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Abstract. It is demonstrated how Constraint Handling Rules can be
applied for resolution of indirect and relative time expressions in text
as part of a shallow analysis, following a specialized tagging phase. A
method is currently under development, optimized for a particular cor-
pus of historical biographies related to the development of the Dutch
social movement between 1870 and 1940. It appears that CHR provides
a modular language which is well-suited for tailoring a method optimized
for the different linguistic constructs and the textual conventions applied
in a specific corpus. We explain the principles and illustrate by sample
rules. The project is currently in a phase of development and testing,
and this paper focuses on the methodological issues, while a detailed
evaluation is not relevant at present. Identified problems and possible
extensions are discussed.

1 Introduction

Information regarding the social networks that underlie our society’s history can
provide new insights into known data for social historical research. Automatically
extracting such a network from text involves finding and identifying the real
world entities that are described in the text, such as persons, organizations,
and locations. In order to connect the entity mentions to a timeline so that the
evolution of the network can be examined, time expressions need to be detected,
normalized, and put in their chronological order.

In this research, we study the problem of resolving the chronological ordering
of time expressions found in a collection of biographies. Solving this task will
facilitate the identification of events and relationships that involve two or more
entities, including the time when the events took place and how long they lasted.
Another point of interest is the positioning in time of general events and states
of affairs.

In (historical) biographical texts, time may be indicated explicitly (“June
12, 1876”,“in 1903”) or in a variety of indirect ways (“on that day”,“May of



that year”), depending on the writing style of the author and the availability
of specific information. We are especially interested in resolving implicit time
expressions and representing them as (perhaps imprecise) knowledge.

We use constraint solving techniques for this task, but instead of using a
fixed constraint solver (e.g., a traditional finite domain solver) we use the lan-
guage of Constraint Handling Rules (CHR). With this, we can write a constraint
solver that incorporates linguistic knowledge and heuristics, including syntactic,
semantic and pragmatic information extracted from the text.

Section 2 gives a short account on related work. Section 3 provides back-
ground on the chosen corpus and explains the goals for the analysis. Section 4
gives a gentle introduction to CHR and its application to language analysis. The
preprocessing is briefly described in Section 5, and Section 6 explains some of the
CHR rules that we have designed for time expressions. Considerations on tests
and the current state of the implementation are given in Section 7, and finally
we give some conclusions and indicate possible improvements of this technique.

2 Related work

Most standard methods for extraction of temporal information from text rely
on machine learning, as exemplified by [1, 2]; see also [3] for an overview and
more references. In our approach, we use a rule-based and transparent approach
to tailor an extraction method optimized for a particular corpus in order to
complete the suggestions produced by a rule-based tagger as the one explained
in Section 5.

Applications of CHR for language processing have been demonstrated by
different authors for a variety of tasks, such as parsing from Property Gram-
mars [4], building UML diagram from use case text [5, 6], analyzing biological
sequences [7, 8] and Chinese Word Segmentation [9]. The technique of using CHR
for bottom up parsing is investigated in depth in [10] that also suggests a pow-
erful notation of CHR Grammars on top of CHR; this notation was not used
for the present work as CHR Grammars index only by positions in the text,
whereas we apply an indexing that distinguishes between individual documents,
paragraphs and sentences as well.

Temporal logic has been implemented in CHR [11] but we find that this, as
well as other fully fledged calculi or logics concerning time, is far more general
and computationally complex than we need here. A generic language processing
system using typed feature structures implemented in CHR is described by [12]
that demonstrates the use of event calculus for handling time. Instead, we have
developed a constraint solver that reflects the particular linguistic constructions
concerning time within our chosen corpus and their inherent, varying degrees of
imprecision. The problem here does not seem not to be to reason about time, but
to reason about context and discourse in natural language text, and here CHR
provides a relevant tool [13]. We have not seen earlier work on CHR applied for
extracting temporal information from text in a similar way.



3 The case study: Historical biographies in Dutch

The data used in this study is a collection of biographies, in Dutch, detailing
the lives of the 575 most notable actors related to the rise of socialism in the
Netherlands (± 1870–1940). The biographies describe a coherent group of people
and organizations, with many connections between them.

The data set is provided to us by the International Institute of Social History
(IISH) in Amsterdam.3 IISH hosts the biographies online.4 The documents are
presented as separate pages, accessible either through an alphabetized index
of person names, or via keyword search using simple Boolean operators. Links
between documents are minimal: only the first mention of a person who also has
a biography in the collection links to that biography, other entities are not linked.
The biographies are accompanied by a database that holds personal information
regarding the 575 main characters. It includes their first names, surname, dates
of birth and death, and a short description. These details are used to generate
the index on the website.

The overall goal is to enhance the biographies in such a way, that new entry
points are created into the data, connecting all relevant pieces, and allowing for
more serendipitous research to be performed on the data set. We believe that
by interpreting the entity mentions as a co-occurrence network, which includes
entities of types organization and location, and attaching it to a timeline, new
perspectives are opened up that are not necessarily person-centric, as is the case
now.

Part of the overall task is to identify how certain phenomena are related to
time, e.g., particular events that are related to a specific date or entity attributes
that hold for some period of time. The data contains time expressions of various
types and formats. We restrict ourselves to resolving dates and intervals span-
ning days, months, or years. Time expressions with a finer granularity are not
considered.

Globally, two types of temporal expressions are found in the biographies:
specific dates, where day, month, and year are all known, and non-specific dates,
where at least one of the attributes is unknown. Besides the distinction between
specific and non-specific, another form of ambiguity exists in the expression of
time in text. Dates can be given explicitly, as for instance “14 November 1879”,
or implicitly, as “14 November of that year” or even “on that day”. In the latter
case, the time expression can only be resolved in reference to one or more (non-)
specific dates mentioned elsewhere in the text. Also, for each instance, we need
to determine if it concerns a reference to a single point in time, or if it denotes
the start or end of (or even some point during) an interval.

Ultimately, we aim to represent all explicit and implicit references to specific
and non-specific dates or pairs thereof as points and intervals anchored to the
timeline underlying all biographies, where we leave room for imprecisely defined
dates.

3 http://www.iisg.nl/
4 http://www.iisg.nl/bwsa/



4 Constraint Handling Rules and text analysis

Constraint Handling Rules [14, 11], for short CHR, is an extension to Prolog that
introduces bottom-up, forward chaining computations. Operationally, CHR is
defined as rewriting rules over a constraint store, which can be seen as a global
resource to be used by a Prolog program for storing, manipulating and consulting
different hypotheses.

CHR inherits the basic nomenclature and syntactic conventions of Prolog
such as variables written with capital letters and terms as a generic representa-
tion. The constraints of CHR can be called from Prolog programs and whenever
a constraint is called, it is added to the constraint store, and the CHR rules sup-
plied by the programmer apply as long as possible. CHR provides the following
sorts of rules.

Simplification rules: c1, . . . , cn <=> Guard | cn+1, . . . , cm

Propagation rules: c1, . . . , cn ==> Guard | cn+1, . . . , cm

The c’s are atoms that represent constraints, possibly including variables. What
is to the left of the arrow symbols is called the head, and what is to the right of
the guard the body.

A simplification rule works by replacing in the constraint store, a possible set
of constraints that matches the pattern given by c1, . . . cn, with the constraints
given by cn+1, . . . , cm, however, only if the condition given by Guard holds. A
propagation rule executes in a similar way, but it does not remove the head con-
straints from the store. The declarative semantics is hinted by the applied arrow
symbols (bi-implication, resp., implication formulas, with variables assumed to
be universally quantified) and it can be shown that the indicated procedural
semantics agrees with this.

CHR provides a third kind of rules, called simpagation rules, which can be
thought of as a combination of the two or, alternatively, as an abbreviation for
a specific form of simplification rules.

Simpagation rules: c1, . . . , ci \ ci+1, . . . cn <=> Guard | cn+1, . . . , cm

which can be though of as: c1, . . . , cn <=> Guard | c1, . . . , ci, cn+1, . . . , cm

When this rule is applied, c1, . . . , ci stay in the constraint store and ci+1, . . . , cn
are removed. In practice, the body of a rule can be any executable Prolog code.

It is straightforward to write bottom-up parsers in CHR when the strings to
be analyzed, as well as recognized phrases, are represented as constraints with
their position in the string represented by constraints carrying word boundaries
as attributes. The following sample rule could be part of a simplistic natural
language parser.

nounPhrase(N0,N1), verbPhrase(N1,N2) ==> sentence(N0,N2).

Informally it reads: if a noun phrase has been recognized between positions N0

and N1, and a verb phrase between N1 and N2, then we recognize a sentence



between N0 and N2. These Nx variables are assigned natural numbers that rep-
resents a numbering of the spaces between the words. It is possible to extend
this principle to model various context sensitive dependencies, as rules can also
refer to non-consecutive elements and other constraints that represent semantic
and pragmatic information. Rules can describe both shallow and deep analyses
and flexible combinations thereof, and it is also possible to control in detail, the
order in which rules are applied using special constraints that serve as triggers.

5 The starting point: Tagged text

The data is preprocessed in a number of ways. First, the text is lemmatized and
tagged with part-of-speech information using Frog, a morpho-syntactic parser
for Dutch [15]. Next, proper nouns are automatically identified and classified
into types person, organization, and location, using the Stanford Named En-
tity Recognizer [16], which we have retrained for Dutch named entities. The
entity mentions are then clustered to separate the distinct real world entities
that they refer to. Finally, temporal expressions are identified and normalized
using HeidelTime [17], a rule-based temporal tagger. An in depth analysis of the
preprocessing stage will be given in a forthcoming article. For now, we briefly
expand on the detection and normalization of temporal expressions.

5.1 Normalization of temporal expressions

HeidelTime was originally developed for German and English by Strötgen &
Gertz (2012) [17]. Because the system is rule-based, its functionality can easily be
extended by adding new sets of rules. We have demonstrated so by adding a rule
set for the extraction and normalization of Dutch time expressions. HeidelTime
extracts the temporal expressions by matching them and their immediate context
to predefined patterns of regular expressions and converting them to a uniform
format (TimeML5), making it easier to reason over them.

HeidelTime recognizes four types of temporal expressions: date, time, dura-
tion, and set [18]. We consider only types date and duration for this experiment.
Both include normalization rules for expressions with various degrees of speci-
ficity. For example, “halverwege de jaren negentig” (mid 90’s) is initially nor-
malized to ‘XX95-XX-XX’, where day, month, and century are left undefined. A
single mention of “juni” (June) is normalized to ‘XXXX-06-XX’. In a next step,
HeidelTime applies some basic reasoning to these cases, trying to resolve them
by relating them to either the document creation time, or the time expressions
that have occurred previously in the text. If these do not provide sufficient infor-
mation, the system will look at linguistic cues, such as verb tense, to determine
how the expression is related to its context.

However, this is not a guaranteed method, especially not when dealing with
historic documents. The document creation time in this case cannot be trusted,

5 http://www.timeml.org



since there is an obvious gap between the creation time and the time when the
described events occurred. ‘XX95-XX-XX’ might mistakenly be normalized to
‘1995-XX-XX’, while in light of the domain under consideration, it is far more
likely to refer to the year 1895.

A downfall of adhering to the TimeML format is that some information is
lost in translation. A specific mention of the year “95” is normalized to the
exact same tag as the example above, losing the distinction between a more or
less exact point in time and a slightly more ambiguous version thereof. As the
ambiguity of the expression increases, so does the severity of the information
loss. Expressions such as “een paar dagen later” (a few days later) or “enkele
jaren daarna” (several years later), are normalized to descriptive, imprecise tags.
In this case both expressions are normalized to ‘FUT REF’, which does not reflect
the most important difference: their unit of calculation. This may not form such
a huge problem in the analysis of, for instance, news articles, where the described
events are likely to span only a short period. For the current task of resolving
and ordering time expressions that span decades, however, this information is
crucial.

5.2 From tags to constraints

After preprocessing, the tagged text is converted into constraints of the following
form, one for each recognized token in a text:

token(Doc,Par,Sent,WordStart,WordEnd,

NamedEntity,TimeML,TimeId,

Token,PosTag,Lemma)

The WordStart and WordEnd attributes are word boundaries, as explained
above, relative to a specific sentence within a specific paragraph of a specific doc-
ument (i.e., a biography) as indicated by the first three attributes. The attributes
Token, PosTag, and Lemma indicate a token, its part-of-speech tag, and its stem.
The actual tense, mood, etc., are ignored since we are only interested in extract-
ing specific pieces of information and not a full syntactic and semantic analysis
of the text. The NamedEntity attribute represents whether the token is part of a
named entity and, if so, which type of entity. The TimeML attribute contains the
output received from HeidelTime, if the token is part of a temporal expression.
The TimeId attribute contains, when relevant, the TimeML representation con-
verted to a Prolog term of the form date(Century,Decade,Year,Month,Day),
using a null value to represent components that are not specified.

Since the biographies have already been processed automatically, we may
expect occasional parsing or tagging errors. In the present experiment, we take
the processed data as they are.

6 Examples of CHR rules for resolving time expressions

We are interested in identifying expressions that refer – either explicitly or in-
directly through ana- or even kataphora of different sorts – to time points and



time periods (or intervals), and resolving them as reliably as possible to actual
time. The relationship between these time expressions and particular events or
states of affairs mentioned in the surrounding text is a different issue that we do
not consider in the present paper.

Biographies have some specific features that we can anticipate and rely on.
For time expressions, we may in some cases encounter a degree of uncertainty,
either due to lack of precise information, or because the biographer judges the
exact date to be irrelevant. On the other hand, we can expect that there is real
history underneath, i.e., references to real time points and intervals. This implies
that we can count on some general properties of time, such as temporal linearity,
which might not exist in other genres of text, such as fiction.

All temporal expressions could be translated into constraints that treat time
as points on a numerical axis and apply standard constraint solving techniques
for equations and inequalities. However, this would result in the same loss of in-
formation that we see in the normalization to TimeML provided by HeidelTime.
To bypass this problem, we find it more fitting to use constraints that reflect the
linguistic expressions retaining their uncertainty. For example, to represent the
meaning of “in de late jaren zeventig” (in the late seventies) it seems inappropri-
ate to select an interval with hard, exact boundaries, for instance, from January
1, 1876, until New Year’s eve 1879. A more intuitive solution is to replace the
exact start date with a fuzzy representation. Finding the best way to do this is
an issue for future research. Here we show some rules that are used in ongoing
experiments.

6.1 Explicit dates and intervals

The tagger has already done an effort to recognize exact dates. The following
rule converts an exact date recognized in the text into a single, more manageable
constraint. Notice that the tagger via the NamedEntity attribute also indicates a
relative position of each token in the assumed time expression, so that ’B-TIME’
indicates the beginning of a time expression, and ’I-TIME’ any immediately
following tokens that are part of the same expression.

token(Bio,P,S,N0,N1,’B-TIME’,_,date(C,De,Y,M,Da),_,’TW’,Da),

token(Bio,P,S,N1,N2,’I-TIME’,_,date(C,De,Y,M,Da),_,’SPEC’,MonthName),

token(Bio,P,S,N2,N3,’I-TIME’,_,date(C,De,Y,M,Da),_,’TW’,_)

==> isPossibleDate(C,De,Y,M,Da), isMonthName(MonthName,M)

| exactDate(Bio,P,S,N0,N3,date(C,De,Y,M,Da)).

It matches token constraints originating from a text such as “12 februari 1889”.
In this rule we also perform a check that ensures the output from the tagger
is valid, although this is fairly trivial for exact dates. The isPossibleDate

and isMonthName predicates in the guard are part of a small lexical toolbox
implemented for this application. The ‘TW’ indicates a numeral.

An explicit year which is not part of a date is extracted as follows.



token(Bio,P,S,N1,N2,’B-TIME’,_,Y,’TW’,Year)

==> isPossibleExactYear(Year,C,De,Y)

| exactYear(Bio,P,S,N1,N2,date(C,De,Y,null,null)).

The isPossibleExactYear predicate checks that the observed number, for ex-
ample 1889, is a reasonable year and splits it into century, decade and year, for
the example 18, 8, 9. The null values for month and date indicate that it is
not relevant (at this level of analysis) to insert further information, as it is not
recognized whether this mention of a year is intended as some exact, but not
specified, date in that year, or a time interval spanning most of that year.

We have similar rules for identifying exact months in a given year and months
without an explicitly given year. The latter are expected to be resolved using
their context in a later phase of the analysis.

Exact time intervals are indicated in different ways in Dutch, one of the most
common is to use the word tot (until) between two exact dates. This gives rise
to the following CHR rule. In a simpagation rule like the following, the order of
the constituents in the rule do not match the textual order, which is controlled
by the Nx attributes.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

exactDate(Bio,P,S,N0,N1,date(C1,D1,Y1,M1,D1)),

exactDate(Bio,P,S,N2,N3,date(C2,D2,Y2,M2,D2))

<=>

timeInterval(Bio,P,S,N0,N3, date(C1,D1,Y1,M1,D1),

date(C2,D2,Y2,M2,D2)).

Notice that the rule removes the exact dates from the constraint store as they
are no longer relevant after this pattern has been applied.

6.2 Indirect time points

We often encounter time expressions where part of it is not expressed directly.
There may be a pronoun as in “september van dat jaar”, or simply “september”.
The following rule attempts to identify a relevant year for such cases.

token(Bio,P,S,N1,N2,’O’,_,null,dat,’VG’,dat),

token(Bio,P,S,N2,N3,’O’,_,null,jaar,’N’,jaar)

\

month(Bio,P,S,N0,N1,date(null,null,null,M,null))

<=> nearestBeforeYear(Bio,P,S,N0, NBY),

isPossibleExactYear(NBY,C,De,Y)

|

month(Bio,P,S,N0,N3,date(C,De,Y,M,null)).

The nearestBeforeYear device is a special constraint that searches backwards
through the text to match the first constraint that contains a reasonable year.



This constraint is then supplied to the new month constraint that replaces the
one matched in the head.

When the nearest, previous mention of a year is part of a reference to liter-
ature, the system might make a wrong guess. To correct this, a preprocessing
phase neutralizes such citation years before we apply the normalization rules.
This phase is implemented using CHR rules that match the conventions for
references used in this corpus.

6.3 Time intervals with partly implicit information

Consider the fragment “... mei tot september 1904” (May until September 1904),
for which it seems reasonable to assume that “mei” refers to “mei 1904”. For
this particular pattern, we implement the following rule.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

month(Bio,P,S,N0,N1,date(null,null,null,M1,null)),

month(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,null))

<=>

timeInterval(Bio,P,S,N0,N3, date(C2,De2,Y2,M1,null),

date(C2,De2,Y2,M2,null)).

However, this rule will be incorrect if applied to “december tot september 1904”,
where (at least in the lack of other strong indicators) “december” most likely
refers to “december 1903”. There are yet other cases where the year is given for
the first and not the last given month and so on. We could write a set of almost
identical CHR rules for the different cases, but instead it is more convenient to
write one general rule as follows (thus also subsuming the rule above).

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

month(Bio,P,S,N0,N1,date(C1,De1,Y1,M1,null)),

month(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,null))

<=> canResolveMonthInterval(C1,De1,Y1,M1, C2,De2,Y2,M2,

C1r,De1r,Y1r,M1r, C2r,De2r,Y2r,M2r)

| timeInterval(Bio,P,S,N0,N3, date(C1r,De1r,Y1r,M1r),

date(C2r,De2r,Y2r,M2r)).

The predicate canResolveMonthInterval in the guard is a Prolog predicate that
covers all the different cases of known and unknown values. For the example
“december 1903 tot mei”, the variables C2r, De2r, Y2r would be instantiated
to indicate the year 1904. The guard fails (which prevents the rule from being
applied) when there is no sensible way of filling in the missing information.

6.4 Open intervals

Biographical text often indicates time intervals by giving only a start or an end
time, where the missing point is either obvious according to the timeline or



not considered important. Following the recognition of closed intervals, we can
define rules that resolve expressions such as “tot september 1904”, when it is not
immediately preceded by another time expression.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

exactDate(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,Da2))

<=>

timeInterval(Bio,P,S,N1,N3, DATE, date(C2,De2,Y2,M2,Da2)),

DATE <=< date(Y2,M2,D2).

The symbol <=< is a constraint that represents time order. Current experiments
investigate how to optimally combine such basic algebraic constraints with the
principle of searching in the surrounding text for a reasonable start or end time.

7 Expected results and considerations about test

The method presented so far allows us to introduce new rules optimized for the
chosen corpus, where, in some cases, the rules are so specific that they are only
applied once. These tailored rules allow us to obtain maximal recall and precision
measures on the given corpus.

However, this conclusion is not very interesting in itself, and we still need
to design tests that provide a fair measurement for comparison with related
methods. This could be based on a traditional splitting between training and
validation, and allowing only rules of a certain generality, measured by the num-
ber of times each rule is applied to the training set. The rule set exemplified
above is still under development and not yet at a stage that justifies a proper
evaluation.

However, some initial tests have shown incorrect results caused by the CHR
rules, for instance, when they fail to recognize a time expression reported by
the temporal tagger. A possible cause of this problem could be the fact that the
tagger was developed independently before the use of CHR was considered. To
get the best out of the combination of a smart tagger and CHR matching, there
needs to be a clearer separation of the tasks performed at each level and, thus, a
more consistent interface between the two levels. The experiment reported here
required 132 different rules, and we judge that about 100 could do if tagger and
rule set were designed together. The rule set is highly modular, as each rule can
be designed and tested individually, and it is easy to add specialized rules for
named events and idiomatic expressions.

8 Conclusions

An approach to extract and resolve time expressions from natural language text
is proposed. Time in natural language is often expressed in indirect and/or un-
derspecified ways that reflect lack of exact information. We suggest a rule- and



constraint-based approach that can be tailored carefully to the pragmatics of a
particular class of texts, here exemplified by interrelated personal biographies
written in Dutch concerning a given historical period and context. We start from
text that has been processed by a fairly advanced, but not flawless, temporal
tagger. Our rules can both rely on and correct for consistent mistakes in the
tagging.

We expect that the principle described here can be developed into a general
method for resolution of time expressions, that can be applied to many specific
cases in a modular way, and provides a flexibility for long distance references in
any direction.

The explicit manipulation of null values for the resolution of implicit in-
formation, as described above, is only an intermediate solution. It seems more
appropriate to represent unspecified time values as constrained logical variables
and develop a full constraint solver to handle the relevant collection of tempo-
ral representations, thus resolving unknown values in an automatic way. This
will reduce the need for explicit search for missing information, as the inference
from context is done via relationships between time expressions, thus providing
a symmetrical flow of information forwards, or backwards, through the text. In
case of inconsistent or over-specified time constraints embedded in a text, the
application of soft constraint techniques will be appropriate, as studied in CHR
by [19]. Automatic extraction of rules from trusted, time tagged corpora may
be another interesting continuation of this work; the CHRiSM system [20] that
combines CHR with probabilistic machine learning techniques seems suited for
such experiments.
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