
Flexible query-answering systems modelled in
metalogic programming

Troels Andreasen
Henning Christiansen
Roskilde University

P.O. Box 260, DK-4000 Roskilde, Denmark
{troels, henning}@dat.ruc.dk

Abstract

Metaprogramming adds new expressive power to logic programming
which can be advantageous to transfer to the field of deductive databases.
We propose metaprogramming as a way to model and develop new,
flexible query-answering systems.

A model is shown, extending deductive databases by a classifi-
cation of the clauses in the database, an integration of nonstandard
inference rules, and a notion of proof constraints in which a variety
of flexible ways of evaluating database queries can be expressed. Fur-
thermore, it is indicated how techniques developed in metalogic pro-
gramming for abduction and induction may be applied for modelling
knowledge discovery and data mining.

1 Introduction

Deductive databases have never reached a widespread acceptance in practical
applications of databases, but at the conceptual level, they are acknowledged
for their simplicity combined with high expressibility. As such, the field of
deductive databases has proved to be an important research platform and
in many ways setting the standard for future database technology. The
deductive database formalism is a subset of first order logic, for which the
logic programming scheme, predominantly in the shape of Prolog, provides

1

implementations that are sufficient for many applications and also may show
the way to fullscale database systems.

Metaprogramming, which has been studied extensively in the recent years,
provides an extended expressibility to logic programming and in the present
paper, we suggest to use metaprogramming as a methodology in deductive
database research with a bias towards flexible query-answering systems. We
believe that modelling and experimenting in this way with new database for-
malisms and query-answering mechanisms is useful, leading from early and
vaguely understood proposals to proper formalizations.

In this paper, we propose an extended model for deductive databases and
query evaluation characterized by

• a classification of the database clauses into separate spaces of domain
knowledge,

• a parameterization by the inference rules, which may be instantiated
into a collection of nonstandard rules, and

• a reification of the proof, which we recognize as an important part of
the answer to a query, and on which a variety of natural constraints in
a database query can be expressed.

We indicate also how techniques developed in metalogic programming for ab-
duction and induction can be applied for modelling construction and main-
tenance tasks such as view updates, knowledge discovery and data mining.

1.1 Background

Metaprogramming can be defined as “treating programs as data” and as such,
it has always been a central notion in computer science, from the first compil-
ers or even before that, regarding, e.g., the seminal works by Gödel, Turing
and Church in the thirties and forties. With the advent of symbolic program-
ming programming languages such as Lisp and Prolog, metaprogramming has
been recognized as a powerful and useful programming technique of its own
right despite the slight increase in complexity. In logic programming, we may
summarize the advantages of metaprogramming as follows,

• it is possible to write generic code, e.g., rules that goes for a group of
predicates,

2

• flexibility in interpretation, the programmer can interfere with the se-
mantics of the language, e.g., adding nonstandard inference rules or
controlling the application of inference rules, and

• enhanced functionality, in the simplest case, adding, say, tracing capa-
bilities to an interpreter and more radically, having an interpreter to
“run backwards” in order to create programs.

Meta-programming can be viewed as a way to simulate features normally
related to higher-order logics, but staying in a first-order setting and as such
keeps open the perspectives for efficient implementation. We summarize the
possible contributions of metalogic programming to the field of deductive
databases by the following commuting cube.

"
"
"
"
"

�
�

Deductive
databases

First-order
logic

Extended
knowl.repr.

“Higher-order”
logics

Logic
programming

Metalogic
programming

Deduct. db
system

Flexible, coop., etc.
db system

The front of the cube represents theoretical settings on which the imple-
mented technology, shown in the back, is founded. The point of view we
defend in the present paper is that the extended power of metaprogramming
is higly relevant for the development of new and more flexible knowledge
representation formalisms and implemented systems.

Most work concerning metaprogramming in logic takes its origin in the
extremely simple self-interpreter for Prolog known as Vanilla.

prove(true).

prove((A,B)):- prove(A), prove(B).

prove(A):- clause(A,B), prove(B).

Gaasterland, Godfrey, and Minker [17] has used an extension of Vanilla for
describing cooperative answering based on relaxation by taxonomy, i.e, gen-
eralizing the query in case of an insufficient answer. In our own work [2, 3],

3

we have taken this approach further allowing (in principle) arbitrary non-
standard inference rules kept in order by constraints on the proof produced
by the prove predicate. Reflective Prolog [12] is a proposal for a program-
ming language that integrates this programming-by-modifying-the-semantics
style, making clear the reflections between the object and meta layers that
take place. In [13], this framework is extended with a notion of metalevel
negation which makes it possible to characterize aspects of nonmonotonic
reasoning in an elegant way.

The metainterpretation approach can be taken further by making a rep-
resentation of the object program an argument of the interpreter as is the
case for the demo predicated which was suggested by Kowalski [22]. This
means that a metavariable can represent an unknown “hole” in the pro-
gram and in principle, demo should be able generate the remaining parts
of the program as to make the goal argument provable. However, it took
more than a decade before logically satisfactory implementations of demo

appeared in two simultaneous results by [26, 7]; our own constraint-based
Demo system [8, 9, 10] seems to be the first implementation which makes
demo available as a general metaprogramming tool capable of handling ar-
bitrary uninstantiated metavariables. Experiences with this systems shows
that alternative reasoning patterns, e.g., abduction, induction and default
reasoning, can be implemented in quite straightforward ways having demo

to run in parallel with additional metalevel constraints defining the kinds of
novel fragments that are allowed.

For an overview of the field of metaprogramming, we refer to the series
of workshop proceedings [1, 6, 25, 16], two survey papers [20, 5] and a recent
book [4]. We may also refer to the following entries for earlier work on flexible
query-answering mechanisms [14, 18, 15, 23, 11].

1.2 Overview of this paper

Section 2 describes our prototype for experimenting with nonstandard in-
ference rules and constraints on the proof realized by a few straightforward
extensions to the Vanilla interpreter. We indicate application of this frame-
work to model user requirements, extended answering capabilities as well as
a new form of semantic optimizations.

In section 3, we sketch the overall principles in the Demo system and
indicate its use for modelling dymanic aspects of databases such as view
update, knowledge discovery and data mining.

4

We give a summary and some ideas for future work in section 4.

2 Flexible query-answering by extensions to

the Vanilla interpreter

Our model for query-answering systems is presented as an extension of the
vanilla interpreter, parameterized by a set of inference rules and with a reifi-
cation of the proof, which makes possible the principle of having constraints
on the proof as a way to direct the application of the inference rules. As
shown by a picture, the introduction of new inference rules extend the an-
swer whereas proof constraints reduce it.

Proof
constraints

�
�

�
�

Non-standard
inference

'

&

$

%

Standard
interpretation

'

&

$

%
It should also be stressed that for certain types of queries, that the proof
contains information that is highly relevant for the user as part of the answer
given by a system. Consider as an example a database for travel planning.
A traditional deductive database system (or Prolog interpreter) can only
answer whether or not a certain travel is possible, whereas the actual travel
plan consisting of the subdistances making up the whole trip, is what is
expressed in the proof.

2.1 Classification of the database clauses

The facts and rules in the database are represented by Prolog facts of the
form

klause(class , clause).

Each clause is given a classification that determine the way it can be used
by the interpreter.

5

The following database, which we use below to illustrate proof constraints,
consists of clauses all classified as db indicating that they are to be understood
as database clauses in the usual way.

klause(db, (rich:- steal)).

klause(db, (rich:- earn)).

klause(db, (earn:- true)).

klause(db, (steal:- true)).

Other relevant classifications can be tax to indicate taxonomy clauses in-
tended also for widening a query or subgoal or ic for integrity constraints.

In this way, the database can be considered divided into separate knowl-
edge bases of different kinds of domain knowledge. A classification may also
be used to distinguish between the knowledge of different agents.

2.2 The interpreter

The Vanilla metainterpreter has been extended by an extra argument in order
to collect the proof; notice also that the normal rewriting of an atom by a
sequence of other atoms has been replaced by a predicate derive which we
discuss below.

prove(true,E):- dempty(E).

prove((A,B), ProofAB):-

dappend(ProofA, ProofB, ProofAB),

prove(A, ProofA), prove(B, ProofB).

prove(A, ProofA):-

derive(A, B, StepA),

dadd(StepA, ProofB, ProofA),

prove(B, ProofB).

The proof is a list of descriptions of proof steps, each generated by derive.
The list predicates dempty, dappend, and dadd covers over an abstract data
type of difference lists; the implementation is shown in the appendix. This
representation is convenient for the following practical reasons,

• concatenation of subproofs is done in constant time, without recursion,
and

6

• proof constraints can be defined orthogonally to the inference rules and
still execute in a lazy-evaluation style by means of coroutines in Prolog
during the construction of the proof.

The derive predicate in the metainterpreter should be understood as a pa-
rameter which represents the set of inference rules available. The usual modus
ponens rule is defined as follows.

derive(A,B,Step):-

klause(db, (A:- B)),

Step = step(mp, (A:- B)).

This defines the standard interpretation of a database; nonstandard inference
can be introduced by additional derive rules.

2.3 Implementing constraints on the proof

For illustrating the notions of the proof as part of the answer and constraints
on the proof, we consider the query rich to the database shown above with
modus ponens as the only rule; dmake is a coercion from normal lists to
difference lists.

?- dmake(Proof, ProofD), prove(rich, ProofD).

This yields the following two values of Proof as answers.

Proof = [step(mp,(rich:- steal)),

step(mp,(steal:-true))]

Proof = [step(mp,(rich:- earn)),

step(mp,(earn:-true))]

We can identify two sorts of relevant proof constraints, posed by the user
in the query language, and system constraints that characterize a particular
query-answering system. A given query-answering system defined by a set
of inference rules, a query language, and a set of system constraints may be
implemented as follows.

answer(Q/Con, Proof):-

system_constraints(Proof),

user_constraints(Con, Proof),

dmake(Proof, ProofD), prove(Q, ProofD).

7

The two constraint predicates should be implemented as coroutines that re-
sume execution each time a step is added to the proof. We illustrate the
principle by the following example.1

:- block honest(-).

honest([step(_, (X :- _)) | Steps]):-

dif(X, steal),

honest(Steps).

honest([]).

With this as a constraint to the query shown above, only the second proof
will be produced as answer.

2.4 Relaxation by taxonomy

As an example of a nonstandard inference rule, we consider relaxation by
taxonomy which can be realized adding the following metalevel rule to the
interpreter.

derive(Sub,Super,Step):-

klause(tax, (Super:-Sub)),

Step = step(relax_by_tax, (Super:-Sub)).

I.e., the taxonomy clause can be used in reverse compared with a normal
modus ponens step. Taxonomy clauses should be classified in the database
is such, e.g.:

klause(tax, (subdist(X,Y):-flight(X,Y))).

When queried for a travel composed recursively from one or more flights,
the interpreter may additionally suggests alternative travels in which one or
more subdistances is replaced by another means of transportation, e.g. using
another taxonomy rule in the normal modus ponens direction.

klause(tax, (subdist(X,Y):-bus_ride(X,Y))).

1We use Sicstus Prolog (SICS, 1995). dif is a logically correct implementation of
syntactic nonidentity. It delays until the arguments have been sufficiently instantiated.
The block directive causes honest to delay until its argument gets instantiated. This
control device does not affect the declarative meaning.

8

Our approach, here, is inspired by earlier work of Gaasterland, Godfrey, and
Minker [17] who performed similar transformations on the initial query, but
without going into derived subgoals as we do.

We can illustrate the difference between the two by an example. Having
submitted a query for a flight travel from Copenhagen to Budapest, the
typical traveller may accept as an answer giving a flight from Copenhagen to
Vienna followed a bus ride from Vienna to Budapest if for some reason the
all flights into Budapest have been cancelled. The travel agent who only can
modify the top level query would not suggest this solution, but instead go
directly to suggesting a bus ride all the way from Copenhagen to Budapest.
Our traveller is likely not to consider this travel agent very cooperative.

The flexible use of relaxation by taxonomy of arbitrary subgoals, creates
another problem, which motivates our notion of proof constraints. If taxon-
omy clauses can be used also in modus ponens steps, this may immediately
“undo” the relaxation and it is easy to see that the interpreter is condemned
to loop. The following will cure the problem.

Proof constraint: A given instance of a taxonomy rule cannot be used
in a relaxation as well as in a modus ponens step.

Referring still to the travel planning example, proof constraints may also be
used to express natural requirements such as “No intermediate station should
be passed more than once” or that the prize and/or travelling time should
be minimized.

2.5 Introducing a fragment of linear logic to databases

One of the motivations behind the development of linear logic [19] is to make
it possible to reason about aspects of process and time in a logical setting.
Linear logic differs from first order logic in the way that some formulas are
considered as resources in the sense that they are consumed when used in a
proof. This can implemented in our framework as follows.

Proof constraint: A clause classified as resource can only occur once.

We have not made any systematic investigation of this option yet or devel-
oped interesting examples, but we believe it to be a relevant extension to
deductive databases.

9

2.6 Counterfactual exceptions

It may often be relevant in a query to suppress part of the database, which we
so to speak counterfactually deny. For example, asking for a travel without
flights can be thought of as asking for a travel in a world similar to the
real world, but with all flights cancelled, despite the fact that the real world
as well as the database include flights. The example in section 2.3 above,
about getting rich in an honest way, is also a very simple special case of the
principle, we introduce here.

We developed the notion of counterfactual exceptions in order to express
such queries using the general interpreter described above and based on the
knowledge gained from it, we have been able to describe model-based and
completion semantics for this device as well as giving a specialized metain-
terpreter for it; this is described in our ECAI paper [3].

Here we need only the standard inference defined by modus ponens2 and
consider queries of the form

∃ · · · (φ→→ ψ)

with

φ = (∀ · · · ¬φ1) ∧ · · · ∧ (∀ · · · ¬φn)

where φ1, . . . , φn are atoms, ψ a conjunction of atoms; each subformula
∀ · · · ¬φi is called a counterfactual exception. Any variable quantified at the
outermost level is said to be global , all other variables in the φi’s are local .
For a given user query ∃ · · · (φ →→ ψ), ψ is made the goal argument of the
metainterpreter whereas φ is translated into proof constraints as follows.

Proof constraint: A clause instance A:- B is only allowed in the proof
if A and φ are consistent.

This consistency condition corresponds roughly to a condition of non-unifiability
which can be implemented using the lazy dif predicate described earlier.

The treatment of negative hypotheses as exceptions is computationally
much easier to handle than the possible world counterfactual implication
suggested by Lewis in [24] and adopted in most studies of counterfactual
reasoning. Although the latter view may be philosophically more pleasing in

2However, it is clear that the principle can be combined with nonstandard inference
and other proof constraints as well.

10

many context, our simplified version seems appropriate in database queries as
shown by the following examples. We assume a database of travel information
where a travel between two points is composed of one or more links, which
may be either train, boat, or flight.

The query “I want to travel from a to d, but I refuse to sail from b to c
on my way”, is formalized

(¬boat(b, c)) →→ travel(a, d).

“I want to travel from a to d, but I refuse to fly”:

(∀X, Y ¬flight(X, Y)) →→ travel(a, d).

We can show the use of global variables in the query “I want to travel from
a to a place where I do not arrive by train”.

∃X((∀Y ¬train(Y,X)) →→ travel(a,X))

These examples show that many natural requirements in a query which can-
not be expressed in any traditional query language fits quite well with con-
straints on the proof, here in the special fitting called counterfactual excep-
tions.

2.7 Semantic optimization by proof constraints

Semantic optimization is a method to restrict the search space by extending
the query by means of intensional knowledge, e.g., contained in integrity
constraints.

Assume, for example, an integrity constraint

∀X(p(X) ∧ q(X) → r(X)).

In case the extension of r is know to be small compared with the rest of the
database, the query s(X), p(X), q(X) can be extended to r(X), s(X), p(X), q(X)
without changing the answer but with a much faster evaluation of the query.

We can go a step further extending a query with counterfactual excep-
tions. Assume, for example, the following integrity constraint,

∀X(s(X) → ¬r(X) ∧X 6= a).

11

This means that we can extend the query ∃X s(X) with exceptions as follows
without changing the answer.

∃X((¬r(X) ∧ ¬s(a)) →→ s(X)).

This affects the execution in the following ways,

• whenever the subgoal r(X) appears for an X sought, it fails immedi-
ately,

• whenever the subgoal s(a) appears, it fails immediately without con-
sulting the extension of s.

In certain cases this can lead to a drastic reduction of the search space and
it should be compared with the fact that the processing of counterfactual ex-
ceptions only amounts to a constant slowdown of each proof step performed.

We consider another example with an integrity constraint

∀X(p(X) ∧ q(Y) → X 6= Y).

Here the query ∃X p(X) can be extended to

∃X(¬q(X) →→ p(X)).

3 Using a complete demo predicate to model

dynamic aspects of databases

In this section, we take up a different theme in metalogic programming which
seems to be relevant when modelling dynamic properties of databases such
as updating and knowledge discovery.

A proof predicate such as the two-argument demo is well-suited for spec-
ifying such problems, and thus it is obvious to use our implemented version
of it for experimental purposes. Our metalogic programming system called
Demo differs from earlier implementations by providing a fully logical treat-
ment of metavariables standing for unknown parts of the object program
interpreted by demo. The demo predicate can be specified as follows.

demo(P ′, Q′) iff P ′ and Q′ are names of pro-
gram and query, P and Q,
such that there exists sub-
stitution σ with

P ` Qσ

12

A meta-variable in P ′ will thus stand for a piece of program text and demo will
produce program fragments which make Q provable. The implementation is
fairly efficient due to the use of constraint techniques and the usefulness of
the approach comes from the ability to have user-defined conditions to the
program fragments sought run interleaved with the actions of demo.

The full description of Demo is given in [10]; here we give a brief overview
focusing on potential database applications.

3.1 View update by abduction

We use an example from [21] as an introduction the use of Demo for database
application. We have retouched away a few technical details, that are un-
necessary for the points we want to illustrate here; all details can be found
in [10].

We consider a database with extensional predicates father and mother

and view predicates sibling and parent. We assume an initial database
with the following contents; the object_module directive recognized by the
Demo system associates the database with the name db0, the backslash is a
quotation operator that indicates a ground representation.

:- object_module(db0,

\[(sibling(X,Y):- parent(Z,X),parent(Z,Y),

dif(X,Y)),

(parent(X,Y):- father(X,Y)),

(parent(X,Y):- mother(X,Y)),

father(john,mary),

mother(jane,mary)]).

The father and mother predicates being the only extensional predicates
means that new knowledge has to be absorbed in the database solely by
facts about these predicates, also if the knowledge is reported in terms of
the view predicates. We formalize as follows — at the metalevel — what it
means for a database (extension) to consist such facts.

extensionals(\ []).

extensionals(\ [(father(?A,?B):-true)

| ?More]):-

constant_(A), constant_(B),

13

extensionals(More).

extensionals(\ [(mother(?A,?B):-true)

| ?More]):-

constant_(A), constant_(B),

extensionals(More).

The question mark is an unquote operator that indicates the presence of
a metavariable, so together with the indicated syntax constraints, it is ex-
pressed above that the arguments, whose names are given by A and B must
be constants (i.e., not variables or arbitrary Prolog structures). Co-routine
control is assumed for delaying this metalevel predicate, exactly as described
for proof constraints above in section 2.

Integrity constraints for a knowledge base also needs to be defined at the
metalevel.

integrity_check(DB):-

% You can only have one father:

for_all(

(constant_(A),constant_(B),constant_(C),

demo(DB, \\ (father(?A,?C),father(?B,?C)))),

A=B),

% You can only have one mother:

for_all(

(constant_(A),constant_(B),constant_(C),

demo(DB, \\ (mother(?A,?C) mother(?B,?C)))),

A=B),

% A mother cannot be a father:

for_all(

(constant_(A),constant_(B),

demo(DB, \\ (mother(?A,?_),father(?B,?_)))),

dif(A,B)).

We have now what is needed to implement a predicate for updating the
database properly so new knowledge can be explained.

14

update(DB, Obs, NewDB):-

extensionals(UpdateFacts),

NewKB = \ (?DB & ?UpdateFacts),

demo(NewDB, Obs),

integrity_check(NewDB).

Given a data DB and some observed facts Obs, a new knowledge base NewDB

is produced. The knowledge base is extended with new extensional facts
without violating the integrity constraints. The expression P1&P2 denotes
the program consisting of the union of the clauses of P1 and P2.

The following test queries show the overall behaviour of the update pred-
icate defined above.

?- update(\kb0, \\sibling(mary,bob), N).

N = \ (kb0 & [(father(john,bob):-true)]) ? ;

N = \ (kb0 & [(mother(jane,bob):-true)]) ?

?- update(\kb0, \\ (sibling(mary,bob),

mother(joan,bob)), N).

N = \ (kb0&[(father(john,bob):-true),

(mother(joan,bob):-true)]) ?

So the update predicate reasons in an abductive way in order to explain the
observed facts and in this way suggests the possible ways the extensional
database can be updated in order to become consistent with the world. If
there is only one possible update, it can be executed right away, otherwise
more information may be required from the user.

3.2 Using induction for data mining or knowledge dis-
covery

Under this headline, we consider the general problem of identifying appropri-
ate rules in order to identify automatically a structuring inherint in a large
set of data given in an unstructured way, in this context, typically in terms
of a set of facts.

15

To exemplify this, we modify the example above by deleting the rule
defining the sibling relation and introduce a few more extensional facts.

:- object_module(db1,

\[(parent(X,Y):- father(X,Y)),

(parent(X,Y):- mother(X,Y)),

father(john,mary),

mother(jane,mary),

father(john,bob),

mother(jane,pedro),

father(manuel,pedro)]).

Assume now, a new property named sibling is reported with the facts

F = sibling(mary bob), sibling(mary pedro).

We do not accept any new extensional predicates added to the database,
so the only way to assimilate the new facts will be by a new rule defining
the sibling predicate in terms of other predicates in the database. The
problem can be stated as follows, where we will discuss the possible choices
of the metalevel predicate simple_rule below.

?- simple_rule(R), demo(\ (db1 & ?R), F).

It may be the case that the only rules we allow should correspond to either
a natural join, a union or intersection of two existing predicates defined in a
suitable way (in the first place, if this fails, we may extend the scope to cover
more complicated rules). With this, the query to demo above will suggest
the rule

sibling(X,Y):- parent(Z,X),parent(Z,Y).

With more sophisticated metalevel rules it may even be possible to have the
condition dif(X,Y) added to the rule.

It should be stressed, however, that the Demo system only have been
used for small induction problems as the one shown above. In [10] we have
also shown how induction can be made with Demo under assumption corre-
sponding to default logic, so that Demo invents the rule “all birds fly, except
penguins” from a suitable collection of facts.

16

4 Concluding remarks

We have advocated the use of metalogic programming as a powerful tool
suited for experimenting with new mechanisms in deductive databases, rang-
ing from the design of query languages to “flexible” or “cooperative” ways
of answering queries.

We showed a straightforward extension of the Vanilla interpreter which
served as a generic model for flexible query-answering systems using non-
standard inference combined with proof constraints. We are not aware of
any earlier work that uses constraints on the proof in this way, and we have
intended to show that this notion is highly relevant in the statement as well
as the evaluation of database queries. As a special case, we considered the
notion of counterfactual exceptions and which also gave rise to a novel kind
of semantic optimizations.

Furthermore, we sketched how our Demo system, with its logically com-
plete demo predicate, might be used to model dynamic properties related to
the construction and maintenance of databases. With our current experi-
ence with Demo for abductive and inductive problems, we believe that it is
useful for formulating and experimenting with new models for these aspects.
However, it needs more work before we can conclude anything about whether
it is relevant to use it as a platform for implementation methods that can
be scaled up to realistic problems. A possible next step will be to try to
integrate the two paradigms we have shown.

17

Appendix, difference lists

The following Prolog unit clauses defines the abstract data type used for
difference lists

% Append two diff. lists

dappend(L1/L2, L2/L3, L1/L3).

% Add element to front of list

dadd(E,L1/L2,[E|L1]/L2).

% Normal list to diff. lists

dmake(L, L/[]).

% Empty diff. list

dempty(L/L).

References

[1] Abramson, H., and Rogers, M.H., eds., Meta-programming in Logic Pro-
gramming. MIT Press, 1989.

[2] Andreasen T., Christiansen H. An experimental prototype for flexible
query-answering mechanisms, A metainterpretation approach. In: [11],
1996.

[3] Andreasen, T., Christiansen, H. Counterfactual exceptions in deductive
database queries. Proc. ECAI’96, 12th European Conference on Artifi-
cial Intelligence pp. 340–344, 1996.

[4] Apt, K.R., Turini, F., eds., Meta-Logics and Logic Programming, MIT
Press 1995.

[5] Barklund, J., Metaprogramming in Logic. In: Encyclopedia of Computer
Science and Technology, Vol. 33 (eds. A. Kent and J. G. Williams), pp.
205–227, Marcel Dekker, New York, 1995.

[6] Bruynooghe, M., ed., Proc. of the Second Workshop on Meta-program-
ming in Logic. April 4–6, 1990, Leuven, Belgium.

[7] Christiansen, H., A complete resolution method for logical meta-
programming languages. Proc. of META-92, Third International Work-

18

shop on Metaprogramming in Logic. Ed. Pettorossi, A., Lecture Notes
in Computer Science 649, Springer-Verlag, pp. 205–219, 1992.

[8] Christiansen, H., Efficient and complete demo predicate. for definite
clause languages. Datalogiske skrifter 51, Roskilde University, 1994.

[9] Christiansen, H., On proof predicates in logic programming.
A.Momigliani and M.Ornaghi, eds. ’Proof-Theoretical Extensions of
Logic Programming’ , CMU, Pittsburgh, PA 15231-3890, USA. Proceed-
ings of an ICLP-94 Post-Conference Workshop, 1994.

[10] Christiansen, H., Automated reasoning with a constraint-based meta-
interpreter. To appear 1996.

[11] Christiansen, H., Larsen, H.L., Andreasen, T., Eds. Flexible Query-
Answering Systems, Proc. of the 1996 workshop (FQAS96), Roskilde,
Denmark, May 22–24, 1996. Datalogiske skrifter 62, Roskilde University,
1996.

[12] Costantini, S., Lanzarone, G.A., A metalogic programming language,
Logic Programming: Proc. of the Sixth International Conference, pp.
133–145, MIT Press, 1989.

[13] Costantini, S., Lanzarone, G.A., Metalevel negation and non-monotonic
reasoning. Methods of Logic in Computer Science 1, pp. 111–140, 1994.

[14] Cuppens F. and Demolombe R. Cooperative Answering : a methodology
to provide intelligent access to Databases. in Proceedings Proc. of the
Second International Conference on Expert Database Systems. 1988.

[15] Demolombe, R., Imielinski, R., eds., Nonstandard Queries and Non-
standard Answers, Studies in Logic and Computation 3, Oxford Science
Publications, 1994.

[16] Fribourg, L., Turini, F., Eds. Logic Program Synthesis and Transfor-
mation — Meta-Programming in Logic. 4th International Workshops,
LOBSTR’94 and META’94. Lecture Notes in Computer Science 883,
Springer-Verlag, 1994.

[17] Gaasterland T., Godfrey P., and Minker J., Relaxation as a Platform
for Cooperative Answering. Journal of Intelligent Information Systems,
1, 3/4, pp. 293-321, 1992.

[18] Gaasterland T., Godfrey P., and Minker J., An Overview of Cooperative
Answering. Journal of Intelligent Information Systems, 1, 2, 1992. p.
123–157.

19

[19] Girard, J.Y., Linear logic. Theoretical Computer Science 50, pp. 1-101,
1987.
International Logic Programming Symposium, 1991.

[20] Hill, P.M. and Gallagher, J.P., Meta-programming in Logic Program-
ming. To be published in Volume V of Handbook of Logic in Artificial
Intelligence and Logic Programming, Oxford University Press.
Currently available as Research Report Series 94.22, University of Leeds,
School of Computer Studies, 1994.

[21] Kakas, A.A., Kowalski, R.A., Toni, F., Abductive logic programming.
Journal of Logic and Computation 2, pp. 719–770, 1993.

[22] Kowalski, R., Logic for problem solving. North-Holland, 1979.

[23] Larsen, H.L., Andreasen, T., Flexible Query-Answering Systems, Proc.
of the 1994 workshop (FQAS94), Roskilde, Denmark, Nov. 14–16, 1994.
Datalogiske skrifter 58, Roskilde University, 1995.

[24] Lewis, D, Counterfactuals . Harward University Press, 1973.

[25] Pettorossi, A., ed. Proc. of META-92, Third International Workshop
on Metaprogramming in Logic. Lecture Notes in Computer Science 649,
Springer-Verlag, 1992.

[26] Sato, T., Meta-programming through a truth predicate. Logic Program-
ming, Proc. of the Joint International Conference and Symposium on
Logic Programming , ed. Apt, K., pp. 526–540, MIT Press, 1992.

[27] SICStus Prolog user’s manual . Version 3.0, SICS, Swedish Institute of
Computer Science, 1995.

20

