incremental generation of parsing tables which
looks quite promising. It will also be interesting to see the methods applied
in the announcedC forthcoming papers about Buhrsteyn’s translator generator.

The recent work on generative clause grammars described in this paper
has lead to an implementation in Prolog and a notational improvement com-
pared with my earlier work referenced above. The implementation is based
on a straightforward generalization of the implementation method used for
de!nite clause grammars (seeC e.g.C ClocksinC MellishC 198h). Here there is a
one-to-one correspondence between a grammar rule and its compilation into
a Prolog clause such that each rule can be compiled one at a time. The price

h

Removing rules at block exit

3 Difficulties in the adaptable grammar approach

to be paidC on the other handC is a large amount of backtracking and a poten-
tiality for in!nite loops. Interested readers are welcome to write to the present
author for a copy of source text of the GCG implementation.

Since the very beginning of computer science there have been an interest
in extensible languages and various sorts of generators of language proces-
sors. In this surveyC I have concentrated on grammatical formalisms based
on extensibility and generation of new rules. Readers interested in the men-
tionedC related subjects are referred to the existing bibliographies and surveys
on these matters. Just to mention a fewC I can refer to the following. Extensi-
ble languages: SolntseffC Yezerski (19h4)C Layzell (1985). Generator systems
based on attribute grammars: DeransartC JourdanC Lorho (1988).

FinallyC it should be made very clear that adaptable grammars cannot describe
any language which cannot be described by a conventional grammar. It is
possible to write down a de!nite clause grammar which is able to simulate any
generative clause grammar. It is based on a context-free grammar which can
derive any stringC generative clause grammars are passed around as attributes
and the GCG derivation relation is encoded as a context condition.

Similar constructions are possible in other kinds of grammarsC e.g.C at-
tribute grammars (KnuthC 1968) or two-level grammars (van Wijngaarden et
al.C 19h5). ActuallyC the three mentioned QtraditionalR types of grammars are
equivalent. DeransartC Maluszynski (1985) showed that de!nite clause gram-
mars and attribute grammars can be considered notational variations over the
same thingo Dembinski and Maluszynski (19h8) has described the transfor-
mation of attribute grammars into two-level grammars that generate the same
languages and vice versa.

We have seen that some contextual issues in programming language syntax
can be handled quite nicely by adaptable grammars. There are otherC more
problematic aspects which I will discuss in the following.

It seems quite obvious that a grammar formalism for programming languages
possess a natural way for describing locality of declarations in block struc-

8

→

→
→

1 2

1

2

where

Delayed or indirect declarations

tured languages. HoweverC this is not true for several proposals for adaptable
grammars.

In Wegbreit’s ECF’s and the suggestion of BuhrsteynC the grammar is a
state which develops while the source program is scanned from left to right.
Rules generated from declarations can be added during this process but nei-
ther of the systems has a way of marking rules for automatic removal when
the block’s !nal QendR is reached. It should be notedC howeverC that the ECF’s
are developed for describing one particular system and are not intended as a
general descriptive tool.

Mason’s DDT’s are similar in their treatment of the grammar as a state.
HereC translation rules may have side-effects on the current DDT. The rules to
be removed can be encoded in a rule describing the derivation of the block’s
QendRo i.e.C a rule which expands nonterminal END to terminal QendR and
whose side-effect is to take out the rules. It is a quite tricky construction X
and it is even more trickier to arrange these clean-up rules in order to avoid
confusion in the case of nested blocks.

The context-dependencies around nested blocks follow the phrase struc-
ture and not the sequential ordering of the program text. Hence the grammar
"ow in an adaptable formalism should better follow the phrase structure as
it is done in GCGC the context parts attached with each nonterminal can deal
out individual grammars to each sub-phrase.

A QwithR statement is an example of a construct which gives access to entities
declared somewhere else in the program text. The declaration of a record
type forC sayC complex numbersC should in an adaptable grammar context give
rise to a grammar rule describing the existence of a particular kind of QwithR
statement.

statement in dcontext
fwithgC variable(complex)C fdogC

statement in fdselect C dselect g j dcontextC

dselect m (variable(real) freg)C
dselect m (variable(real) fimg).

9

→

Recursive declarations

The problem is the notation to be used in the rule for the type declaration.
Here we will have variables referring to information extracted from the decla-
ration text as well as indications of variables to serve as such in the generated
rule. IfC furthermoreC the rules for !eld selection needed variables of their
ownC yet another level would have been introduced.

Such problems are well-known and well-understood in the !eld of meta-
programming in logic (e.g.C BowenC KowalskiC 1982C HillC LloydC 1988C Chris-
tiansenC 1990). It appears that a distinction between the different levels of
variables is neededC otherwise the soundness of the formalism breaks down
(BowenC KowalskiC 1982).

GCG (and earlier workC ChristiansenC 1985) is the only approach to adap-
tive grammars which to my knowledge has addressed the description of in-
direct declaration mechanisms. The notation used in GCG is inspired by the
referenced work in logic programming. It is given in de!nition 2 of appendix
A and exempli!ed in the grammar rule for record declarations in appendix B.
Module declarations and generics as in Ada can be described in a similar way.

No knownC adaptable grammars provide a satisfactory treatment of recursive
declarations. IntuitivelyC the following GCG rule for a block with recursive
declarations looks quite reasonable.

statement in dcontext
fdeclareC recursivelygC

declarations(dnews) in dnews j dcontextC
fbegingC

statements in dnews j dcontextC
fendg.

HoweverC this rule speci!es much more than we want in that dnews according
to the formal de!nition can contain strange creatures capable of generating
themselves.

In the implemented version of GCGC recursion is handled by a little hack
in the shape of a multi-pass operator which makes it possible to analyze the
same part of the input twice with two different grammars. In the !rst passC we
use a grammar extension which accepts as a statement anything which looks
like a procedure call and so forth for other categories of declarations.

10

→ { }

Visibility

GCG’s provide thus no satisfactory solutiono none of the otherC referenced
approaches to adaptable grammars have tried to cope with recursion.

In most languagesC the declaration of a variableC xC disables any other variable
declared in a surrounding scope with that name. SimilarlyC if a variable name
coincides with the !eld of a record type or an element of a user-de!ned scalar
type as in PascalC some adjustment is needed. In generalC we talk about the
visibility of a declaration and each language has its rules of visibility. The
design of visibility rules for real programming languages is very dif!cult and
the rules are often quite complicated. Here we may refer to the problems in
the design of the Pascal language (cf. WelshC SneeringerC HoareC 19hh) or to
the visibility rules of Ada (U.S. Dept. DefenceC 1983).

In an attribute grammarC information about declared constructs is stored
in a symbol table. A symbol table is a structureC and the visibility rules can
be implemented in the functions which access this structure. In the adaptable
grammar approachC we made an effort to get rid of the symbol table in favour
of a more homogeneous representation. Here the declared concepts lie in a
collection X in principle something as unstructured as a set X of grammar
rules. This implies that we have no counterpart to the symbol table access
functionsC disabling certain grammar rules must be done as set operations. =f
course it is possible to specify such operationsC but there is a real hard problem
in devising the properC descriptive notation.

Neither GCG nor any other adaptive grammars are suf!cient at this point.
In the implemented version of GCGC a few Prolog hacks can compensate
a little. The readers familiar with Prolog will recognize how the following
grammar rule disables any previous grammar rule concerned with variables
named x.

variable(dtype) fxgC pC dtype m integer

HoweverC it should be made clear that such tricks by no means constitute a
general method for expressing visibility rules.

CurrentlyC our group is working on a GCG for Ada which should represent
a reasonable test case concerned with visibility rules.

11

Undeclared variable: X

X

Misplaced token: X

no

Preventing multiple declarations

Error handling

In most languagesC the following sequence of declarations is illegal.

integer xo
real xo

We may cite the Revised Algol 60 Report (NaurC ed.C 1963): QNo identi!er
may be declared more than once in any one block headR. The idea in the
adaptable grammar approach is that a piece of program textC e.g.C the one
shown aboveC can be generated freely from the current set of grammar rulesC
whichC howeverC may change for different sub-phrases. Taking the full con-
sequence of the adaptable principle amounts to having one grammar rule for
each possible variable name X and arrange the grammar rules for declara-
tions such that the !rst declaration will result in a removal of the rule for the
name x. And some additional !ddling for making x available again inside
procedure declarations.

The only feasible solution here seems to go back to the traditional wayC
over-general grammar rules with additional context constraints (sicp). The
rule for blocks shouldC thenC include an overall judgement of the grammar
synthesized from the declarations.

A compiler designed on the background of an attribute grammar provides
explanatory error messages such as the following.

The offending token matches the context-free part of a grammar rule and the
error is exposed by the context constraint. In an adaptable grammar of the sort
discussed in the present paperC there is no rule at all to match the offending C
so the only possible message is something of the following sort.

=r as my Prolog implementation of GCG arrogantly states it: Q R.

12

3

3

4 Summary and some final remarks

=n the other handC these things are also dif!cult when using attribute grammarsp

The idea of programming language grammars able to adapt themselves to
different scopes of a program text has been around for nearly thirty years.
The principle is intuitively appealingC each declared concept in a program is
captured by individually generated grammar rules and is thus treated similarly
to any prede!ned concept in the language. In a given scope of the program
the legal phrases are generated freely from the current set of grammar rules.
Hence we eliminate some of those context constraints which otherwise are
referred to as static semantics. The processing of declarationsC on the other
handC !ltering out their declarative contentsC is similar to how it is done in an
attribute grammar.

HoweverC not all aspects of programming language syntax are described
easily this way. Some suggested formalisms cannot even handle usually nested
scopes. Recursive declarations and visibility rules are dif!cult to handle and
no proposedC adaptable grammar formalism can do it in a suf!cient way. As
a basis for developing production-quality compilersC there are also problems
concerned with the quality of error messages and in the incremental construc-
tion of parsing tables.

For theoretical studies of programming languages and their use the ap-
proach seems quite feasible. Systems like the one reported to be under de-
velopment by Buhrsteyn or my GCG implementation in PrologC may serve
as powerful research and prototyping environments. In such cases we often
prefer to ignore dif!cult items such as visibility rules.

=ne of my motivations for writing this paper was a dispute about the relevance
of the notion of Qstatic semanticsRC (MeekC 1990). I will conclude by showing
another phenomenon which might be called Qdynamic syntaxR. Consider the
following Lisp program.

(progn (if (read) (defun f () nil) nil)
(f))

Whether the sub-phrase Q(f)R is legal or not depends on the execution of the
program. I.e.C the context-dependent syntax is given by the dynamic seman-
tics. Where does syntax end and semantics begin? =ne view might be that
the meaning of a declarationC its semanticsC is the creation of new syntactic

13

2

n

m

1

1

→

{ }

. . .

. . .

. . .

Definition 1.

Appendix A. Formal definition of GCG’s

where

constants vari-
ables functors terms ground terms

contexted nonterminal

non context

non context nonterminal context parts

generative clause grammar rule

cn item item

cn item

terminal symbols

embedded code

generative clause grammar

and semantic potentiality. Syntax is concerned with the forms in the languageC
whether they be de!ned in the reference manual or in the declarations in a pro-
gram text. The semantics associated with program statements has to do with
the intended computation. And this seems also to be the inherent viewpoint
in the various approaches to adaptable grammars.

Here we give formal de!nitions of generative clause grammars and their syn-
tactic derivation relation. The -notationC the omission of QobviousR con-
text partsC and the ampersand function symbol are syntactic sugar not consid-
ered in the de!nition below. The usual Prolog concepts of C

C C C and will be assumed (seeC e.g.C ClocksinC
MellishC 198h).

A is a term of the form

in .

The subtermsC and C are called and C re-
spectively.

A is a term of the form

C C

where is a contexted nonterminal. An is either

e a contexted nonterminalC

e a list of C fa C C a gC or

e which is a term enclosed in curly bracketsC .

A is a list of generative clause grammar rules.

The examples in this paper do not show examples of embedded code.
Embedded code makes it possible to apply the full computational power of
the Prolog language for evaluating attributes or grammatical contexts (p)o the
notation for and the meaning of embedded code is the same as for de!nite
clause grammars (ClocksinC MellishC 198h). The view of grammars as lists

14

2

2

−

′ ′

1

1 1

1

1

1 1

n n

n n

n

n

m m

Definition 2

Definition 3

>

.

ε

. . .

. . .

.

ε

V

D

D

D V

D

D D D

D

•

"

⇒

→

⇒ • •

⇒ • •

{ }⇒ "

⇒ ⇒

[[]]

[[]] [[]]

[[]]

[[]] [[]] [[]]

[[]]

syntactic denotation function

c c c

c c c

c c c n

f t t f t t f

t t t denotes t

non context
context

non context item item

non context item item

term term

of rules X as opposed to sets X simpli!es the representation of grammars
within themselves.

The binding time for a variable symbol X or its level of generation X is
indicated by the number of pre!xing asterisks. A variable in a rule is denotedC
sayC dxC whereas a piece of text which stands for a QfutureR variable in a
rule being generated appearsC e.g.C as ddx. An example is shown in appendix
B. The precise meaning is de!ned as followso we assume the existence of a
bijective functionC C from constants to variables.

The is the partial functionC C from
the set of ground terms to the set of terms de!ned inductively as follows.

m C for any constantC C

d m C for any constantC C

d m d C for any constantC C and 1C

(C C) m (C C)C different from unary d.

Whenever m C we say that .
The syntactic derivation relation is de!ned as follows. The dot operatorC
Q RC denotes construction and concatenation of strings of grammar symbolsC
is the empty string. We assume the presence of a global Prolog programC

BASISC giving the meaning of predicates applied in embedded codeo Q R
represents the provability relation.

The syntactic derivation relationC C is de!ned as follows.

e Whenever
in C

is a contexted nonterminal such that denotes a grammarC and
this grammar includes a rule which has an instanceC

in C C C
then

in C

e fa C C a g a a C

e if and only if BASIS .

The re"exive transitive closure of is denoted d.

15

→

→

→

→

→
→

→

where

where

1 1

2 2

1 2

1 2

1 1 1

2 2 2

Appendix B. Examples
Loops with tagged exit statement.

Declaration of infix operators.

statement in dcontext
label(did)C f:gC
floopgC

statements in fdexitg j dcontextC
fendC loopg

dexit m (statement fexitC didg).

New rules are generated for applying the
declared operatorC for accessing formal parameters inside the function bodyC
and for function exit.

declaration(dfn-call) in dcontext
ffunctiongC formal(dpar C dpar-type)C operator(dop)C

formal(dpar C dpar-type)C f:gC type(dfn-type)C fogC
statement in fdaccess-formal C daccess-formal C dreturng

j dcontext

dfn-call m (expression(dfn-type)
expression(dpar-type)C fdopgC expression(dpar-type))C

daccess-formal m (expression(dpar-type) fdpar g)C
daccess-formal m (expression(dpar-type) fdpar g)C
dreturn m (statement freturngC expression(dfn-type)).

16

→

→
→
→

→

→
→

References

1 2

1 1

2 2

1 1 1

2 2 2

1 2

1 1 1

2 2 2

Declaration of record types.

where

where

Logic Programming

Sig-
plan Notices

Proc. 18th Hawaii
International Conference on System Sciences

Lecture Notes in Com-
puter Science

Datalo-
giske skrifter

For simplicity we assume that records always
have exactly two !elds.

declaration(fdtype-ruleC dfull-select C dfull-select C dwith-ruleg)
ftypegC identi!er(dnew-type)C fmgC
frecordgC

identi!er(df)C f:gC type(dt)C fogC
identi!er(df)C f:gC type(dt)C

fendg

dtype-rule m (type(dnew-type) fdnew-typeg)C
dfull-select m (variable(dt) variable(dnew-type)C f’.’C df g)
dfull-select m (variable(dt) variable(dnew-type)C f’.’C df g)
dwith-rule m

(statement in ddcontext
fwithgC variable(dnew-type)C fdogC

statement in fddselect C ddselect g j ddcontextC

ddselect m (variable(dt) fdf g)C
ddselect m (variable(dt) fdf g)).

BowenC K.A. and KowalskiC R.A.C Amalgamating language and meta-language
in logic programming. C ClarkC K.L. and T!rnlundC S..C
eds.C pp. 153e1h2C Academic PressC 1982.

BuhrsteynC B.C =n the modi!cation of the formal grammar at parse time.
C]ol. 25C No. 5C pp. 11he123C 1990.

ChristiansenC H.C SyntaxC semanticsC and implementation strategies for pro-
gramming languages with powerful abstraction mechanisms.

C vol. 2C pp. 5he66C 1985.

ChristiansenC H.C Recognition of generative languages.
21hC pp. 63e81C Springer-]erlagC 1986.

ChristiansenC H.C The syntax and semantics of extensible languages.
C no. 14C Roskilde University CentreC 1988.

1h

Proc. META 90, Workshop onMeta-Programming in Logic

Programming in Prolog, Third edition

Les grammaires de metamorphose

Lecture Notes in Computer Science

Lecture Notes in Computer Science

Lecture Notes in Computer Science

Journal of Logic Programming

Communications of the ACM

Annual Review in Automatic
Programming

Sig-
plan Notices

Proc. META 88,
Workshop on Meta-Programming in Logic Programming

Computing Science
Technical Report

Mathematical Systems
Theory

The Computer Journal

ChristiansenC H.C Declarative semantics of a meta-programming language.
C LeuvenC BelgiumC

pp. 159e168C 1990.
ClocksinC W.F. and MellishC C.S.C .
Springer-]erlagC 198h.
ColmerauerC A.C C Groupe d’Intelligence
Arti!cielleC Universit de Marseilles-LuminyC 19h5. Appears as QQMetamor-
phosis grammarsR in 63C pp. 133e189C
Springer-]erlagC 19h8.
DembinskiC P. and MaluszynskiC J.C Attribute grammars and two-level gram-
mars: A unifying approachC 64C pp. 143e
154C 19h8.
DeransartC P.C JourdanC M.C and LorhoC B.C Attribute grammars. De!nitionsC
systems and bibliography. 323C Springer-
]erlagC 1988.
DeransartC P. andMaluszynskiC J.C Relating logic programs and attribute gram-
mars. 2C pp. 119e155C 1985.
di ForiniC A.C.C Some remarks on the syntax of symbolic programming lan-
guages. 6C pp. 456e460C 1963.
HanfordC K.]. and JonesC C.B.C Dynamic syntax: A concept for the de!ni-
tion of the syntax of programming languages.

hC pp. 115e142. Pergamon PressC =xfordC 19h3.
HeeringC J.C KlintC P.C and RekersC J.C Incremental generation of parsers.

24/hC pp. 1h9e191C 1989.
HillC P.M. and LloydC J.W.C Analysis of meta-programs.

C BristolC EnglandC
pp. 2he42C 1988.
JohnsonC S.C.C Yacc X yet another compiler compiler.

32C ATjT Bell LaboratoriesC 19h5.
KnuthC D.E.C Semantics of context-free languages.

2C pp. 12he145C 1968.
LayzellC P.J.C The history of macro processors in programming language ex-
tensibility. 28C pp. 29e33C 1985.

18

Dynamic Template Translators: A useful model for the definition
of programming languages

Intern. J. Computer Math

Sigplan Notices

ed. Communications
of the ACM

ed. Commu-
nications of the ACM

Artificial Intelligence

Annual
Review of Automatic Programming

Lecture Notes in Computer Science

Reference manual for the Ada programming language

Harward University, Cam-
bridge, Massachusetts Garland Publishing

Software, Practice and Experience

Acta Informatica

MasonC K.P.C
. Ph.D. thesisC University of AdelaideC AustraliaC

1984.

MasonC K.P.C Dynamic template translators X A new device for specifying
programming languages. 22C pp. 199-212C 198h.

MeekC B.C The static semantics !leC C]ol. 25C No. 4C pp.
33e42C 1990.

NaurC P.C C Report on the algorithmic language Algol 60.
4C 1960.

NaurC P.C C Revised report on the algorithmic language Algol 60.
6C pp. 1e1hC 1963.

PereiraC F.C.N. and WarrenC D.H.D.C De!nite clause grammars for language
analysis X A survey of the formalism and a comparison with augmented
transition networks. 13C pp. 231e2h8C 1980.

SolntseffC N. and YezerskiC A.C A survey of extensible languages.
hC pp. 26he30hC 19h4.

UhlC J.C DrossopoulosC S.C PerschC G.C GoosC G.C DausmannC M.C WintersteinC
G.C and Kirchg!ssnerC W.C An attribute grammar for the semantic analysis of
Ada. 139C Springer-]erlagC 1982.

U.S. Dept. DefenceC C
ANSI/
MIL-STD-1815AC 1983.

WegbreitC B.C Extensible programming languages.
C 19h0. (C Inc.C New York j Lon-

donC 1980).

WelshC J.C SneeringerC W.J.C and HoareC C.A.R.C Ambiguities and insecurities
in Pascal. hC pp. 685e696C 19hh.

van WijngaardenC A.C MaillouxC B.J.C PeckC J.E.L.C KosterC C.H.A.C SintzoffC
M.C LindseyC C.H.C MeertensC L.G.L.T.C and FiskerC R.G.C Revised report on
the algorithmic language ALG=L 68. 5C pp. 1e236C 19h5.

19

